EPIDEMIOLOGY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
83800.9939KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. To characterize the genomic context of New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC), we sequenced 78 Enterobacteriaceae isolates from Pakistan and the United States encoding KPC, NDM-1, or no carbapenemase. High similarities of the results indicate rapid spread of carbapenem resistance between strains, including globally disseminated pathogens.201525988236
83610.9939Cross-Sectional Assessment on Carbapenem-Resistant Gram-Negative Bacteria Isolated from Patients in Moldova. Information on the molecular epidemiology and carbapenem resistance mechanisms in Gram-negative bacterial isolates in Moldova is scarce. To close this knowledge gap, carbapenem-resistant Gram-negative bacteria were collected over an 11-month period in a routine diagnostic laboratory in Moldova. Antimicrobial susceptibility was phenotypically and genotypically assessed. Phylogenetic relationships were investigated and multi-locus sequence types were provided. The assessment indicated several clusters of phylogenetically closely related carbapenem-resistant Klebsiella pneumoniae (sequence types ST101, ST395 and ST377), Acinetobacter baumannii (ST2, ST19 and ST78) and Pseudomonas aeruginosa (ST357 and ST654) isolates next to a number of less frequently observed species and sequence types. A phylogenetic relationship to characterized isolates from neighboring Ukraine could be confirmed. Identified carbapenemase genes comprised bla(OXA-23), bla(OXA-72) and bla(GES-11) in A. baumannii, bla(KPC-3), bla(NDM-1) and bla(OXA-48) in K. pneumoniae, as well as bla(VIM-2) in Pseudomonas aeruginosa. In conclusion, the assessment suggested the spread of carbapenem-resistant Gram-negative bacteria in Moldova which were partly pre-described from neighboring Ukraine, as well as likely spill-over events, facilitating the regional spread of carbapenem-resistant clones. Several isolates with very high genomic similarity further support the hypothesis of likely regional transmission events driven by several evolutionary successful clonal lineages.202540005787
225920.9937Gram-Negative Bacteria Harboring Multiple Carbapenemase Genes, United States, 2012-2019. Reports of organisms harboring multiple carbapenemase genes have increased since 2010. During October 2012-April 2019, the Centers for Disease Control and Prevention documented 151 of these isolates from 100 patients in the United States. Possible risk factors included recent history of international travel, international inpatient healthcare, and solid organ or bone marrow transplantation.202134424168
153030.9937OXA-204 Carbapenemase in Clinical Isolate of Pseudomonas guariconensis, Tunisia. We report an OXA-204-producing Pseudomonas guariconensis clinical isolate in Tunisia, proving the spread of OXA-48 variants beyond Enterobacterales. The bla(OXA-204) gene was carried on a 119-kb chromosomally integrated plasmid fragment, along with multiple additional resistance genes. Surveillance, diagnostic tools, and antimicrobial drug access are needed to mitigate spread of carbapenem-resistant pathogens.202540439456
174040.9935MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.202236228665
83750.9935Diversity of Carbapenem Resistance Mechanisms in Clinical Gram-Negative Bacteria in Pakistan. Antibiotic resistance is a health challenge worldwide. Carbapenem resistance in Gram-negative bacteria is a major problem since treatment options are very limited. Tigecycline and colistin are drugs of choice in this case, but resistance to these drugs is also high. The aim of this study was to describe the diversity of resistance mechanisms in carbapenem-resistant clinical Gram-negative bacteria from Pakistan. Carbapenem-hydrolyzing enzyme-encoding genes were detected using PCR and DNA sequencing and clonal types determined by multilocus sequence typing (MLST). Forty-four carbapenem-resistant isolates were collected from the microbiology laboratory of Fauji Foundation Hospital and Al-Syed Hospital, Rawalpindi, Pakistan, including Klebsiella spp., Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Achromobacter xylosoxidans. bla(NDM-1), bla(NDM-4,) bla(NDM-5,) bla(NDM-7), bla(OXA-48), and bla(OXA-181) were detected in Enterobacteriaceae; bla(OXA-23,) bla(OXA-72), and bla(NDM-1) in A. baumannii, and bla(VIM-6) and bla(VIM-11) in P. aeruginosa. MLST analysis revealed several predominant clonal types: ST167 in E. coli, ST147 in Klebsiella pneumoniae, ST2 in Acinetobacter, and ST664 in P. aeruginosa. In Acinetobacter, a new clonal type was observed for the first time. To the best of our knowledge, this is the first study describing the clonality and resistance mechanisms of carbapenem-resistant Gram-negative bacteria in Pakistan.202133211640
