EMBL - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
306200.9577Characterization of organotin-resistant bacteria from boston harbor sediments. Organotins are widely used in agriculture and industry. They are toxic to a variety of organisms including bacteria, although little is known of their physiology and ecology. Bacteria resistant to six organotins-tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and monophenyltin (MPT)-were isolated from Boston Harbor sediments, Massachusetts, USA. Bacteria resistant to each of the organotins, except DPT, were isolated directly from estuarine sediments. Viability of the organotin-resistant bacteria on serial transfer in the laboratory ranged from 80 to 91%. Each isolate was screened for resistance to the other organotins. All of 250 isolates were resistant to at least two organotins. No DPT-resistant isolates were found on initial isolation on DPT, although there was DPT resistance among the other organotin-resistant bacteria. Eighty percent of TBT-resistant bacteria were TPT-resistant, suggesting that antifouling paints containing TPT will not be a suitable substitute for TBT in paints designed to inhibit microbial biofilms. Debutylation reduced toxicity in some cases while dephenylation did not. Thus, even though trisubstituted organotins are generally believed to be more toxic than di- or monosubstituted organotins, this may not always be the case, and more than one mechanism of resistance may be involved. All the bacteria were resistant to at least six of eight heavy metals tested, suggesting that resistance to heavy metals may be associated with resistance to organotins.19989732471
10510.9570Resistance of the cholera vaccine candidate IEM108 against CTXPhi infection. The cholera toxin (CT) genes ctxAB are carried on a lysogenic phage of Vibrio cholerae, CTXPhi, which can transfer ctxAB between toxigenic and nontoxigenic strains of bacteria. This transfer may pose a problem when live oral cholera vaccine is given to people in epidemic areas, because the toxin genes can be reacquired by the vaccine strains. To address this problem, we have constructed a live vaccine candidate, IEM108, which carries an El Tor-derived rstR gene. This gene encodes a repressor and can render bacterial resistance to CTXPhi infection. In this study, we evaluated the resistance of IEM108 against CTXPhi infection by using a CTXPhi marked for chloramphenicol (CAF) resistance and an in vivo model. We found that the cloned rstR gene rendered IEM108 immune to infection with the marked CTXPhi. In addition, the infection rate of IEM108 was even lower than that of the native CTXPhi-positive strain. These results suggest that the vaccine candidate IEM108 is resistant to infection by CTXPhi.200616343705
874020.9568Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite.200312823193
39730.9567PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Streptomycetes are high G+C Gram-positive, antibiotic-producing, mycelial soil bacteria. The 8.7-Mb Streptomyces coelicolor genome was previously sequenced by using an ordered library of Supercos-1 clones. Here, we describe an efficient procedure for creating precise gene replacements in the cosmid clones by using PCR targeting and lambda-Red-mediated recombination. The cloned Streptomyces genes are replaced with a cassette containing a selectable antibiotic resistance and oriT(RK2) for efficient transfer to Streptomyces by RP4-mediated intergeneric conjugation. Supercos-1 does not replicate in Streptomyces, but the clones readily undergo double-crossover recombination, thus creating gene replacements. The antibiotic resistance cassettes are flanked by yeast FLP recombinase target sequences for removal of the antibiotic resistance and oriT(RK2) to generate unmarked, nonpolar mutations. The technique has been used successfully by >20 researchers to mutate around 100 Streptomyces genes. As an example, we describe its application to the discovery of a gene involved in the production of geosmin, the ubiquitous odor of soil. The gene, Sco6073 (cyc2), codes for a protein with two sesquiterpene synthase domains, only one of which is required for geosmin biosynthesis, probably via a germacra-1 (10) E,5E-dien-11-ol intermediate generated by the sesquiterpene synthase from farnesyl pyrophosphate.200312563033
53540.9566Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.19882853689
614750.9565Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains.200516085855
600960.9563Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria.202438683168
19670.9562A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti. Microbes tailor macromolecules and metabolism to overcome specific environmental challenges. Acetic acid bacteria perform the aerobic oxidation of ethanol to acetic acid and are generally resistant to high levels of these two membrane-permeable poisons. The citric acid cycle (CAC) is linked to acetic acid resistance in Acetobacter aceti by several observations, among them the oxidation of acetate to CO2 by highly resistant acetic acid bacteria and the previously unexplained role of A. aceti citrate synthase (AarA) in acetic acid resistance at a low pH. Here we assign specific biochemical roles to the other components of the A. aceti strain 1023 aarABC region. AarC is succinyl-coenzyme A (CoA):acetate CoA-transferase, which replaces succinyl-CoA synthetase in a variant CAC. This new bypass appears to reduce metabolic demand for free CoA, reliance upon nucleotide pools, and the likely effect of variable cytoplasmic pH upon CAC flux. The putative aarB gene is reassigned to SixA, a known activator of CAC flux. Carbon overflow pathways are triggered in many bacteria during metabolic limitation, which typically leads to the production and diffusive loss of acetate. Since acetate overflow is not feasible for A. aceti, a CO(2) loss strategy that allows acetic acid removal without substrate-level (de)phosphorylation may instead be employed. All three aar genes, therefore, support flux through a complete but unorthodox CAC that is needed to lower cytoplasmic acetate levels.200818502856
