ENDOCARDITIS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
61100.9784The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus.201728728970
61210.9778Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues.201424365646
320.9770Noncanonical coproporphyrin-dependent bacterial heme biosynthesis pathway that does not use protoporphyrin. It has been generally accepted that biosynthesis of protoheme (heme) uses a common set of core metabolic intermediates that includes protoporphyrin. Herein, we show that the Actinobacteria and Firmicutes (high-GC and low-GC Gram-positive bacteria) are unable to synthesize protoporphyrin. Instead, they oxidize coproporphyrinogen to coproporphyrin, insert ferrous iron to make Fe-coproporphyrin (coproheme), and then decarboxylate coproheme to generate protoheme. This pathway is specified by three genes named hemY, hemH, and hemQ. The analysis of 982 representative prokaryotic genomes is consistent with this pathway being the most ancient heme synthesis pathway in the Eubacteria. Our results identifying a previously unknown branch of tetrapyrrole synthesis support a significant shift from current models for the evolution of bacterial heme and chlorophyll synthesis. Because some organisms that possess this coproporphyrin-dependent branch are major causes of human disease, HemQ is a novel pharmacological target of significant therapeutic relevance, particularly given high rates of antimicrobial resistance among these pathogens.201525646457
375030.9762Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.202438466110
816440.9761Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance.202032026301
957750.9759Doxycycline post-exposure prophylaxis and off-target antimicrobial resistance: potential amplification within sexual networks. Doxycycline post-exposure prophylaxis (doxyPEP) is now included in many clinical guidelines, yet concerns remain regarding antimicrobial resistance (AMR), particularly off-target effects on commensal bacteria in the oropharynx, with intimate behaviours potentially facilitating resistance transmission within sexual networks.202540830028
62060.9759Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine. Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications.202234902269
61670.9756Identification of lipoteichoic acid as a ligand for draper in the phagocytosis of Staphylococcus aureus by Drosophila hemocytes. Phagocytosis is central to cellular immunity against bacterial infections. As in mammals, both opsonin-dependent and -independent mechanisms of phagocytosis seemingly exist in Drosophila. Although candidate Drosophila receptors for phagocytosis have been reported, how they recognize bacteria, either directly or indirectly, remains to be elucidated. We searched for the Staphylococcus aureus genes required for phagocytosis by Drosophila hemocytes in a screening of mutant strains with defects in the structure of the cell wall. The genes identified included ltaS, which encodes an enzyme responsible for the synthesis of lipoteichoic acid. ltaS-dependent phagocytosis of S. aureus required the receptor Draper but not Eater or Nimrod C1, and Draper-lacking flies showed reduced resistance to a septic infection of S. aureus without a change in a humoral immune response. Finally, lipoteichoic acid bound to the extracellular region of Draper. We propose that lipoteichoic acid serves as a ligand for Draper in the phagocytosis of S. aureus by Drosophila hemocytes and that the phagocytic elimination of invading bacteria is required for flies to survive the infection.200919890048
823180.9754The evolutionary atavistic endotoxin and neoplastic growth. A hypothesis on the potential role of atavistic endotoxin in carcinogenesis is proposed. The presence of an antigen identical to the endotoxin of gram-negative bacteria in tumour cells is confirmed by IgM class natural specific antibodies to endotoxin (IgMNAE) in rats by immunizing them with rat tumour tissue extracts. Rat normal tissue extracts do not increase the endogenous level of natural immunity to endotoxin, indicating the absence of a foreign antigen such as endotoxin in normal cells which are naturally devoid also of other parasitic features such as invasiveness and metastases, whereas tumour cells, during a prolonged latent period of carcinogenesis, acquire resistance to harmful factors, lose most of their genetic, antigenic, morphological and biochemical properties and become parasitic so as to survive in unfavourable conditions. With the regression of the mentioned properties of cells to the atavistic parasitic state, the synthesis of dormant endotoxin is activated together with an enhanced expression of evolutionary resistance-related genes and oncogenes. Atavistic endotoxin, produced and secreted by proliferating tumour cells, should cause chronic cachexia and septic states in cancer patients, similarly as in cases of endotoxemic septic shock where the endotoxin of gram-negative bacteria is the main pathogenic factor. Thus, the implications of the hypothesis indicate the diagnostic as well as prognostic and preventive significance of evolutionary atavistic endotoxin and also of endotoxin from gram-negative bacteria in human cancers. Natural specific antibodies to endotoxin can be helpful in creating new immunotherapeutic methods.201120943325
