ENTEROCYTE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
82500.9424Attaching effacement of the rabbit enterocyte brush border is encoded on a single 96.5-kilobase-pair plasmid in an enteropathogenic Escherichia coli O111 strain. An enteropathogenic Escherichia coli (EPE) O111 serotype a,b,H- strain carried the following four plasmids: pLV501 (96.5 kilobase pairs [kbp]) specifying resistance to chloramphenicol, tetracycline, and kanamycin; pLV502 (8 kbp) specifying ampicillin resistance; pLV503 (1.9 kbp) specifying streptomycin resistance; and pLV504 (80 kbp) with no resistance markers. This EPEC attached to HEp-2 cells to produce localized clumps of bacteria (localized adhesion) and attached intimately to the enterocyte surface, leading to loss of the brush border (attaching effacement). Plasmid pLV501 was also found to specify the ability to produce localized adhesion on HEp-2 cells and attaching effacement in a rabbit ileal explant model system. Restriction maps showed considerable dissimilarities between pLV501 and pMAR-2, an EPEC plasmid carrying the EPEC adherence factor (EAF) genes. Furthermore, pLV501 did not hybridize with the EAF probe, whereas pLV504 did. There was sequence homology between pLV501 and large plasmids in all seven other well-characterized EPEC, only five of which hybridized with the EAF probe. These findings indicate that pLV501 carries at least one of the genes responsible for production of the brush border damage characteristic of EPEC.19902182541
10210.9351Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.19853883148
82620.9321Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States.19957695291
81230.9293Characterization of plQ5 plasmid originating fromKlebsiella pneumoniae. plQ5 plasmid consists of a group of genes specifying resistance to ampicillin, chloramphenicol, carbencillin, kanamycin and trimethoprim-sulphamethoxazole. It is isolated inKlebslella pneumoniae ZD532, is about 26.8 Kb and is freely transmissible to various bacterial species of Gram-negative bacteria. Physical characterization revealed that plQ5 plasmid has a single site forHindill,BamHI,EcoRI and two sites forBglII restriction enzyme.199024429982
303740.9287Faecal Escherichia coli mediating transferable multi-antibiotic resistance and undesirable extra-chromosomal genes. A conjugative R-plasmid PE004, Inc F11, conferring resistance to ampicillin, tetracycline, streptomycin, kanamycin and trimethoprim was obtained from an E. coli serotype 026 isolate from the stool of a child with acute diarrhoea. The R-plasmid PE004 also co-transfers an enteropathogenicity antigen without the production of enterotoxins or manifestation of invasiveness. It is not yet known whether this transferable antigen mediates enterocyte damage with consequent diarrhoea. The R-plasmid was of molecular weight 2.4 megadaltons (3.7 kilobase) with a transfer frequency of 6 x 10(-4) cfu/ml E. coli J53-1. The uncontrolled mediation with antibiotics in cases of acute diarrhoea could select gut bacteria not only possessing R-plasmids conferring resistance to several antibiotics but with associated undesirable extrachromosomal genes.19862435237
139650.9283Genomic Characterization of hlyF-positive Shiga Toxin-Producing Escherichia coli, Italy and the Netherlands, 2000-2019. Shiga toxin-producing Escherichia coli (STEC) O80:H2 has emerged in Europe as a cause of hemolytic uremic syndrome associated with bacteremia. STEC O80:H2 harbors the mosaic plasmid pR444_A, which combines several virulence genes, including hlyF and antimicrobial resistance genes. pR444_A is found in some extraintestinal pathogenic E. coli (ExPEC) strains. We identified and characterized 53 STEC strains with ExPEC-associated virulence genes isolated in Italy and the Netherlands during 2000-2019. The isolates belong to 2 major populations: 1 belongs to sequence type 301 and harbors diverse stx(2) subtypes, the intimin variant eae-ξ, and pO157-like and pR444_A plasmids; 1 consists of strains belonging to various sequence types, some of which lack the pO157 plasmid, the locus of enterocyte effacement, and the antimicrobial resistance-encoding region. Our results showed that STEC strains harboring ExPEC-associated virulence genes can include multiple serotypes and that the pR444_A plasmid can be acquired and mobilized by STEC strains.202133622476
