ENTRANCE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
61600.9648Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048
19910.9647Activation of Imd pathway in hemocyte confers infection resistance through humoral response in Drosophila. Upon microbial invasion the innate immune system of Drosophila melanogaster mounts a response that comes in two distinct but complimentary forms, humoral and cellular. A screen to find genes capable of conferring resistance to the Gram-positive Staphylococcus aureus upon ectopic expression in immune response tissues uncovered imd gene. This resistance was not dependent on cellular defenses but rather likely a result of upregulation of the humoral response through increased expression of antimicrobial peptides, including a Toll pathway reporter gene drosomycin. Taken together it appears that Imd pathway is capable of playing a role in resistance to the Gram-positive S. aureus, counter to notions of traditional roles of the Imd pathway thought largely to responsible for resistance to Gram-negative bacteria.201323261474
62020.9644Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.202234902269
55030.9638The LiaFSR and BsrXRS Systems Contribute to Bile Salt Resistance in Enterococcus faecium Isolates. Two-component systems (TCSs) are dominant regulating components in bacteria for responding to environmental stimuli. However, little information is available on how TCSs in Enterococcus faecium respond to bile salts - an important environmental stimulus for intestinal bacteria. In this study, the gene expression of 2 TCSs, BsrXRS and LiaFSR, was positively correlated with survival rates of different E. faecium isolates during exposure to ox gall. Moreover, gene disruptions of bsrR, bsrS, liaS, and liaR significantly reduced the survival rates of E. faecium in the presence of ox gall. Finally, EMSA results indicated that BsrR functioned as a transcription regulator for expression of its own gene as well as lipoate-protein ligase A (lplA). Additional 27 potential target genes by BsrR were revealed through in silico analyses. These findings suggest that BsrXRS and LiaFSR systems play important roles in bile salt resistance in E. faecium.201931134041
55440.9636VanZ Reduces the Binding of Lipoglycopeptide Antibiotics to Staphylococcus aureus and Streptococcus pneumoniae Cells. vanZ, a member of the VanA glycopeptide resistance gene cluster, confers resistance to lipoglycopeptide antibiotics independent of cell wall precursor modification by the vanHAX genes. Orthologs of vanZ are present in the genomes of many clinically relevant bacteria, including Enterococcus faecium and Streptococcus pneumoniae; however, vanZ genes are absent in Staphylococcus aureus. Here, we show that the expression of enterococcal vanZ paralogs in S. aureus increases the minimal inhibitory concentrations of lipoglycopeptide antibiotics teicoplanin, dalbavancin, oritavancin and new teicoplanin pseudoaglycone derivatives. The reduction in the binding of fluorescently labeled teicoplanin to the cells suggests the mechanism of VanZ-mediated resistance. In addition, using a genomic vanZ gene knockout mutant of S. pneumoniae, we have shown that the ability of VanZ proteins to compromise the activity of lipoglycopeptide antibiotics by reducing their binding is a more general feature of VanZ-superfamily proteins.202032318043
58550.9635Genetic susceptibility to intracellular infections: Nramp1, macrophage function and divalent cations transport. Nramp1 is one of the few host resistance genes that have been characterized at the molecular level. Nramp1 is an integral membrane protein expressed in the lysosomal compartment of macrophages and is recruited to the membrane of bacterial phagosomes where it affects intracellular microbial replication. Nramp1 is part of a very large gene family conserved from bacteria and man that codes for transporters of divalent cations transporters. We propose that Nramp1 affects the intraphagosomal microbial replication by modulating divalent cations content in this organelle. Both mammalian and bacterial transporters may compete for the same substrate in the phagosomal space.200010679418