19990.9754Activation of Imd pathway in hemocyte confers infection resistance through humoral response in Drosophila. Upon microbial invasion the innate immune system of Drosophila melanogaster mounts a response that comes in two distinct but complimentary forms, humoral and cellular. A screen to find genes capable of conferring resistance to the Gram-positive Staphylococcus aureus upon ectopic expression in immune response tissues uncovered imd gene. This resistance was not dependent on cellular defenses but rather likely a result of upregulation of the humoral response through increased expression of antimicrobial peptides, including a Toll pathway reporter gene drosomycin. Taken together it appears that Imd pathway is capable of playing a role in resistance to the Gram-positive S. aureus, counter to notions of traditional roles of the Imd pathway thought largely to responsible for resistance to Gram-negative bacteria.201323261474
4219100.9753Antibiotic resistance and virulence factors in lactobacilli: something to carefully consider. Lactobacilli are a ubiquitous bacteria, that includes many species commonly found as part of the human microbiota, take part in the natural food fermentation processes, are used as probiotics, and in the food sector as starter cultures or bio-protectors. Their wide use is dictated by a long history of safe employ, which has allowed them to be classified as GRAS (General Recognized As Safe) microorganisms by the US Food and Drug Administration (FDA) and QPS (Qualified Presumption of Safety) by the European Food Safety Authority (EFSA, 2007; EFSA, 2021). Despite their classification as safe microorganisms, several studies show that some members of Lactobacillus genus can cause, especially in individuals with previous pathological conditions, problems such as bacteremia, endocarditis, and peritonitis. In other cases, the presence of virulence genes and antibiotic resistance, and its potential transfer to pathogenic microorganisms constitute a risk to be considered. Consequently, their safety status was sometimes questioned, and it is, therefore, essential to carry out appropriate assessments before their use for any purposes. The following review focuses on the state of the art of studies on genes that confer virulence factors, including antibiotic resistance, reported in the literature within the lactobacilli, defining their genetic basis and related functions.202235082060
3744110.9752Vancomycin resistance VanS/VanR two-component systems. Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster.200818792691
8327120.9750'Big things in small packages: the genetics of filamentous phage and effects on fitness of their host'. This review synthesizes recent and past observations on filamentous phages and describes how these phages contribute to host phentoypes. For example, the CTXφ phage of Vibrio cholerae encodes the cholera toxin genes, responsible for causing the epidemic disease, cholera. The CTXφ phage can transduce non-toxigenic strains, converting them into toxigenic strains, contributing to the emergence of new pathogenic strains. Other effects of filamentous phage include horizontal gene transfer, biofilm development, motility, metal resistance and the formation of host morphotypic variants, important for the biofilm stress resistance. These phages infect a wide range of Gram-negative bacteria, including deep-sea, pressure-adapted bacteria. Many filamentous phages integrate into the host genome as prophage. In some cases, filamentous phages encode their own integrase genes to facilitate this process, while others rely on host-encoded genes. These differences are mediated by different sets of 'core' and 'accessory' genes, with the latter group accounting for some of the mechanisms that alter the host behaviours in unique ways. It is increasingly clear that despite their relatively small genomes, these phages exert signficant influence on their hosts and ultimately alter the fitness and other behaviours of their hosts.201525670735