43160.9280Nucleotide sequence analysis of the complement resistance gene from plasmid R100. The multiple antibiotic resistance plasmid R100 renders Escherichia coli resistant to the bactericidal action of serum complement. We constructed a plasmid (pOW3) consisting of a 1,900-base-pair-long restriction fragment from R100 joined to a 2,900-base-pair-long fragment of pBR322 carrying ampicillin resistance. E. coli strains carrying pOW3 or R100 were up to 10,000-fold less sensitive to killing by serum complement than were plasmid-free bacteria or bacteria carrying pBR322. Nucleotide sequencing revealed that 875 of the 1,900 bases from R100 correspond exactly to part of the bacterial insertion sequence IS2. The remaining 1,075 bases contained only one sizeable open reading frame; it covered 729 base pairs (243 amino acids) and was preceded by nucleotide sequences characteristic of bacterial promoters and ribosome binding sites. The first 20 amino acids of the predicted protein showed features characteristic of a signal sequence. The remainder of the predicted protein showed an amino acid composition almost identical with that determined for the traT protein from the E. coli F factor. Southern blot analysis showed that the resistance gene from R100 does not hybridize to the serum resistance gene from ColV,I-K94 isolated by Binns et al.; we concluded that these genes are distinct.19826284713
53870.9276The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli. In a culture of Escherichia coli K12 gal (lambdadg), cells which form large colonies on agar plates containing galactose and thiomethyl beta-D-galactoside (TMG) appear at high frequency. These clones are resistant to growth inhibition by TMG on galactose minimal medium. Biochemical studies of the steady-state levels of galactokinase and UDPgalactose 4-epimerase suggest that the resistant clones have extra copies of the genes for the galactose-metabolizing enzymes. The mutation for TMG resistance is not located in either the bacterial or the bacteriophage genome, but is probably due to an aberrant association between cell and prophage DNA. Mapping the TMG-resistant characteristic by phage P1 indicates that TMG-resistant bacteria posses at least two GAL+ OPERONS, ONE OF WHICH IS COTRANSDUCIBLe with bio+. In addition, TMG-resistant bacteria behave like lambdadg polylysogens when challenged with the phage lambdaI90c17. From these genetic experiments we conclude that TMG-resistant bacteria arise by duplication of the lambdadg prophage. Finally, gal+ bacteria which carry a single, additional, lambdadg prophage are TMG-resistant. TMG resistance is probably a gal+ gene dosage effect.1978344832
520980.9275Complete Nucleotide Sequence of pGA45, a 140,698-bp IncFIIY Plasmid Encoding bla IMI-3-Mediated Carbapenem Resistance, from River Sediment. Plasmid pGA45 was isolated from the sediments of Haihe River using Escherichia coli CV601 (gfp-tagged) as recipients and indigenous bacteria from sediment as donors. This plasmid confers reduced susceptibility to imipenem which belongs to carbapenem group. Plasmid pGA45 was fully sequenced on an Illumina HiSeq 2000 sequencing system. The complete sequence of plasmid pGA45 was 140,698 bp in length with an average G + C content of 52.03%. Sequence analysis shows that pGA45 belongs to IncFIIY group and harbors a backbone region which shares high homology and gene synteny to several other IncF plasmids including pNDM1_EC14653, pYDC644, pNDM-Ec1GN574, pRJF866, pKOX_NDM1, and pP10164-NDM. In addition to the backbone region, plasmid pGA45 harbors two notable features including one bla IMI-3-containing region and one type VI secretion system region. The bla IMI-3-containing region is responsible for bacteria carbapenem resistance and the type VI secretion system region is probably involved in bacteria virulence, respectively. Plasmid pGA45 represents the first complete nucleotide sequence of the bla IMI-harboring plasmid from environment sample and the sequencing of this plasmid provided insight into the architecture used for the dissemination of bla IMI carbapenemase genes.201626941718
303690.9273Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria.200716828159
