EPIDEMIOLOGICAL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
211400.9961Clinical, phenotypic, and genotypic characteristics of ESBL-producing Salmonella enterica bloodstream infections from Qatar. BACKGROUND: Resistant Salmonella infections are a major global public health challenge particularly for multidrug-resistant (MDR) isolates manifesting as bloodstream infections (BSIs). OBJECTIVES: To evaluate clinical, phenotypic, and genotypic characteristics of extended-spectrum beta-lactamase (ESBL) producing Salmonella enterica BSIs from Qatar. METHODS: Phenotypic ESBL Salmonella enterica from adult patients presenting with positive BSIs were collected between January 2019 to May 2020. Microbiological identification and characterization were performed using standard methods while genetic characteristics were examined through whole genome sequencing studies. RESULTS: Of 151 episodes of Salmonella enterica BSI, 15 (10%) phenotypic ESBL isolates were collected. Recent travel was recorded in most cases (80%) with recent exposure to antimicrobials (27%). High-level resistance to quinolines, aminoglycosides, and cephalosporins was recorded (80-100%) while meropenem, tigecycline and colistin demonstrated universal susceptibility. Genomic evaluation demonstrated dominance of serotype Salmonella Typhi sequence type 1 (93%) while antimicrobial resistance genes revealed dominance of aminoglycoside resistance (100%), qnrS1 quinolones resistance (80%), bla(CTX-M-15) ESBLs (86.7%), and paucity of AmpC resistance genes (6.7%). CONCLUSIONS: Invasive MDR Salmonella enterica is mainly imported, connected to patients from high prevalent regions with recent travel and antimicrobial use caused by specific resistant clones. In suspected cases of multidrug resistance, carbapenem therapy is recommended.202438742235
84910.9960Bacterial Genomics for National Antimicrobial Resistance Surveillance in Cambodia. BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at 6 Cambodian hospitals (January 2021 to October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole-genome assemblies and haplotype clusters compared against published genomes. RESULTS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, trimethoprim/sulfamethoxazole in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum β-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in Escherichia coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58, and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of Acinetobacter baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and extended-spectrum β-lactamase E. coli cases suggesting community transmission. CONCLUSIONS: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs.202539163245
174320.9959International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli clones have been increasingly reported worldwide. In this regard, although discussions of transmission routes of these bacteria are in evidence, molecular data are lacking to elucidate the epidemiological impacts of ESBL producers in wild animals. In this study, we have screened 90 wild animals living in a surrounding area of São Paulo, the largest metropolitan city in South America, to monitor the presence of multidrug-resistant (MDR) Gram-negative bacteria. Using a genomic approach, we have analysed eight ceftriaxone-resistant E. coli. Resistome analyses revealed that all E. coli strains carried bla(CTX-M) -type genes, prevalent in human infections, besides other clinically relevant resistance genes to aminoglycosides, β-lactams, phenicols, tetracyclines, sulphonamides, trimethoprim, fosfomycin and quinolones. Additionally, E. coli strains belonged to international sequence types (STs) ST38, ST58, ST212, ST744, ST1158 and ST1251, and carried several virulence-associated genes. Our findings suggest spread and adaptation of international clones of CTX-M-producing E. coli beyond urban settings, including wildlife from shared environments.202032239649