3763130.9750Staphylococcus epidermidis MSCRAMM SesJ Is Encoded in Composite Islands. Staphylococcus epidermidis is a leading cause of nosocomial infections in patients with a compromised immune system and/or an implanted medical device. Seventy to 90% of S. epidermidis clinical isolates are methicillin resistant and carry the mecA gene, present in a mobile genetic element (MGE) called the staphylococcal cassette chromosome mec (SCCmec) element. Along with the presence of antibiotic and heavy metal resistance genes, MGEs can also contain genes encoding secreted or cell wall-anchored virulence factors. In our earlier studies of S. epidermidis clinical isolates, we discovered S. epidermidis surface protein J (SesJ), a prototype of a recently discovered subfamily of the microbial surface component recognizing adhesive matrix molecule (MSCRAMM) group. MSCRAMMs are major virulence factors of pathogenic Gram-positive bacteria. Here, we report that the sesJ gene is always accompanied by two glycosyltransferase genes, gtfA and gtfB, and is present in two MGEs, called the arginine catabolic mobile element (ACME) and the staphylococcal cassette chromosome (SCC) element. The presence of the sesJ gene was associated with the left-hand direct repeat DR_B or DR_E. When inserted via DR_E, the sesJ gene was encoded in the SCC element. When inserted via DR_B, the sesJ gene was accompanied by the genes for the type 1 restriction modification system and was encoded in the ACME. Additionally, the SCC element and ACME carry different isoforms of the SesJ protein. To date, the genes encoding MSCRAMMs have been seen to be located in the bacterial core genome. Here, we report the presence of an MSCRAMM in an MGE in S. epidermidis clinical isolates.IMPORTANCES. epidermidis is an opportunistic bacterium that has established itself as a successful nosocomial pathogen. The modern era of novel therapeutics and medical devices has extended the longevity of human life, but at the same time, we also witness the evolution of pathogens to adapt to newly available niches in the host. Increasing antibiotic resistance among pathogens provides an example of such pathogen adaptation. With limited opportunities to modify the core genome, most of the adaptation occurs by acquiring new genes, such as virulence factors and antibiotic resistance determinants present in MGEs. In this study, we describe that the sesJ gene, encoding a recently discovered cell wall-anchored protein in S. epidermidis, is present in both ACME and the SCC element. The presence of virulence factors in MGEs can influence the virulence potential of a specific strain. Therefore, it is critical to study the virulence factors found in MGEs in emerging pathogenic bacteria or strains to understand the mechanisms used by these bacteria to cause infections.202032071265
8275140.9750Potential mediators linking gut bacteria to metabolic health: a critical view. Growing evidence suggests that the bacteria present in our gut may play a role in mediating the effect of genetics and lifestyle on obesity and metabolic diseases. Most of the current literature on gut bacteria consists of cross-sectional and correlative studies, rendering it difficult to make any causal inferences as to the influence of gut bacteria on obesity and related metabolic disorders. Interventions with germ-free animals, treatment with antibiotic agents, and microbial transfer experiments have provided some evidence that disturbances in gut bacteria may causally contribute to obesity-related insulin resistance and adipose tissue inflammation. Several potential mediators have been hypothesized to link the activity and composition of gut bacteria to insulin resistance and adipose tissue function, including lipopolysaccharide, angiopoietin-like protein 4, bile acids and short-chain fatty acids. In this review we critically evaluate the current evidence related to the direct role of gut bacteria in obesity-related metabolic perturbations, with a focus on insulin resistance and adipose tissue inflammation. It is concluded that the knowledge base in support of a role for the gut microbiota in metabolic regulation and in particular insulin resistance and adipose tissue inflammation needs to be strengthened.201727418465
619150.9749Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus. Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (Rom(R)) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the Rom(R) clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the Rom(R) clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the Rom(R) clone compared to its parental strain HG001. If farE is deleted in the Rom(R) clone, or, if native farR is expressed in the Rom(R) strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the Rom(R) clone, that FarR is an important regulator, and that the point mutation in farR (Rom(R) clone) makes the clone hyper-virulent.201931191485