3038100.9271Biotinylated probes for epidemiological studies of drug resistance in Salmonella krefeld. A gene probe for ampicillin resistance and one for sulphonamide resistance were prepared to study the origin and the relation of multiple drug resistances in Salmonella krefeld. The resistance genes were cloned into the pACYC184 vector of Escherichia coli from a common plasmid of S. krefeld that encoded for resistance to ampicillin, chloramphenicol, kanamycin, streptomycin, sulphonamide and tetracycline resistance. Restriction map analysis and deletion analysis of a recombinant plasmid (pACSS1) showed that the gene determining ampicillin resistance was located on a 1.34 and 1.12 kb PstI fragment, and that the gene for sulphonamide resistance was located on a 0.85 kb PstI fragment. These fragments were used as probes. Their specificity was tested by colony hybridization with various bacterial species, including sensitive and resistance S. krefeld isolates. Further study indicated that the ampicillin resistance gene probe reacted with the gene for TEM-1 beta-lactamase and that the gene probe for sulphonamide resistance reacted with the gene for type II dihydropteroate synthase. The two probes were sufficiently specific to allow study of the epidemiology of resistance in S. krefeld and other enteric bacteria.19902190970
3063110.9271Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12.1976779633
535120.9270Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.19882853689
1395130.9268Emerging Multidrug-Resistant Hybrid Pathotype Shiga Toxin-Producing Escherichia coli O80 and Related Strains of Clonal Complex 165, Europe. Enterohemorrhagic Escherichia coli serogroup O80, involved in hemolytic uremic syndrome associated with extraintestinal infections, has emerged in France. We obtained circularized sequences of the O80 strain RDEx444, responsible for hemolytic uremic syndrome with bacteremia, and noncircularized sequences of 35 O80 E. coli isolated from humans and animals in Europe with or without Shiga toxin genes. RDEx444 harbored a mosaic plasmid, pR444_A, combining extraintestinal virulence determinants and a multidrug resistance-encoding island. All strains belonged to clonal complex 165, which is distantly related to other major enterohemorrhagic E. coli lineages. All stx-positive strains contained eae-ξ, ehxA, and genes characteristic of pR444_A. Among stx-negative strains, 1 produced extended-spectrum β-lactamase, 1 harbored the colistin-resistance gene mcr1, and 2 possessed genes characteristic of enteropathogenic and pyelonephritis E. coli. Because O80-clonal complex 165 strains can integrate intestinal and extraintestinal virulence factors in combination with diverse drug-resistance genes, they constitute dangerous and versatile multidrug-resistant pathogens.201830457551
3018140.9264The large Bacillus plasmid pTB19 contains two integrated rolling-circle plasmids carrying mobilization functions. Plasmid pTB19 is a 27-kb plasmid originating from a thermophilic Bacillus species. It was shown previously that pTB19 contains an integrated copy of the rolling-circle type plasmid pTB913. Here we describe the analysis of a 4324-bp region of pTB19 conferring resistance to tetracycline. The nucleotide sequence of this region revealed all the characteristics of a second plasmid replicating via the rolling-circle mechanism. This sequence contained (i) the tetracycline resistance marker of pTB19, which is highly similar to other tetL-genes of gram-positive bacteria; (ii) a hybrid mob gene, which bears relatedness to both the mob-genes of pUB110 and pTB913; (iii) a palU type minus origin identical to those of pUB110 and pTB913; and (iv) a plus origin of replication similar to that of pTB913. A repB-type replication initiation gene sequence identical to that of pTB913 was present, which lacked the middle part (492 bp), thus preventing autonomous replication of this region. The hybrid mob gene was functional in conjugative mobilization of plasmids between strains of Bacillus subtilis.19911946749
