ENZYME - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
37100.9960Single amino acid substitutions in the enzyme acetolactate synthase confer resistance to the herbicide sulfometuron methyl. Sulfometuron methyl, a sulfonylurea herbicide, blocks growth of bacteria, yeast, and higher plants by inhibition of acetolactate synthase (EC 4.1.3.18), the first common enzyme in the biosynthesis of branched-chain amino acids. Spontaneous mutations that confer increased resistance to the herbicide were obtained in cloned genes for acetolactate synthase from Escherichia coli and Saccharomyces cerevisiae. The DNA sequence of a bacterial mutant gene and a yeast mutant gene revealed single nucleotide differences from their respective wild-type genes. The mutations result in single amino acid substitutions in the structurally homologous aminoterminal regions of the two proteins, but at different positions. The bacterial mutation results in reduced levels of acetolactate synthase activity, reduced sensitivity to sulfometuron methyl, and unaltered resistance to feedback inhibition by valine. The yeast mutation results in unaltered levels of acetolactate synthase activity, greatly reduced sensitivity to sulfometuron methyl, and slightly reduced sensitivity to valine.198616593715
11310.9955Characterization of O-acetylation of N-acetylglucosamine: a novel structural variation of bacterial peptidoglycan. Peptidoglycan (PG) N-acetyl muramic acid (MurNAc) O-acetylation is widely spread in gram-positive bacteria and is generally associated with resistance against lysozyme and endogenous autolysins. We report here the presence of O-acetylation on N-acetylglucosamine (GlcNAc) in Lactobacillus plantarum PG. This modification of glycan strands was never described in bacteria. Fine structural characterization of acetylated muropeptides released from L. plantarum PG demonstrated that both MurNAc and GlcNAc are O-acetylated in this species. These two PG post-modifications rely on two dedicated O-acetyltransferase encoding genes, named oatA and oatB, respectively. By analyzing the resistance to cell wall hydrolysis of mutant strains, we showed that GlcNAc O-acetylation inhibits N-acetylglucosaminidase Acm2, the major L. plantarum autolysin. In this bacterial species, inactivation of oatA, encoding MurNAc O-acetyltransferase, resulted in marked sensitivity to lysozyme. Moreover, MurNAc over-O-acetylation was shown to activate autolysis through the putative N-acetylmuramoyl-L-alanine amidase LytH enzyme. Our data indicate that in L. plantarum, two different O-acetyltransferases play original and antagonistic roles in the modulation of the activity of endogenous autolysins.201121586574
19220.9954N-Succinyltransferase Encoded by a Cryptic Siderophore Biosynthesis Gene Cluster in Streptomyces Modifies Structurally Distinct Antibiotics. The antibiotic desertomycin A and its previously undescribed inactive N-succinylated analogue, desertomycin X, were isolated from Streptomyces sp. strain YIM 121038. Genome sequencing and analysis readily identified the desertomycin biosynthetic gene cluster (BGC), which lacked genes encoding acyltransferases that would account for desertomycin X formation. Scouting the genome for putative N-acyltransferase genes led to the identification of a candidate within a cryptic siderophore BGC (csb) encoding a putative homologue of the N6'-hydroxylysine acetyltransferase IucB. Expression of the codon-optimized gene designated csbC in Escherichia coli yielded the recombinant protein that was able to N-succinylate desertomycin A as well as several other structurally distinct antibiotics harboring amino groups. Some antibiotics were rendered antibiotically inactive due to the CsbC-catalyzed succinylation in vitro. Unlike many known N-acyltransferases involved in antibiotic resistance, CsbC could not efficiently acetylate the same antibiotics. When expressed in E. coli, CsbC provided low-level resistance to kanamycin and ampicillin, suggesting that it may play a role in antibiotic resistance in natural habitats, where the concentration of antibiotics is usually low. IMPORTANCE In their natural habitats, bacteria encounter a plethora of organic compounds, some of which may be represented by antibiotics produced by certain members of the microbial community. A number of antibiotic resistance mechanisms have been described, including those specified by distinct genes encoding proteins that degrade, modify, or expel antibiotics. In this study, we report identification and characterization of an enzyme apparently involved in the biosynthesis of a siderophore, but also having the ability of modify and thereby inactivate a wide variety of structurally diverse antibiotics. This discovery sheds light on additional capabilities of bacteria to withstand antibiotic treatment and suggests that enzymes involved in secondary metabolism may have an additional function in the natural environment.202236040031