905560.9634siRNA-AGO2 complex inhibits bacterial gene translation: A promising therapeutic strategy for superbug infection. Silencing resistance genes of pathogenic bacteria by RNA interference (RNAi) is a potential strategy to fight antibiotic-resistant bacterial infections. Currently, RNAi cannot be achieved in bacteria due to the lack of RNA-induced silencing complex machinery and the difficulty of small interfering RNA (siRNA) delivery. Here, we show that exosomal siRNAs can be efficiently delivered into bacterial cells and can silence target genes primarily through translational repression without mRNA degradation. The exosomal Argonaute 2 (AGO2) protein forms a complex with siRNAs, which is essential for bacterial gene silencing. Both in vitro and in vivo-generated exosome-packaged siRNAs resensitize methicillin-resistant Staphylococcus aureus (MRSA) to methicillin treatment by silencing the mecA gene, which is the primary beta-lactam resistance determinant of MRSA. This approach significantly enhances the therapeutic effect in a mouse model of MRSA infection. In summary, our study provides a method for siRNA delivery to bacteria that may facilitate the treatment of antibiotic-resistant bacterial infection.202540054457
374470.9634Vancomycin resistance VanS/VanR two-component systems. Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster.200818792691
672280.9633Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new.19862873172
906590.9631Gut Bacteria Promote Phosphine Susceptibility of Tribolium castaneum by Aggravating Oxidative Stress and Fitness Costs. Knowledge about resistance mechanisms can provide ideas for pesticide resistance management. Although several studies have unveiled the positive or negative impacts of gut microbes on host pesticide resistance, minimal research is available regarding the association between gut microbes and host phosphine resistance. To explore the influence of gut bacteria on host phosphine susceptibility and its molecular basis, mortality, fitness, redox responses, and immune responses of adult Tribolium castaneum were determined when it was challenged by phosphine exposure and/or gut bacteria inoculation. Five cultivable gut bacteria were excised from a population of phosphine-resistant T. castaneum. Among them, only Enterococcus sp. inoculation significantly promoted host susceptibility to phosphine, while inoculation of any other gut bacteria had no significant effect on host phosphine susceptibility. Furthermore, when T. castaneum was exposed to phosphine, Enterococcus sp. inoculation decreased the female fecundity, promoted host oxidative stress, and suppressed the expression and activity of host superoxide dismutase, catalase, and peroxidase. In the absence of phosphine, Enterococcus sp. inoculation also elicited overactive immune responses in T. castaneum, including the immune deficiency and Toll signaling pathways and the dual oxidase-reactive oxygen species system. These results indicate that Enterococcus sp. likely promotes host phosphine susceptibility by aggravating oxidative stress and fitness costs.202337887827
103100.9630IL-1 receptor regulates S100A8/A9-dependent keratinocyte resistance to bacterial invasion. Previously, we reported that epithelial cells respond to exogenous interleukin (IL)-1α by increasing expression of several genes involved in the host response to microbes, including the antimicrobial protein complex calprotectin (S100A8/A9). Given that S100A8/A9 protects epithelial cells against invading bacteria, we studied whether IL-1α augments S100A8/A9-dependent resistance to bacterial invasion of oral keratinocytes. When inoculated with Listeria monocytogenes, human buccal epithelial (TR146) cells expressed and released IL-1α. Subsequently, IL-1α-containing media from Listeria-infected cells increased S100A8/A9 gene expression in naïve TR146 cells an IL-1 receptor (IL-1R)-dependent manner. Incubation with exogenous IL-1α decreased Listeria invasion into TR146 cells, whereas invasion increased with IL-1R antagonist. Conversely, when S100A8/A9 genes were knocked down using short hairpin RNA (shRNA), TR146 cells responded to exogenous IL-1α with increased intracellular bacteria. These data strongly suggest that infected epithelial cells release IL-1α to signal neighboring keratinocytes in a paracrine manner, promoting S100A8/A9-dependent resistance to invasive L. monocytogenes.201222031183