3053150.9259Expression in Escherichia coli of cryptic tetracycline resistance genes from bacteroides R plasmids. The putative clindamycin resistance region of the Bacteroides fragilis R plasmid pBF4 was cloned in the vector R300B in Escherichia coli. This 3.8-kb EcoRI D fragment from pBF4 expressed noninducible tetracycline resistance in E. coli under aerobic but not anaerobic growth conditions. The fragment does not express tetracycline resistance in Bacteroides, a strict anaerobe. The separate tetracycline resistance transfer system in the Bacteroides host strain V479-1 has no homology to the cryptic determinant on pBF4. In addition, this aerobic tetracycline resistance determinant is not homologous to the three major plasmid mediated tetracycline resistance regions found in facultative gram-negative bacteria, represented by R100, RK2, and pBR322. A similar cryptic tetracycline resistance fragment was cloned from pCP1, a separate clindamycin resistance plasmid from Bacteroides that shares homology with the EcoRI D fragment of pBF4. This study identifies cryptic drug resistance determinants in Bacteroides that are expressed when inserted into an aerobically growing organism.19846379711
534160.9258Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164
346170.9256Horizontal transfer of CS1 pilin genes of enterotoxigenic Escherichia coli. CS1 is one of a limited number of serologically distinct pili found in enterotoxigenic Escherichia coli (ETEC) strains associated with disease in people. The genes for the CS1 pilus are on a large plasmid, pCoo. We show that pCoo is not self-transmissible, although our sequence determination for part of pCoo shows regions almost identical to those in the conjugative drug resistance plasmid R64. When we introduced R64 into a strain containing pCoo, we found that pCoo was transferred to a recipient strain in mating. Most of the transconjugant pCoo plasmids result from recombination with R64, leading to acquisition of functional copies of all of the R64 transfer genes. Temporary coresidence of the drug resistance plasmid R64 with pCoo leads to a permanent change in pCoo so that it is now self-transmissible. We conclude that when R64-like plasmids are transmitted to an ETEC strain containing pCoo, their recombination may allow for spread of the pCoo plasmid to other enteric bacteria.200415126486
360180.9256Broad host range cloning vectors for gram-negative bacteria. A series of cloning vectors has been constructed based on the broad-host-range plasmid R300B. One of these vectors, pGSS33, has a size of 13.4 kb and carries four antibiotic resistance genes [ampicillin (Apr), chloramphenicol (Cmr), streptomycin (Smr) and tetracycline (Tcr)], all of which have restriction sites for insertional inactivation. The derivation, structure and uses of the plasmids are described.19846092235
419190.9256Point Mutations in the folP Gene Partly Explain Sulfonamide Resistance of Streptococcus mutans. Cotrimoxazole inhibits dhfr and dhps and reportedly selects for drug resistance in pathogens. Here, Streptococcus mutans isolates were obtained from saliva of HIV/AIDS patients taking cotrimoxazole prophylaxis in Uganda. The isolates were tested for resistance to cotrimoxazole and their folP DNA (which encodes sulfonamide-targeted enzyme dhps) cloned in pUC19. A set of recombinant plasmids carrying different point mutations in cloned folP were separately transformed into folP-deficient Escherichia coli. Using sulfonamide-containing media, we assessed the growth of folP-deficient bacteria harbouring plasmids with differing folP point mutations. Interestingly, cloned folP with three mutations (A37V, N172D, R193Q) derived from Streptococcus mutans 8 conferred substantial resistance against sulfonamide to folP-deficient bacteria. Indeed, change of any of the three residues (A37V, N172D, and R193Q) in plasmid-encoded folP diminished the bacterial resistance to sulfonamide while removal of all three mutations abolished the resistance. In contrast, plasmids carrying four other mutations (A46V, E80K, Q122H, and S146G) in folP did not similarly confer any sulfonamide resistance to folP-knockout bacteria. Nevertheless, sulfonamide resistance (MIC = 50  μ M) of folP-knockout bacteria transformed with plasmid-encoded folP was much less than the resistance (MIC = 4 mM) expressed by chromosomally-encoded folP. Therefore, folP point mutations only partially explain bacterial resistance to sulfonamide.201323533419