17830.9954Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their protein products via protein overproduction and purification, and structural and functional characterization. MeR is a metalloregulatory DNA-binding protein that acts as a repressor of both its own and structural gene transcription in the absence of Hg(II); in addition it acts as a positive effector of structural gene transcription when Hg(II) is present. MerB, organomercury lyase, catalyzes the protonolytic fragmentation of organomercurials to the parent hydrocarbon and Hg(II) by an apparent SE2 mechanism. MerA, mercuric ion reductase, is an FAD-containing and redox-active disulfide-containing enzyme with homology to glutathione reductase. It has evolved the unique catalytic capacity to reduce Hg(II) to Hg(0) and thereby complete the detoxification scheme.19883277886
49940.9953Characterization of the genomically encoded fosfomycin resistance enzyme from Mycobacterium abscessus. Mycobacterium abscessus belongs to a group of rapidly growing mycobacteria (RGM) and accounts for approximately 65-80% of lung disease caused by RGM. It is highly pathogenic and is considered the prominent Mycobacterium involved in pulmonary infection in patients with cystic fibrosis and chronic pulmonary disease (CPD). FosM is a putative 134 amino acid fosfomycin resistance enzyme from M. abscessus subsp. bolletii that shares approximately 30-55% sequence identity with other vicinal oxygen chelate (VOC) fosfomycin resistance enzymes and represents the first of its type found in any Mycobacterium species. Genes encoding VOC fosfomycin resistance enzymes have been found in both Gram-positive and Gram-negative pathogens. Given that FosA enzymes from Gram-negative bacteria have evolved optimum activity towards glutathione (GSH) and FosB enzymes from Gram-positive bacteria have evolved optimum activity towards bacillithiol (BSH), it was originally suggested that FosM might represent a fourth class of enzyme that has evolved to utilize mycothiol (MSH). However, a sequence similarity network (SSN) analysis identifies FosM as a member of the FosX subfamily, indicating that it may utilize water as a substrate. Here we have synthesized MSH and characterized FosM with respect to divalent metal ion activation and nucleophile selectivity. Our results indicate that FosM is a Mn(2+)-dependent FosX-type hydrase with no selectivity toward MSH or other thiols as analyzed by NMR and mass spectroscopy.201932952996
37250.9953A chromosomal locus required for copper resistance, competitive fitness, and cytochrome c biogenesis in Pseudomonas fluorescens. A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.19968692990
36860.9953Construction and complementation of in-frame deletions of the essential Escherichia coli thymidylate kinase gene. This work reports the construction of Escherichia coli in-frame deletion strains of tmk, which encodes thymidylate kinase, Tmk. The tmk gene is located at the third position of a putative five-gene operon at 24.9 min on the E. coli chromosome, which comprises the genes pabC, yceG, tmk, holB, and ycfH. To avoid potential polar effects on downstream genes of the operon, as well as recombination with plasmid-encoded tmk, the tmk gene was replaced by the kanamycin resistance gene kka1, encoding amino glycoside 3'-phosphotransferase kanamycin kinase. The kanamycin resistance gene is expressed under the control of the natural promoter(s) of the putative operon. The E. coli tmk gene is essential under any conditions tested. To show functional complementation in bacteria, the E. coli tmk gene was replaced by thymidylate kinases of bacteriophage T4 gp1, E. coli tmk, Saccharomyces cerevisiae cdc8, or the Homo sapiens homologue, dTYMK. Growth of these transgenic E. coli strains is completely dependent on thymidylate kinase activities of various origin expressed from plasmids. The substitution constructs show no polar effects on the downstream genes holB and ycfH with respect to cell viability. The presented transgenic bacteria could be of interest for testing of thymidylate kinase-specific phosphorylation of nucleoside analogues that are used in therapies against cancer and infectious diseases.200616461678