93930.9959Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Long-term-care facilities (LTCFs) are reservoirs of resistant bacteria. We undertook a point-prevalence survey and risk factor analysis for specific resistance types among residents and staff of a Bolzano LTCF and among geriatric unit patients in the associated acute-care hospital. Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on chromogenic agar; isolates were typed by pulsed-field gel electrophoresis; resistance genes and links to insertion sequences were sought by PCR; plasmids were analysed by PCR, restriction fragment length polymorphism and incompatibility grouping. Demographic data were collected. Of the LTCF residents, 74.8% were colonized with ≥1 resistant organism, 64% with extended-spectrum β-lactamase (ESBL) producers, 38.7% with methicillin-resistant Staphylococcus aureus (MRSA), 6.3% with metallo-β-lactamase (MBL) producers, and 2.7% with vancomycin-resistant enterococci. Corresponding rates for LTCF staff were 27.5%, 14.5%, 14.5%, 1.5% and 0%, respectively. Colonization frequencies for geriatric unit patients were lower than for those in the LTCF. Both clonal spread and plasmid transfer were implicated in the dissemination of MBL producers that harboured IncN plasmids bearing bla(VIM-1), qnrS, and bla(SHV-12). Most (44/45) ESBL-producing Escherichia coli isolates had bla(CTX-M) genes of group 1; a few had bla(CTX-M) genes of group 9 or bla(SHV-5); those with bla(CTX-M-15) or bla(SHV-5) were clonal. Risk factors for colonization of LTCF residents with resistant bacteria included age ≥86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit; those for geriatric unit patients were age and dementia. In conclusion, ESBL-producing and MBL-producing Enterobacteriaceae and MRSA were prevalent among the LTCF residents and staff, but less so in the hospital geriatric unit. Education of LTCF employees and better infection control are proposed to minimize the spread of resistant bacteria in the facility.201019686277
83840.9959KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. To characterize the genomic context of New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC), we sequenced 78 Enterobacteriaceae isolates from Pakistan and the United States encoding KPC, NDM-1, or no carbapenemase. High similarities of the results indicate rapid spread of carbapenem resistance between strains, including globally disseminated pathogens.201525988236
84450.9958Whole Genome Sequencing of Extended Spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae Isolated from Hospitalized Patients in KwaZulu-Natal, South Africa. Extended spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae remain a critical clinical concern worldwide. The aim of this study was to characterize ESBL-producing K. pneumoniae detected within and between two hospitals in uMgungundlovu district, South Africa, using whole genome sequencing (WGS). An observational period prevalence study on antibiotic-resistant ESKAPE (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) bacteria was carried out in hospitalized patients during a two-month period in 2017. Rectal swabs and clinical specimens were collected from patients hospitalized and were screened for ESBL-producing, Gram-negative ESKAPE bacteria using cefotaxime-containing MacConkey agar and ESBL combination disk tests. Nine confirmed ESBL-K. pneumoniae isolated from six patients and two hospitals were whole genome sequenced using an Illumina MiSeq platform. Genome sequences were screened for presence of integrons, insertion sequences, plasmid replicons, CRISPR regions, resistance genes and virulence genes using different software tools. Of the 159 resistant Gram-negative isolates collected, 31 (19.50%) were ESBL-producers, of which, nine (29.03%) were ESBL-K. pneumoniae. The nine K. pneumoniae isolates harboured several β-lactamase genes, including bla(CTX-M-15), bla(TEM-1b), bla(SHV-1), bla(OXA-1) concomitantly with many other resistance genes e.g. acc(6')-lb-cr, aadAI6, oqxA and oqxB that confer resistance to aminoglycosides and/or fluoroquinolones, respectively. Three replicon plasmid types were detected in both clinical and carriage isolates, namely ColRNAI, IncFIB(K), IncF(II). Sequence type ST152 was confirmed in two patients (one carriage isolate detected on admission and one isolate implicated in infection) in one hospital. In contrast, ST983 was confirmed in a clinical and a carriage isolate of two patients in two different hospitals. Our data indicate introduction of ESBL-producing K. pneumoniae isolates into hospitals from the community. We also found evidence of nosocomial transmission within a hospital and transmission between different hospitals. The Clustered Regularly Interspaced Palindromic Repeats (CRISPR)-associated cas3 genes were further detected in two of the nine ESBL-KP isolates. This study showed that both district and tertiary hospital in uMgungundlovu District were reservoirs for several resistance determinants and highlighted the necessity to efficiently and routinely screen patients, particularly those receiving extensive antibiotic treatment and long-term hospitalization stay. It also reinforced the importance of infection, prevention and control measures to reduce the dissemination of antibiotic resistance within the hospital referral system in this district.201931000772