83960.9935Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru. Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The bla(NDM-1) gene was located in the truncated ΔISAba125 element, and the bla(KPC-2) gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (bla(NDM-1) and bla(KPC-2)) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The bla(KPC-2) genes were located in Tn4401a transposons, while the bla(NDM-1) genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.202438193666
140170.9935Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance.202439530854
183280.9934Long-read sequencing reveals genomic diversity and associated plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6 years. Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla (NDM-1) on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla (NDM)- and bla (OXA)-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK.202337405394
210590.9934Infections Caused by Antimicrobial Drug-Resistant Saprophytic Gram-Negative Bacteria in the Environment. BACKGROUND: Drug-resistance genes found in human bacterial pathogens are increasingly recognized in saprophytic Gram-negative bacteria (GNB) from environmental sources. The clinical implication of such environmental GNBs is unknown. OBJECTIVES: We conducted a systematic review to determine how often such saprophytic GNBs cause human infections. METHODS: We queried PubMed for articles published in English, Spanish, and French between January 2006 and July 2014 for 20 common environmental saprophytic GNB species, using search terms "infections," "human infections," "hospital infection." We analyzed 251 of 1,275 non-duplicate publications that satisfied our selection criteria. Saprophytes implicated in blood stream infection (BSI), urinary tract infection (UTI), skin and soft tissue infection (SSTI), post-surgical infection (PSI), osteomyelitis (Osteo), and pneumonia (PNA) were quantitatively assessed. RESULTS: Thirteen of the 20 queried GNB saprophytic species were implicated in 674 distinct infection episodes from 45 countries. The most common species included Enterobacter aerogenes, Pantoea agglomerans, and Pseudomonas putida. Of these infections, 443 (66%) had BSI, 48 (7%) had SSTI, 36 (5%) had UTI, 28 (4%) had PSI, 21 (3%) had PNA, 16 (3%) had Osteo, and 82 (12%) had other infections. Nearly all infections occurred in subjects with comorbidities. Resistant strains harbored extended-spectrum beta-lactamase (ESBL), carbapenemase, and metallo-β-lactamase genes recognized in human pathogens. CONCLUSION: These observations show that saprophytic GNB organisms that harbor recognized drug-resistance genes cause a wide spectrum of infections, especially as opportunistic pathogens. Such GNB saprophytes may become increasingly more common in healthcare settings, as has already been observed with other environmental GNBs such as Acinetobacter baumannii and Pseudomonas aeruginosa.201729164118
2256100.9934Bacterial Resistance in Hospital-Acquired Infections Acquired in the Intensive Care Unit: A Systematic Review. PURPOSE: In this review we present the status of the prevalence of bacteria resistant to antibiotics and the main antibiotic resistance genes that are reported in infections acquired in intensive care units (ICU) around the world. METHODS: A systematic review based on the PRISMA guide was carried out, from the Science Direct, Redalyc, Scopus, Hinari, Scielo, Dialnet, PLOS, ProQuest, Taylor, Lilacs and PubMed/Medline databases. Inclusion criteria of this review were original research study published in a scientific journal in a 10-year time span from 1 January 2017 and 30 April 2022. RESULTS: A total of 1686 studies were identified, but only 114 studies were considered eligible for inclusion. Klebsiella pneumoniae and Escherichia coli resistant to carbapenems and producers of extended-spectrum β-lactamases (ESBL) are the most