18670.9952Plasmid-encoded resistance to arsenic and antimony. Resistance determinants to the toxic oxyanionic salts of arsenic and antimony are found on plasmids of both gram-negative and gram-positive organisms. In most cases these provide resistance to both the oxyanions of +III oxidation state, antimonite and arsenite, and the +V oxidation state, arsenate. In both gram-positive and -negative bacteria, resistance is correlated with efflux of the anions from cells. The determinant from the plasmid R773, isolated from a gram-negative organism, has been studied in detail. It encodes an oxyanion-translocating ATPase with three subunits, a catalytic subunit, the ArsA protein, a membrane subunit, the ArsB subunit, and a specificity factor, the ArsC protein. The first two form a membrane-bound complex with arsenite-stimulated ATPase activity. The determinants from gram-positive bacteria have only the arsB and arsC genes and encode an efflux system without the participation of an ArsA homologue.19921531541
37480.9952Simultaneous detection and removal of organomercurial compounds by using the genetic expression system of an organomercury lyase from the transposon Tn MERI1. Using a newly identified organomercury lyase gene (merB3) expression system from Tn MERI1, the mercury resistance transposon first found in Gram-positive bacteria, a dual-purpose system to detect and remove organomercurial contamination was developed. A plasmid was constructed by fusing the promoterless luxAB genes as bioluminescence reporter genes downstream of the merB3 gene and its operator/promoter region. Another plasmid, encoding mer operon genes from merR1 to merA, was also constructed to generate an expression regulatory protein, MerR1, and a mercury reductase enzyme, MerA. These two plasmids were transformed into Escherichia coli cells to produce a biological system that can detect and remove environmental organomercury contamination. Organomercurial compounds, such as neurotoxic methylmercury at nanomolar levels, were detected using the biomonitoring system within a few minutes and were removed during the next few hours.200212073137
52090.9951Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Mammalian peptidoglycan recognition proteins (PGRPs or PGLYRPs) kill bacteria through induction of synergistic oxidative, thiol, and metal stress. Tn-seq screening of Bacillus subtilis transposon insertion library revealed that mutants in the shikimate pathway of chorismate synthesis had high survival following PGLYRP4 treatment. Deletion mutants for these genes had decreased amounts of menaquinone (MK), increased resistance to killing, and attenuated depletion of thiols following PGLYRP4 treatment. These effects were reversed by MK or reproduced by inhibiting MK synthesis. Deletion of cytochrome aa(3)-600 or NADH dehydrogenase (NDH) genes also increased B. subtilis resistance to PGLYRP4-induced killing and attenuated thiol depletion. PGLYRP4 treatment also inhibited B. subtilis respiration. Similarly in Escherichia coli, deletion of ubiquinone (UQ) synthesis, formate dehydrogenases (FDH), NDH-1, or cytochrome bd-I genes attenuated PGLYRP4-induced thiol depletion. PGLYRP4-induced low level of cytoplasmic membrane depolarization in B. subtilis and E. coli was likely not responsible for thiol depletion. Thus, our results show that the respiratory electron transport chain components, cytochrome aa(3)-600, MK, and NDH in B. subtilis, and cytochrome bd-I, UQ, FDH-O, and NDH-1 in E. coli, are required for both PGLYRP4-induced killing and thiol depletion and indicate conservation of the PGLYRP4-induced thiol depletion and killing mechanisms in Gram-positive and Gram-negative bacteria.202133420211
179100.9951The genetics and biochemistry of mercury resistance. The ability of bacteria to detoxify mercurial compounds by reduction and volatilization is conferred by mer genes, which are usually plasmid located. The narrow spectrum (Hg2+ detoxifying) Tn501 and R100 determinants have been subjected to molecular genetic and DNA sequence analysis. Biochemical studies on the flavoprotein mercuric reductase have elucidated the mechanism of reduction of Hg2+ to Hg0. The mer genes have been mapped and sequenced and their protein products studied in minicells. Based on the deduced amino acid sequences, these proteins have been assigned a role in a mechanistic scheme for mercury flux in resistant bacteria. The mer genes are inducible, with regulatory control being exerted at the transcriptional level both positively and negatively. Attention is now focusing on broad-spectrum resistance involving detoxification of organomercurials by an additional enzyme, organomercurial lyase. Lyase genes have recently been cloned and sequencing studies are in progress.19872827958