97760.9958High prevalence of carriage of mcr-1-positive enteric bacteria among healthy children from rural communities in the Chaco region, Bolivia, September to October 2016. BackgroundThe mcr-1 gene is a transferable resistance determinant against colistin, a last-resort antimicrobial for infections caused by multi-resistant Gram-negatives.AimTo study carriage of antibiotic-resistant bacteria in healthy school children as part of a helminth control and antimicrobial resistance survey in the Bolivian Chaco region.MethodsFrom September to October 2016 we collected faecal samples from healthy children in eight rural villages. Samples were screened for mcr-1- and mcr-2 genes. Antimicrobial susceptibility testing was performed, and a subset of 18 isolates representative of individuals from different villages was analysed by whole genome sequencing (WGS).ResultsWe included 337 children (mean age: 9.2 years, range: 7-11; 53% females). The proportion of mcr-1 carriers was high (38.3%) and present in all villages; only four children had previous antibiotic exposure. One or more mcr-1-positive isolates were recovered from 129 positive samples, yielding a total of 173 isolates (171 Escherichia coli, 1 Citrobacter europaeus, 1 Enterobacter hormaechei). No mcr-2 was detected. Co-resistance to other antimicrobials varied in mcr-positive E. coli. All 171 isolates were susceptible to carbapenems and tigecycline; 41 (24.0%) were extended-spectrum β-lactamase producers and most of them (37/41) carried bla(CTX-M)-type genes. WGS revealed heterogeneity of clonal lineages and mcr-genetic supports.ConclusionThis high prevalence of mcr-1-like carriage, in absence of professional exposure, is unexpected. Its extent at the national level should be investigated with priority. Possible causes should be studied; they may include unrestricted use of colistin in veterinary medicine and animal breeding, and importation of mcr-1-positive bacteria via food and animals.201830424831
95070.9957Incidence of Extended Spectrum β-Lactamase Genes (ESBLs) among community and health care infection in Mansoura University Hospital, Egypt. BACKGROUND: Multidrug-resistant (MDR) Gram-negative bacteria pose a significant challenge due to their limited treatment options. The production of extended-spectrum β-lactamases (ESBLs) is an important mechanism of resistance. This study aimed to identify the incidence and characteristics of ESBL-encoding genes (bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA)) in MDR isolates. MATERIALS AND METHODS: A cross-sectional study was conducted from September 2022 to May 2023. ESBL-producing isolates (n = 105) out of 412 were recovered from hospitalized and outpatient settings and analyzed. Standard microbiological methods were used for isolates identification, susceptibility testing, and phenotypic ESBL detection. Additionally, bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes were identified using conventional PCR. RESULTS: Molecular profiling of β-lactamase determinants was conducted via PCR targeting bla(CTX-M), bla(TEM), bla(SHV), and bla(OXA) genes. Among phenotypically confirmed (100%) ESBL producers, 98% harbored one or more target genes, with bla(CTX-M) predominant (81%), followed by bla(SHV) (70.4%), bla(TEM) (62%), and bla(OXA) (30.4%). Carbapenem resistance was higher in ESBL-producing strains compared to non-ESBL strains. Extensively drug-resistant (XDR) isolates were the most common across hospital departments and outpatients. DISCUSSION: This study highlights the significant prevalence of ESBL genes and multidrug resistance among Gram-negative bacteria. The dominance of bla(CTX-M) and the existence of multiple resistance genes raise concerns about limited treatment options. The findings emphasize the need for stricter antibiotic stewardship and infection control measures to curb the spread of MDR pathogens. CONCLUSION: This study provides valuable insights into the alarming incidence of ESBL genes and MDR in Mansoura, Egypt. Continuous surveillance and implementation of effective control strategies are crucial to combat this growing public health threat.202540405086