frequently isolated pathogens in ICUs in Asia, Africa and Latin America. The blaOXA and blaCTX were antibiotic resistance genes (ARG) most commonly reported in different geographic regions (in 30 and 28 studies, respectively). Moreover, multidrug-resistant (MDR) strains were reported in higher frequency in hospital-acquired infections. Reports of MDR strains vary between continents, with the majority of publications being in Asia and between countries, with Egypt and Iran being highlighted. There is a predominance of few bacterial clones with MDR phenotype, for example, clonal complex 5 Methicillin-Resistant Staphylococcus aureus (CC5-MRSA) circulates frequently in hospitals in the United States, clone ST23-K. pneumoniae is reported in India and Iran, and clone ST260 carbapenemase-producing P. aeruginosa in the United States and Estonia. CONCLUSION: Our systematic review reveals that ESBL- and carbapenemase-producing K. pneumoniae and E. coli are the most problematic bacteria that are reported, mainly in tertiary hospitals in Asia, Africa, and Latin America. We have also found propagation of dominant clones with a high degree of MDR, becoming a problem due to its high capacity to cause morbidity, mortality and additional hospital costs.202337384803
841110.9934blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms.201627622347
1661120.9934Novel mcr-3 variant, encoding mobile colistin resistance, in an ST131 Escherichia coli isolate from bloodstream infection, Denmark, 2014. A novel variant of the plasmid-borne colistin resistance gene mcr-3 was detected on an IncHI2 plasmid in an ST131 CTX-M-55-producing Escherichia coli isolate from a Danish patient with bloodstream infection in 2014. The discovery of novel plasmid-borne genes conferring resistance to colistin is of special interest since colistin has reemerged as an important drug in the treatment of infections with multidrug-resistant Gram-negative bacteria.201728797324
1743130.9934International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.202032239649
1741140.9933Detection of SGI1/PGI1 Elements and Resistance to Extended-Spectrum Cephalosporins in Proteae of Animal Origin in France. Proteae, and especially Proteus mirabilis, are often the cause of urinary tract infections (UTIs) in humans. They were reported as carriers of extended-spectrum β-lactamase (ESBL) genes, and recently of carbapenemases, mostly carried by the Salmonella genomic island 1 (SGI1) and Proteus genomic island 1 (PGI1). Proteae have also lately become an increasing cause of UTIs in companion animals, but antimicrobial susceptibility data in animals are still scarce. Here, we report the characterization of 468 clinical epidemiologically unrelated Proteae strains from animals collected between 2013 and 2015 in France. Seventeen P. mirabilis strains (3.6%) were positive for SGI1/PGI1 and 18 Proteae (3.8%) were resistant to extended-spectrum cephalosporins (ESC). The 28 isolates carrying SGI1/PGI1 and/or ESC-resistance genes were isolated from cats, dogs, and horses. ESBL genes were detected in six genetically related P. mirabilis harboring bla(V EB-6) on the SGI1-V variant, but also independently of the SGI1-V, in 3 P. mirabilis strains (bla(VEB-6) and bla(CTX-M-15)) and 1 Providencia rettgeri strain (bla(CTX-M-1)). The AmpC resistance genes bla(CMY -2) and/or bla(DHA-16) were detected in 9 P. mirabilis strains. One strain presented both an ESBL and AmpC gene. Interestingly, the majority of the ESBL/AmpC resistance genes were located on the chromosome. In conclusion, multiple ESC-resistance genetic determinants are circulating in French animals, even though SGI1-V-carrying P. mirabilis seems to be mainly responsible for the spread of the ESBL gene bla(VEB-6) in dogs and horses. These results are of public health relevance and show that companion animals in close contact with humans should be regarded as a potential reservoir of ESC-resistant bacteria as well as a reservoir of ESC-resistance genes that could further disseminate to human pathogens.201728154560