180110.9951Bacterial resistances to inorganic mercury salts and organomercurials. Environmental and clinical isolates of mercury-resistant (resistant to inorganic mercury salts and organomercurials) bacteria have genes for the enzymes mercuric ion reductase and organomercurial lyase. These genes are often plasmid-encoded, although chromosomally encoded resistance determinants have been occasionally identified. Organomercurial lyase cleaves the C-Hg bond and releases Hg(II) in addition to the appropriate organic compound. Mercuric reductase reduces Hg(II) to Hg(O), which is nontoxic and volatilizes from the medium. Mercuric reductase is a FAD-containing oxidoreductase and requires NAD(P)H and thiol for in vitro activity. The crystal structure of mercuric ion reductase has been partially solved. The primary sequence and the three-dimensional structure of the mercuric reductase are significantly homologous to those of other flavin-containing oxidoreductases, e.g., glutathione reductase and lipoamide dehydrogenase. The active site sequences are the most conserved region among these flavin-containing enzymes. Genes encoding other functions have been identified on all mercury ion resistance determinants studied thus far. All mercury resistance genes are clustered into an operon. Hg(II) is transported into the cell by the products of one to three genes encoded on the resistance determinants. The expression of the operon is regulated and is inducible by Hg(II). In some systems, the operon is inducible by both Hg(II) and some organomercurials. In gram-negative bacteria, two regulatory genes (merR and merD) were identified. The (merR) regulatory gene is transcribed divergently from the other genes in gram-negative bacteria. The product of merR represses operon expression in the absence of the inducers and activates transcription in the presence of the inducers. The product of merD coregulates (modulates) the expression of the operon. Both merR and merD gene products bind to the same operator DNA. The primary sequence of the promoter for the polycistronic mer operon is not ideal for efficient transcription by the RNA polymerase. The -10 and -35 sequences are separated by 19 (gram-negative systems) or 20 (gram-positive systems) nucleotides, 2 or 3 nucleotides longer than the 17-nucleotide optimum distance for binding and efficient transcription by the Escherichia coli sigma 70-containing RNA polymerase. The binding site of MerR is not altered by the presence of Hg(II) (inducer). Experimental data suggest that the MerR-Hg(II) complex alters the local structure of the promoter region, facilitating initiation of transcription of the mer operon by the RNA polymerase. In gram-positive bacteria MerR also positively regulates expression of the mer operon in the presence of Hg(II).19921311113
185120.9951The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated.200010788346
114130.9950A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacteria-specific. Streptothricins (STs) produced by Streptomyces strains are broad-spectrum antibiotics. All STs consist of a carbamoylated D-gulosamine to which the beta-lysine homopolymer (1 to 7 residues) and the amide form of the unusual amino acid streptolidine (streptolidine lactam) are attached. Although many ST-resistance genes have been identified in bacteria, including clinically isolated pathogens and ST-producing Streptomyces strains, only one resistance mechanism has been identified to date. This mechanism involves the modification of the ST molecule by monoacetylation of the moiety of the beta-lysine(s). In this study, we successfully isolated a novel ST-resistance gene (sttH) from Streptomyces albulus, which is a known ST nonproducer. The in vitro analysis of SttH demonstrated that this enzyme catalyzes the hydrolysis of the amide bond of streptolidine lactam, thereby conferring ST resistance. Interestingly, the selective toxicity of ST-D possessing 3x beta-lysine moiety was altered from broad-spectrum to bacteria-specific by the hydrolysis of streptolidine lactam, although ST-F (1 x beta-lysine) was detoxified by SttH in both prokaryotes and eukaryotes (yeasts). STs have not been clinically developed due to their toxicities; however, in this study, we showed that hydrolyzed ST-D (ST-D-acid) exhibits potent antibacterial activity even when its toxicity against eukaryotic cells is reduced by SttH. This suggests that ST-D-acid is a potential candidate for clinical development or for use as a new lead compound for drug discovery.200616641084