174180.9957Detection of SGI1/PGI1 Elements and Resistance to Extended-Spectrum Cephalosporins in Proteae of Animal Origin in France. Proteae, and especially Proteus mirabilis, are often the cause of urinary tract infections (UTIs) in humans. They were reported as carriers of extended-spectrum β-lactamase (ESBL) genes, and recently of carbapenemases, mostly carried by the Salmonella genomic island 1 (SGI1) and Proteus genomic island 1 (PGI1). Proteae have also lately become an increasing cause of UTIs in companion animals, but antimicrobial susceptibility data in animals are still scarce. Here, we report the characterization of 468 clinical epidemiologically unrelated Proteae strains from animals collected between 2013 and 2015 in France. Seventeen P. mirabilis strains (3.6%) were positive for SGI1/PGI1 and 18 Proteae (3.8%) were resistant to extended-spectrum cephalosporins (ESC). The 28 isolates carrying SGI1/PGI1 and/or ESC-resistance genes were isolated from cats, dogs, and horses. ESBL genes were detected in six genetically related P. mirabilis harboring bla(V EB-6) on the SGI1-V variant, but also independently of the SGI1-V, in 3 P. mirabilis strains (bla(VEB-6) and bla(CTX-M-15)) and 1 Providencia rettgeri strain (bla(CTX-M-1)). The AmpC resistance genes bla(CMY -2) and/or bla(DHA-16) were detected in 9 P. mirabilis strains. One strain presented both an ESBL and AmpC gene. Interestingly, the majority of the ESBL/AmpC resistance genes were located on the chromosome. In conclusion, multiple ESC-resistance genetic determinants are circulating in French animals, even though SGI1-V-carrying P. mirabilis seems to be mainly responsible for the spread of the ESBL gene bla(VEB-6) in dogs and horses. These results are of public health relevance and show that companion animals in close contact with humans should be regarded as a potential reservoir of ESC-resistant bacteria as well as a reservoir of ESC-resistance genes that could further disseminate to human pathogens.201728154560
174290.9957Shelter dogs as reservoirs of international clones of Escherichia coli carrying mcr-1.1 and bla(CTX-M) resistance genes in Lima, Peru. Antimicrobial resistance (AMR) poses a critical public health threat worldwide, particularly at the human-animal interface where cross-transmission of critical priority Enterobacterales, such as Escherichia coli, have become increasingly reported. Worryingly, E. coli encoding extended-spectrum β-lactamases (ESBLs) has been documented in companion animals worldwide. Conversely, the presence of mcr genes, which confer resistance to polymyxins, in bacteria from pets remains more infrequent. In this study, we sequenced and reported on the first genomic data of E. coli strains carrying mcr-1 and/or bla(CTX-M) genes isolated from rectal swabs of stray dogs in a shelter in the city of Lima, Peru. Antimicrobial susceptibility revealed that E. coli strains exhibited a multidrug resistance profile. In addition to mcr-1 and bla(CTX-M) genes, other clinically relevant resistance determinants were identified, with notably presence of bla(TEM-176) and the novel bla(SCO-2) variant. The association of mcr-1.1 and IncI2 plasmid was confirmed. Several virulence genes were detected, classifying strains as putative extraintestinal pathogenic E. coli. Multilocus sequence typing prediction recognized diverse sequence types (ST), including ST155, ST189, ST657, ST746, ST1140, ST3014, and ST7188. This study represents the first report of mcr-positive E. coli in dogs from Peru, emphasizing the need for continuous surveillance and genomic characterization to better understand the transmission dynamics of these critical resistance genes at the human-animal interface. Furthermore, our results provide evidence that stray, and shelter dogs could be a reservoir for the spread of WHO priority pathogens, and/or polymyxin and β-lactam resistance genes, which is a public health and One Health concern that requires appropriate management strategies.202540339258
1413100.9957Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