8186110.9629Tumor-infiltrating bacteria disrupt cancer epithelial cell interactions and induce cell-cycle arrest. Tumor-infiltrating bacteria are increasingly recognized as modulators of cancer progression and therapy resistance. We describe a mechanism by which extracellular intratumoral bacteria, including Fusobacterium, modulate cancer epithelial cell behavior. Spatial imaging and single-cell spatial transcriptomics show that these bacteria predominantly localize extracellularly within tumor microniches of colorectal and oral cancers, characterized by reduced cell density, transcriptional activity, and proliferation. In vitro, Fusobacterium nucleatum disrupts epithelial contacts, inducing G0-G1 arrest and transcriptional quiescence. This state confers 5-fluorouracil resistance and remodels the tumor microenvironment. Findings were validated by live-cell imaging, spatial profiling, mouse models, and a 52-patient colorectal cancer cohort. Transcriptomics reveals downregulation of cell cycle, transcription, and antigen presentation genes in bacteria-enriched regions, consistent with a quiescent, immune-evasive phenotype. In an independent rectal cancer cohort, high Fusobacterium burden correlates with reduced therapy response. These results link extracellular bacteria to cancer cell quiescence and chemoresistance, highlighting microbial-tumor interactions as therapeutic targets.202541106380
200120.9629Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Microbial infection activates two distinct intracellular signalling cascades in the immune-responsive fat body of Drosophila. Gram-positive bacteria and fungi predominantly induce the Toll signalling pathway, whereas Gram-negative bacteria activate the Imd pathway. Loss-of-function mutants in either pathway reduce the resistance to corresponding infections. Genetic screens have identified a range of genes involved in these intracellular signalling cascades, but how they are activated by microbial infection is largely unknown. Activation of the transmembrane receptor Toll requires a proteolytically cleaved form of an extracellular cytokine-like polypeptide, Spätzle, suggesting that Toll does not itself function as a bona fide recognition receptor of microbial patterns. This is in apparent contrast with the mammalian Toll-like receptors and raises the question of which host molecules actually recognize microbial patterns to activate Toll through Spätzle. Here we present a mutation that blocks Toll activation by Gram-positive bacteria and significantly decreases resistance to this type of infection. The mutation semmelweis (seml) inactivates the gene encoding a peptidoglycan recognition protein (PGRP-SA). Interestingly, seml does not affect Toll activation by fungal infection, indicating the existence of a distinct recognition system for fungi to activate the Toll pathway.200111742401
619130.9628Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (Rom(R)) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the Rom(R) clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the Rom(R) clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the Rom(R) clone compared to its parental strain HG001. If farE is deleted in the Rom(R) clone, or, if native farR is expressed in the Rom(R) strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the Rom(R) clone, that FarR is an important regulator, and that the point mutation in farR (Rom(R) clone) makes the clone hyper-virulent.201931191485
647140.9628Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Cathelicidin antimicrobial peptides are effectors of innate immune defense in mammals. Humans and mice have only one cathelicidin gene, whereas domesticated mammals such as the pig, cow, and horse have multiple cathelicidin genes. We hypothesized that the evolution of multiple cathelicidin genes provides these animals with enhanced resistance to infection. To test this, we investigated the effects of the addition of cathelicidins by combining synthetic cathelicidin peptides in vitro, by producing human keratinocytes that overexpress cathelicidins in culture, or by producing transgenic mice that constitutively overexpress cathelicidins in vivo. The porcine cathelicidin peptide PR-39 acted additively with human cathelicidin LL-37 to kill group A Streptococcus (GAS). Lentiviral delivery of PR-39 enhanced killing of GAS by human keratinocytes. Finally, transgenic mice expressing PR-39 under the influence of a K14 promoter showed increased resistance to GAS skin infection (50% smaller necrotic ulcers and 60% fewer surviving bacteria). Similarly constructed transgenic mice designed to overexpress their native cathelicidin did not show increased resistance. These findings demonstrate that targeted gene transfer of a xenobiotic cathelicidin confers resistance against infection and suggests the benefit of duplication and divergence in the evolution of antimicrobial peptides.200515728389