125140.9950ROD1, a novel gene conferring multiple resistance phenotypes in Saccharomyces cerevisiae. Glutathione-dependent detoxification reactions are catalyzed by the enzyme glutathione S-transferase and are important in drug resistance in organisms ranging from bacteria to humans. The yeast Issatchenkia orientalis expresses a glutathione S-transferase (GST) protein that is induced when the GST substrate o-dinitrobenzene (o-DNB) is added to the culture. In this study, we show that overproduction of the I. orientalis GST in Saccharomyces cerevisiae leads to an increase in o-dinitrobenzene resistance in S. cerevisiae cells. To recover genes that influence o-DNB resistance in S. cerevisiae, a high copy plasmid library was screened for loci that elevate o-DNB tolerance. One gene was recovered and designated ROD1 (resistance to o-dinitrobenzene). This locus was found to encode a novel protein with no significant sequence similarity with proteins of known function in the data base. An epitope-tagged version of Rod1p was produced in S. cerevisiae and shown to function properly. Subcellular fractionation experiments indicated that this factor was found in the particulate fraction by differential centrifugation. Overproduction of Rod1p leads to resistance to not only o-DNB but also zinc and calcium. Strains that lack the ROD1 gene are hypersensitive to these same compounds. Rod1p represents a new type of molecule influencing drug tolerance in eukaryotes.19968621680
111150.9950The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance.200010972803
704160.9950Aminoarabinose is essential for lipopolysaccharide export and intrinsic antimicrobial peptide resistance in Burkholderia cenocepacia(†). One common mechanism of resistance against antimicrobial peptides in Gram-negative bacteria is the addition of 4-amino-4-deoxy-L-arabinose (L-Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires L-Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for L-Ara4N synthesis and transfer to the LPS. The absence of L-Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi-protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that L-Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.201222742453
609170.9949A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses. In nutrient-starved bacteria, RelA and SpoT proteins have key roles in reducing cell growth and overcoming stresses. Here we identify functional SpoT orthologs in metazoa (named Mesh1, encoded by HDDC3 in human and Q9VAM9 in Drosophila melanogaster) and reveal their structures and functions. Like the bacterial enzyme, Mesh1 proteins contain an active site for ppGpp hydrolysis and a conserved His-Asp-box motif for Mn(2+) binding. Consistent with these structural data, Mesh1 efficiently catalyzes hydrolysis of guanosine 3',5'-diphosphate (ppGpp) both in vitro and in vivo. Mesh1 also suppresses SpoT-deficient lethality and RelA-induced delayed cell growth in bacteria. Notably, deletion of Mesh1 (Q9VAM9) in Drosophila induces retarded body growth and impaired starvation resistance. Microarray analyses reveal that the amino acid-starved Mesh1 null mutant has highly downregulated DNA and protein synthesis-related genes and upregulated stress-responsible genes. These data suggest that metazoan SpoT orthologs have an evolutionarily conserved function in starvation responses.201020818390
157180.9949Analysis of proteins responsive to acetic acid in Acetobacter: molecular mechanisms conferring acetic acid resistance in acetic acid bacteria. Acetic acid bacteria are used for industrial vinegar production because of their remarkable ability to oxidize ethanol and high resistance to acetic acid. Although several molecular machineries responsible for acetic acid resistance in acetic acid bacteria have been reported, the entire mechanism that confers acetic acid resistance has not been completely understood. One of the promising methods to elucidate the entire mechanism is global analysis of proteins responsive to acetic acid by two-dimensional gel electrophoresis. Recently, two proteins whose production was greatly enhanced by acetic acid in Acetobacter aceti were identified to be aconitase and a putative ABC-transporter, respectively; furthermore, overexpression or disruption of the genes encoding these proteins affected acetic acid resistance in A. aceti, indicating that these proteins are involved in acetic acid resistance. Overexpression of each gene increased acetic acid resistance in Acetobacter, which resulted in an improvement in the productivity of acetic acid fermentation. Taken together, the results of the proteomic analysis and those of previous studies indicate that acetic acid resistance in acetic acid bacteria is conferred by several mechanisms. These findings also provide a clue to breed a strain having high resistance to acetic acid for vinegar fermentation.200817920150
369190.9949A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096