1500110.9957Microbiological surveillance of plasmid mediated colistin resistance in human Enterobacteriaceae isolates in Romagna (Northern Italy): August 2016-July 2017. OBJECTIVES: To start a surveillance program to investigate the possible diffusion of mobilized colistin resistance genes in Enterobacteriaceae strains isolated in the Unit of Microbiology of the Great Romagna Hub Laboratory. METHODS: All the colistin resistant Enterobacteriaceae, isolated from August 1st 2016 to July 31st 2017, were prospectively evaluated for mcr-1 and mcr-2. Backdated survey of mcr-3, mcr-4 and mcr-5 was performed on the same group of isolates. Species identification was achieved by Vitek MS and the antibiotic susceptibility testing was performed both with Vitek-2 and Sensititre systems. Colistin resistant isolates were screened by PCR for the presence of the plasmid-mediated colistin resistance genes and amplicons were verified by sequencing. All mcr-1 positive isolates were subjected to MLST analysis. RESULTS: Over the total of 19053 isolates belonging to Enterobacteriaceae, 90 were colistin resistant. The presence of mcr-1 was detected in 26 Escherichia coli. The overall prevalence of mcr-1 was 0.14%. The mcr-1 positive E. coli strains were assigned to 13 distinct sequence types (STs) according to MLST. CONCLUSIONS: The prospective epidemiological survey carried out in our study gave a glimpse of the plasmid-mediated colistin resistance dissemination in Romagna. Since the prevalence rate of carbapenem resistant Enterobacteriaceae (CRE) in some hospital wards in our area is alarming, we underline the importance of a Surveillance Program to monitor the spread of the plasmid-mediated colistin resistance genes into MDR Gram-negative bacteria.201829447913
951120.9957Analyses of Extended-Spectrum-β-Lactamase, Metallo-β-Lactamase, and AmpC-β-Lactamase Producing Enterobacteriaceae from the Dairy Value Chain in India. The consumption of milk contaminated with antibiotic-resistant bacteria poses a significant health threat to humans. This study aimed to investigate the prevalence of Enterobacteriaceae producing β-lactamases (ESBL, MBL, and AmpC) in cow and buffalo milk samples from two Indian states, Haryana and Assam. A total of 401 milk samples were collected from dairy farmers and vendors in the specified districts. Microbiological assays, antibiotic susceptibility testing, and PCR-based genotyping were employed to analyze 421 Gram-negative bacterial isolates. The overall prevalence of β-lactamase genes was 10% (confidence interval (CI) (7-13)), with higher rates in Haryana (13%, CI (9-19)) compared to Assam (7%, CI (4-11)). The identified β-lactamase genes in isolates were bla(CMY), bla(MOX), bla(FOX), bla(EBC), and bla(DHA), associated with AmpC production. Additionally, bla(CTX-M1), bla(SHV), and bla(TEM) were detected as ESBL producers, while bla(VIM), bla(IMP), bla(SPM), bla(SIM), and bla(GIM) were identified as MBL producers. Notably, Shigella spp. were the dominant β-lactamase producers among identified Enterobacteriaceae. This study highlights the presence of various prevalent β-lactamase genes in milk isolates, indicating the potential risk of antimicrobial-resistant bacteria in dairy products. The presence of β-lactam resistance raises concern as this could restrict antibiotic options for treatment. The discordance between genotypic and phenotypic methods emphasizes the necessity for comprehensive approaches that integrate both techniques to accurately assess antibiotic resistance. Urgent collaborative action incorporating rational and regulated use of antibiotics across the dairy value chain is required to address the global challenge of β-lactam resistance.202337760745
842130.9957Molecular characterization of antimicrobial resistance genes and plasmid profiles in enterobacterales isolated from urinary tract infections in rural outpatient women in Otavalo, Ecuador. BACKGROUND: The rise of antibiotic-resistant bacteria poses a significant public health threat, particularly in the context of urinary tract infections (UTIs), which rank as the second most common ambulatory illness. UTIs are often caused by Enterobacterales species, such as Escherichia coli and Klebsiella pneumoniae, with increasing resistance to critical antibiotics complicating treatment. Indigenous rural populations, like those in Ecuador, face unique challenges due to cultural, social, and economic barriers that hinder access to healthcare, exacerbating the issue of antibiotic resistance. METHODS: This study analyzed 154 Enterobacterales strains isolated from ambulatory UTI cases in outpatiens from Otavalo, Ecuador, between October 2021 and February 2022. DNA