726150.9627Regulation of antimicrobial resistance by extracytoplasmic function (ECF) sigma factors. Extracytoplasmic function (ECF) sigma factors are a subfamily of σ(70) sigma factors that activate genes involved in stress-response functions. In many bacteria, ECF sigma factors regulate resistance to antimicrobial compounds. This review will summarize the ECF sigma factors that regulate antimicrobial resistance in model organisms and clinically relevant pathogens.201728153747
567160.9627A novel bipartite antitermination system widespread in conjugative elements of Gram-positive bacteria. Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.202133999173
730170.9627How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. Bacterial pathogens regulate the expression of virulence factors in response to environmental signals. In the case of salmonellae, many virulence factors are regulated via PhoP/PhoQ, a two-component signal transduction system that is repressed by magnesium and calcium in vitro. PhoP/PhoQ-activated genes promote intracellular survival within macrophages, whereas PhoP-repressed genes promote entrance into epithelial cells and macrophages by macropinocytosis and stimulate epithelial cell cytokine production. PhoP-activated genes include those that alter the cell envelope through structural alterations of lipopolysaccharide and lipid A, the bioactive component of lipopolysaccharide. PhoP-activated changes in the bacterial envelope likely promote intracellular survival by increasing resistance to host cationic antimicrobial peptides and decreasing host cell cytokine production.199910081503
238180.9626Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. The harlequin ladybird beetle Harmonia axyridis has emerged as a model species in invasion biology because of its strong resistance against pathogens and remarkable capacity to outcompete native ladybirds. The invasive success of the species may reflect its well-adapted immune system, a hypothesis we tested by analysing the transcriptome and characterizing the immune gene repertoire of untreated beetles and those challenged with bacteria and fungi. We found that most H. axyridis immunity-related genes were similar in diversity to their counterparts in the reference beetle Tribolium castaneum, but there was an unprecedented expansion among genes encoding antimicrobial peptides and proteins (AMPs). We identified more than 50 putative AMPs belonging to seven different gene families, and many of the corresponding genes were shown by quantitative real-time RT-PCR to be induced in the immune-stimulated beetles. AMPs with the highest induction ratio in the challenged beetles were shown to demonstrate broad and potent activity against Gram-negative bacteria and entomopathogenic fungi. The invasive success of H. axyridis can therefore be attributed at least in part to the greater efficiency of its immune system, particularly the expansion of AMP gene families and their induction in response to pathogens.201323173204
242190.9626Ingestion of killed bacteria activates antimicrobial peptide genes in Drosophila melanogaster and protects flies from septic infection. Drosophila melanogaster possesses a sophisticated and effective immune system composed of humoral and cellular immune responses, and production of antimicrobial peptides (AMPs) is an important defense mechanism. Expression of AMPs is regulated by the Toll and IMD (immune deficiency) pathways. Production of AMPs can be systemic in the fat body or a local event in the midgut and epithelium. So far, most studies focus on systemic septic infection in adult flies and little is known about AMP gene activation after ingestion of killed bacteria. In this study, we investigated activation of AMP genes in the wild-type w(1118), MyD88 and Imd mutant flies after ingestion of heat-killed Escherichia coli and Staphylococcus aureus. We showed that ingestion of E. coli activated most AMP genes, including drosomycin and diptericin, in the first to third instar larvae and pupae, while ingestion of S. aureus induced only some AMP genes in some larval stages or in pupae. In adult flies, ingestion of killed bacteria activated AMP genes differently in males and females. Interestingly, ingestion of killed E. coli and S. aureus in females conferred resistance to septic infection by both live pathogenic Enterococcus faecalis and Pseudomonas aeruginosa, and ingestion of E. coli in males conferred resistance to P. aeruginosa infection. Our results indicated that E. coli and S. aureus can activate both the Toll and IMD pathways, and systemic and local immune responses work together to provide Drosophila more effective protection against infection.201930731096