840150.9933Outbreak of colistin and carbapenem-resistant Klebsiella pneumoniae ST16 co-producing NDM-1 and OXA-48 isolates in an Iranian hospital. BACKGROUND: Colistin and carbapenem-resistant Klebsiella pneumoniae (Col-CRKP) represent a significant and constantly growing threat to global public health. We report here an outbreak of Col-CRKP infections during the fifth wave of COVID-19 pandemic. METHODS: The outbreak occurred in an intensive care unit with 22 beds at a teaching university hospital, Isfahan, Iran. We collected eight Col-CRKP strains from seven patients and characterized these strains for their antimicrobial susceptibility, determination of hypermucoviscous phenotype, capsular serotyping, molecular detection of virulence and resistance genes. Clonal relatedness of the isolates was performed using MLST. RESULTS: The COVID-19 patients were aged 24-75 years with at least 50% pulmonary involvement and were admitted to the intensive care unit. They all had superinfection caused by Col-CRKP, and poor responses to antibiotic treatment and died. With the exception of one isolate that belonged to the ST11, all seven representative Col-CRKP strains belonged to the ST16. Of these eight isolates, one ST16 isolate carried the iucA and ybtS genes was identified as serotype K20 hypervirulent Col-CRKP. The bla(SHV) and bla(NDM-1) genes were the most prevalent resistance genes, followed by bla(OXA-48) and bla(CTX-M-15) and bla(TEM) genes. Mobilized colistin-resistance genes were not detected in the isolates. CONCLUSIONS: The continual emergence of ST16 Col-CRKP strains is a major threat to public health worldwide due to multidrug-resistant and highly transmissible characteristics. It seems that the potential dissemination of these clones highlights the importance of appropriate monitoring and strict infection control measures to prevent the spread of resistant bacteria in hospitals.202438368365
2496160.9933Treatment of Bloodstream Infections Due to Gram-Negative Bacteria with Difficult-to-Treat Resistance. The rising incidence of bloodstream infections (BSI) due to Gram-negative bacteria (GNB) with difficult-to-treat resistance (DTR) has been recognized as a global emergency. The aim of this review is to provide a comprehensive assessment of the mechanisms of antibiotic resistance, epidemiology and treatment options for BSI caused by GNB with DTR, namely extended-spectrum Beta-lactamase-producing Enterobacteriales; carbapenem-resistant Enterobacteriales; DTR Pseudomonas aeruginosa; and DTR Acinetobacter baumannii.202032971809
1738170.9933Role of Institut Hospitalo-Universitaire Méditerranée Infection in the surveillance of resistance to antibiotics and training of students in the Mediterranean basin and in African countries. Surveillance of antibiotic resistance has become a public global concern after the rapid worldwide dissemination of several antibiotic resistance genes. Here we report the role of the Institut Hospitalo-Universitaire Méditerranée Infection created in 2011 in the identification and description of multidrug-resistant bacteria thanks to collaborations and training of students from the Mediterranean basin and from African countries. Since the creation of the institute, 95 students and researchers have come from 19 different countries from these areas to characterize 6359 bacterial isolates from 7280 samples from humans (64%), animals (28%) and the environment (8%). Most bacterial isolates studied were Gram-negative bacteria (n = 5588; 87.9%), mostly from Algeria (n = 4190), Lebanon (n = 946), Greece (n = 610), Saudi Arabia (n = 299) and Senegal (n = 278). Antibiotic resistance was diversified with the detection and characterization of extended-spectrum β-lactamases, carbapenemases and resistance to colistin, vancomycin and methicillin. All those studies led to 97 indexed international scientific papers. Over the last 6 years, our institute has created a huge network of collaborations by training students that plays a major role in the surveillance of resistance to antibiotics in these countries.201830402244
1408180.9933Six Extensively Drug-Resistant Bacteria in an Injured Soldier, Ukraine. Blood and surveillance cultures from an injured service member from Ukraine grew Acinetobacter baumannii, Klebsiella pneumoniae, Enterococcus faecium, and 3 distinct Pseudomonas aeruginosa strains. Isolates were nonsusceptible to most antibiotics and carried an array of antibiotic resistant genes, including carbapenemases (bla(IMP-1), bla(NDM-1), bla(OXA-23), bla(OXA-48), bla(OXA-72)) and 16S methyltransferases (armA and rmtB4).202337406356
849190.9933Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs.202539163245