was extracted, and the presence of antibiotic resistance genes (ARGs) was screened using PCR for extended-spectrum beta-lactamases and carbapenemases. Plasmid incompatibility groups were identified through replicon typing, and multi-locus sequence typing (MLST) was performed to characterize strains. RESULTS: The analysis revealed four prevalent ARGs, with bla(TEM) being the most common (87.01% of isolates), followed by bla(CTX-M-1) (44.16%), bla(SHV) (18.83%), and bla(CTX-M-9) (13.64%). No carbapenemases or mcr-1 genes were detected. Among the incompatibility groups, IncFIB, IncF, and IncY were the most prevalent. A diverse array of ARG combinations was observed, indicating significant plasmid-mediated genetic plasticity. MLST identified 33 distinct sequence types among E. coli isolates, with ST10 and ST3944 being the most frequent. For K. pneumoniae, ST15 and ST25 were predominant. CONCLUSIONS: This study reveals significant antibiotic resistance among Enterobacterales from urinary tract infections in rural outpatients in Ecuador. The bla(TEM) gene was found in 87.01% of isolates, with notable clones like E. coli ST10 and ST3944 linked to extraintestinal infections. K. pneumoniae ST15 and ST25 were prevalent, indicating multidrug resistance. The findings highlight the need for ongoing surveillance and targeted public health strategies to combat resistance in these vulnerable communities.202541131447
1415140.9957Antibiogram and Molecular Characterization of AmpC and ESBL-Producing Gram-Negative Bacteria from Poultry and Abattoir Samples. BACKGROUND AND OBJECTIVE: The global antibiotic resistance threat posed by ESBL and AmpC-producing Gram-Negative Bacteria (GNB) is a public health menace that rolls back the gains of 'One Health'. This study investigated the antibiogram and prevalence of AmpC and ESBL genes in Escherichia coli, Klebsiella spp. and Pseudomonas spp. from poultry and abattoir milieus in Enugu and Ebonyi States, Nigeria. MATERIALS AND METHODS: Isolation, identification and characterization of GNB from samples (150 abattoirs and 300 poultry) were done using standard microbiological techniques. Antimicrobial Susceptibility Testing (AST), as well as phenotypic screening for ESBL and AmpC enzymes, was performed using the Kirby-Bauer disc diffusion technique. PCR technique was used to screen isolated GNB for AmpC and ESBL genes. RESULTS: Exactly 42 E. coli and 8 Klebsiella spp. isolate from poultry samples and another 5 P. aeruginosa isolates from abattoir samples were phenotypically confirmed to be ESBL-producers. AmpC enzymes were phenotypically detected in 8 E. coli and 13 P. aeruginosa isolates from poultry samples. All ESBL and AmpC-positive bacteria exhibited high resistance frequencies to tested antibiotics, especially to the carbapenems and cephalosporins. ESBL genes (CTX-M, SHV-1, TEM) and AmpC genes (ACC-M, MOX-M, DHA-M) were harbored by the isolated GNB in this study. Overall, the DHA-M and CTX-M genes, mediating AmpC and ESBL production respectively were the most prevalent genes harbored by the tested GNB. CONCLUSION: This study reported that AmpC and ESBL genes are harbored by Gram-negative bacteria (E. coli, Klebsiella species and P. aeruginosa) that emanated from poultry and abattoir milieus.202133683048
2170150.9957Drug resistance in bacteria isolated from patients presenting with wounds at a non-profit Surgical Center in Phnom Penh, Cambodia from 2011-2013. BACKGROUND: Emerging antibiotic resistance amongst clinically significant bacteria is a public health issue of increasing significance worldwide, but it is relatively uncharacterized in Cambodia. In this study we performed standard bacterial cultures on samples from wounds at a Non-Governmental-Organization (NGO) Hospital in Phnom Penh, Cambodia. Testing was performed to elucidate pathogenic bacteria causing wound infections and the antibiotic resistance profiles of bacterial isolates. All testing was performed at the Naval Medical Research Unit, No.2 (NAMRU-2) main laboratory in Phnom Penh, Cambodia. METHODS: Between 2011-2013, a total of 251 specimens were collected from patients at the NGO hospital and analyzed for bacterial infection by standard bacterial cultures techniques. Specimens were all from wounds and anonymous. No specific clinical information accompanied the submitted specimens. Antibiotic susceptibility testing, and phenotypic testing for extended-spectrum beta-lactamase (ESBL) were