3759160.9749Genes and environmental factors that influence disease resistance to microbes in the female reproductive tract of dairy cattle. Microbes commonly infect the female reproductive tract of cattle, causing infertility, abortion and post partum uterine diseases. When organisms reach the uterus, the resistance to disease depends on the balance between the classic triad of the virulence of the microbes, the host defence systems and the environment. The present review considers each aspect of this triad, using postpartum uterine disease as an exemplar for understanding disease resistance. The bacteria that cause postpartum uterine disease are adapted to the endometrium, and their microbial toxins cause tissue damage and inflammation. However, non-specific defence systems counter ascending infections of the female reproductive tract, and inflammatory responses in the endometrium are driven by innate immunity. Disease resistance to bacterial infection involves many genes involved in the maintenance or restoration of tissue homeostasis in the endometrium, including antimicrobial peptides, complement, cytokines, chemokines and Toll-like receptors. The most important environmental factors facilitating the development of postpartum uterine disease are related to trauma of the reproductive tract and to the metabolic stress of lactation in dairy cows. Long-term solutions for uterine disease will include genetic selection for disease resistance and optimising the care of the animal before, during and after parturition.201425472046
734170.9748Mechanisms of Keap1/Nrf2 modulation in bacterial infections: implications in persistence and clearance. Pathogenic bacteria trigger complex molecular interactions in hosts that are characterized mainly by an increase in reactive oxygen species (ROS) as well as an inflammation-associated response. To counteract oxidative damage, cells respond through protective mechanisms to promote resistance and avoid tissue damage and infection; among these cellular mechanisms the activation or inhibition of the nuclear factor E2-related factor 2 (Nrf2) is frequently observed. The transcription factor Nrf2 is considered the master regulator of several hundred cytoprotective and antioxidant genes. Under normal conditions, the Keap1/Nrf2 signaling protects the cellular environment by sensing deleterious oxygen radicals and inducing the expression of genes coding for proteins intended to neutralize the harmful effects of ROS. However, bacteria have developed strategies to harness Nrf2 activity to their own benefit, complicating the host response. This review is aimed to present the most recent information and probable mechanisms employed by a variety of bacteria to modulate the Keap1/Nrf2 activity in order to survive in the infected tissue. Particularly, those utilized by the Gram-positive bacteria Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, and Mycobacterium tuberculosis as well as by the Gram-negative bacteria Escherichia coli, Helicobacter pylori, Legionella pneumophila, Pseudomonas aeruginosa and Salmonella typhimurium. We also discuss and highlight the beneficial impact of the Keap1/Nrf2 antioxidant and anti-inflammatory role in bacterial clearance.202439763664
8210180.9748Bacterial sensing of antimicrobial peptides. Antimicrobial peptides (AMPs) form a crucial part of human innate host defense, especially in neutrophil phagosomes and on epithelial surfaces. Bacteria have a variety of efficient resistance mechanisms to human AMPs, such as efflux pumps, secreted proteases, and alterations of the bacterial cell surface that are aimed to minimize attraction of the typically cationic AMPs. In addition, bacteria have specific sensors that activate AMP resistance mechanisms when AMPs are present. The prototypical Gram-negative PhoP/PhoQ and the Gram-positive Aps AMP-sensing systems were first described and investigated in Salmonella typhimurium and Staphylococcus epidermidis, respectively. Both include a classical bacterial two-component sensor/regulator system, but show many structural, mechanistic, and functional differences. The PhoP/PhoQ regulon controls a variety of genes not necessarily limited to AMP resistance mechanisms, but apparently aimed to combat innate host defense on a broad scale. In contrast, the staphylococcal Aps system predominantly upregulates AMP resistance mechanisms, namely the D-alanylation of teichoic acids, inclusion of lysyl-phosphati-dylglycerol in the cytoplasmic membrane, and expression of the putative VraFG AMP efflux pump. Notably, both systems are crucial for virulence and represent possible targets for antimicrobial therapy.200919494583
3748190.9748Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp. This is a review article on vancomycin resistance on gram positive bacteria other than enterococci. Epidemiology of varying resistance, its clinical relevance and therapeutic options in infections caused by vancomycin resistant Listeria spp., Corynebacteria, streptococci and staphylocci are discussed.200010720798