performed and reported based on CLSI guidelines. Further genetic testing for CTX-M, TEM and SHV ESBLs was accomplished using PCR. RESULTS: One-hundred and seventy-six specimens were positive following bacterial culture (70 %). Staphlycoccus aureus was the most frequently isolated bacteria. Antibiotic drug resistance testing revealed that 52.5 % of Staphlycoccus aureus isolates were oxacillin resistant. For Escherichia coli isolates, 63.9 % were ciprofloxacin and levofloxacin resistant and 96 % were ESBL producers. Resistance to meropenem and imipenem was observed in one of three Acinetobacter spp isolates. CONCLUSIONS: This study is the first of its kind detailing the antibiotic resistance profiles of pathogenic bacteria causing wound infections at a single surgical hospital in Cambodia. The reported findings of this study demonstrate significant antibiotic resistance in bacteria from injured patients and should serve to guide treatment modalities in Cambodia.201528883936
960160.9956Beta-lactamase genes in bacteria from food animals, retail meat, and human surveillance programs in the United States from 2002 to 2021. The spread of beta-lactamase-producing bacteria is a global public-health concern. This study aimed to explore the distribution of beta-lactamases reported in three sampling sources (cecal, retail meat, and human) collected as part of integrated surveillance in the United States. We retrieved and analyzed data from the United States National Antimicrobial Resistance Monitoring Systems (NARMS) from 2002 to 2021. A total of 115 beta-lactamase genes were detected in E. coli, Salmonella enterica, Campylobacter, Shigella and Vibrio: including 35 genes from cecal isolates, 32 genes from the retail meat isolates, and 104 genes from the human isolates. Three genes in E. coli (bla(CMY-2,)bla(TEM-1A), and bla(TEM-1B)), 6 genes in Salmonella enterica (bla(CARB-2), bla(CMY-2), bla(CTXM-65), bla(TEM-1A), bla(TEM-1B), and bla(HERA-3)), and 2 genes in Campylobacter spp. (bla(OXA-61) and bla(OXA-449)) have been detected across food animals (cattle, chicken, swine, and turkey) and humans over the study period. bla(CTXM-55) has been detected in E. coli isolates from the four food animal sources while bla(CTXM-15) and bla(CTXM-27) were found only in cattle and swine. In Salmonella enterica, bla(CTXM-2), bla(CTXM-9), bla(CTXM-14), bla(CTXM-15), bla(CTXM-27), bla(CTXM-55), and bla(NDM-1) were only detected among human isolates. bla(OXAs) and bla(CARB) were bacteria-specific and the only beta-lactamase genes detected in Campylobacter spp. and Vibrio spp respectively. The proportions of beta-lactamase genes detected varies from bacteria to bacteria. This study provided insights on the beta-lactamase genes detected in bacteria in food animals and humans in the United States. This is necessary for better understanding the molecular epidemiology of clinically important beta-lactamases in one health interface.202438325128
1459170.9956Molecular characterization of carbapenem-resistance in Gram-negative isolates obtained from clinical samples at Jimma Medical Center, Ethiopia. BACKGROUND: In resource-constrained settings, limited antibiotic options make treating carbapenem-resistant bacterial infections difficult for healthcare providers. This study aimed to assess carbapenemase expression in Gram-negative bacteria isolated from clinical samples in Jimma, Ethiopia. METHODS: A cross-sectional study was conducted to assess carbapenemase expression in Gram-negative bacteria isolated from patients attending Jimma Medical Center. Totally, 846 Gram-negative bacteria were isolated and identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Phenotypic antibiotic resistance patterns were determined using the Kirby-Bauer disk diffusion method and Etest strips. Extended-spectrum β-lactamase phenotype was determined using MAST disks, and carbapenemases were characterized using multiplex polymerase chain reactions (PCR). RESULTS: Among the isolates, 19% (157/846) showed phenotypic resistance to carbapenem antibiotics. PCR analysis revealed that at least one carbapenemase gene was detected in 69% (107/155) of these strains. The most frequently detected acquired genes were blaNDM in 35% (37/107), blaVIM in 24% (26/107), and blaKPC42 in 13% (14/107) of the isolates. Coexistence of two or more acquired genes was observed in 31% (33/107) of the isolates. The most common coexisting acquired genes were blaNDM + blaOXA-23, detected in 24% (8/33) of these isolates. No carbapenemase-encoding genes could be detected in 31% (48/155) of carbapenem-resistant isolates, with P. aeruginosa accounting for 85% (41/48) thereof. CONCLUSION: This study revealed high and incremental rates of carbapenem-resistant bacteria in clinical samples with various carbapenemase-encoding genes. This imposes a severe challenge to effective patient care in the context of already limited treatment options against Gram-negative bacterial infections in resource-constrained settings.202438328425
1499180.9956Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam. OBJECTIVES: The incidence of carbapenem resistance among nosocomial Gram-negative bacteria in Vietnam is high and increasing, including among Enterobacterales. In this study, we assessed the presence of one of the main carbapenemase genes, bla(KPC), among carbapenem-resistant Enterobacterales (CRE) from four large hospitals in Hanoi, Vietnam, between 2010 and 2015, and described their key molecular characteristics. METHODS: KPC-producing Enterobacterales were detected using conventional PCR and were further analysed using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and whole-genome sequencing (WGS) for sequence typing and genetic characterisation. RESULTS: bla(KPC) genes were detected in 122 (20.4%) of 599 CRE isolates. bla(KPC)-carrying plasmids were diverse in size. Klebsiella pneumoniae harbouring bla(KPC) genes belonged to ST15 and ST11, whereas KPC-producing Escherichia coli showed more diverse sequence types including ST3580, ST448, ST709 and ST405. Genotypic relationships supported the hypothesis of circulation of a population of 'resident' resistant bacteria in one hospital through the years and of transmission among these hospitals via patient transfer. WGS results revealed co-carriage of several other antimicrobial resistance genes and three different genetic contexts of bla(KPC-2). Among these, the combination of ISEcp1-bla(CTX-M) and ISKpn27-bla(KPC)-ΔISKpn6 on the same plasmid is reported for the first time. CONCLUSION: We describe the dissemination of bla(KPC)-expressing Enterobacterales in four large hospitals in Hanoi, Vietnam, since 2010, which may have started earlier, along with their resistance patterns, sequence types, genotypic relationship, plasmid sizes and genetic context, thereby contributing to the overall picture of the antimicrobial resistance situation in Enterobacterales in Vietnam.202134607061
1074190.9956Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae from Pharmaceutical Wastewaters in South-Western Nigeria. Emergence and spread of Klebsiella pneumoniae isolates producing extended-spectrum β-lactamases (ESBLs) present a major threat to public health. In this study, we characterized β-lactam-resistant K. pneumoniae isolates from six wastewater samples obtained from two pharmaceutical industries located in Lagos and Ogun States, Nigeria. Bacteria were isolated by using MacConkey agar; species identification and antibacterial susceptibility testing were performed by Vitek 2. Etest was used for ESBL phenotype confirmation. The presence of β-lactamase genes was investigated by PCR and sequencing. Bacterial strain typing was done by XbaI-macrorestriction and subsequent pulsed-field gel electrophoresis (PFGE) as well as multilocus sequence typing (MLST). Thirty-five bacterial species were isolated from the six samples; among them, we identified seven K. pneumoniae isolates with resistance to β-lactams and co-resistance to fluoroquinolones, aminoglycosides, and folate pathway inhibitors. The ESBL phenotype was confirmed in six K. pneumoniae isolates that harbored ESBL genes bla(CTX-M-15) (n = 5), bla(SHV-2) (n = 1), and bla(SHV-12) (n = 1). PFGE and MLST analysis revealed five clones belonging to four sequence types (ST11, ST15, ST37, ST101), and clone K. pneumoniae-ST101 was present in the wastewater samples from two different pharmaceutical industries. Additionally performed conjugation assays confirmed the location of β-lactamase genes on conjugative plasmids. This is the first confirmation of K. pneumoniae isolates producing CTX-M-15-ESBL from pharmaceutical wastewaters in Nigeria. The co-resistance observed might be a reflection of the different drugs produced by these industries. Continuous surveillance of the environmental reservoirs of multidrug-resistant bacteria is necessary to prevent their further spread.201728375698