521680.9559Unraveling the draft genome and phylogenomic analysis of a multidrug-resistant Planococcus sp. NCCP-2050(T): a promising novel bacteria from Pakistan. Planococcus is a genus of Gram-positive bacteria known for potential industrial and agricultural applications. Here, we report the first draft genome sequence and phylogenomic analysis of a CRISPR-carrying, multidrug-resistant, novel candidate Planococcus sp. NCCP-2050(T) isolated from agricultural soil in Pakistan. The strain NCCP-2050(T) exhibited significant resistance to various classes of antibiotics, including fluoroquinolones (i.e., ciprofloxacin, levofloxacin, ofloxacin, moxifloxacin, and bacitracin), cephalosporins (cefotaxime, ceftazidime, cefoperazone), rifamycins (rifampicin), macrolides (erythromycin), and glycopeptides (vancomycin). Planococcus sp. NCCP-2050(T) consists of genome size of 3,463,905 bp, comprised of 3639 annotated genes, including 82 carbohydrate-active enzyme genes and 39 secondary metabolite genes. The genome also contained 80 antibiotic resistance, 162 virulence, and 305 pathogen-host interaction genes along with two CRISPR arrays. Based on phylogenomic analysis, digital DNA-DNA hybridization, and average nucleotide identity values (i.e., 35.4 and 88.5%, respectively) it was suggested that strain NCCP-2050(T) might represent a potential new species within the genus Planococcus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03748-z.202337663752
999990.9558Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PCR. Competition between effective and ineffective Rhizobium galegae strains nodulating Galega orientalis was examined on the basis of plant growth, nodulation, antibiotic resistance, and PCR results. In a preliminary experiment in Leonard's jars, ineffective R. galegae strains HAMBI 1207 and HAMBI 1209 competed in similar manners with the effective strain R. galegae HAMBI 1174. In a pot experiment, soil was inoculated with 0 to 10(5) HAMBI 1207 cells per g before G. orientalis was sown. Seeds of G. orientalis were surface inoculated with 2 x 10(4) and 2 x 10(5) cells of HAMBI 1174 per seed (which represent half and fivefold the commercially recommended amount of inoculant, respectively). Plant yield and nodulation by the effective strain were significantly reduced, with as few as 10(2) ineffective rhizobia per g of soil, and the inoculation response was not improved by the 10-fold greater dose of the inoculant. Bacteria occupying the nodules were identified by antibiotic resistance and PCR with primers specific for R. galegae HAMBI 1174, R. galegae, and genes coding for bacterial 16S rRNA (bacterial 16S rDNA). Sixty-two large nodules examined were occupied by the effective strain HAMBI 1174, as proven by antibiotic resistance and amplification of the strain-specific fragment. From 20 small nodules, only the species-specific fragment could be amplified, and isolated bacteria had the same antibiotic resistance and 16S PCR restriction pattern as strain HAMBI 1207. PCR with our strain-specific and species-specific primers provides a powerful tool for strain identification of R. galegae directly from nodules without genetic modification of the bacteria.19968593053
5222100.9557Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene.200919414240
313110.9555The WHy domain mediates the response to desiccation in plants and bacteria. MOTIVATION: The hypersensitive response (HR) is a process activated by plants after microbial infection. Its main phenotypic effects are both a programmed death of the plant cells near the infection site and a reduction of the microbial proliferation. Although many resistance genes (R genes) associated to HR have been identified, very little is known about the molecular mechanisms activated after their expression. RESULTS: The analysis of the product of one of the R genes, the Hin1 protein, led to the identification of a novel domain, which we named WHy because it is detectable in proteins involved in Water stress and Hypersensitive response. The expression of this domain during both biotic infection and response to desiccation points to a molecular machinery common to these two stress conditions. Moreover, its presence in a restricted number of bacteria suggests a possible use for marking plant pathogenicity. CONTACT: francesca.ciccarelli@embl.de SUPPLEMENTARY INFORMATION: Supplementary data (Figures S1 and S2 and Table S1) and the alignment in clustal format are available at http://www.bork.embl.de/~ciccarel/WHy_add_data.html.200515598830
5194120.9554Evaluation of the CosmosID Bioinformatics Platform for Prosthetic Joint-Associated Sonicate Fluid Shotgun Metagenomic Data Analysis. We previously demonstrated that shotgun metagenomic sequencing can detect bacteria in sonicate fluid, providing a diagnosis of prosthetic joint infection (PJI). A limitation of the approach that we used is that data analysis was time-consuming and specialized bioinformatics expertise was required, both of which are barriers to routine clinical use. Fortunately, automated commercial analytic platforms that can interpret shotgun metagenomic data are emerging. In this study, we evaluated the CosmosID bioinformatics platform using shotgun metagenomic sequencing data derived from 408 sonicate fluid samples from our prior study with the goal of evaluating the platform vis-à-vis bacterial detection and antibiotic resistance gene detection for predicting staphylococcal antibacterial susceptibility. Samples were divided into a derivation set and a validation set, each consisting of 204 samples; results from the derivation set were used to establish cutoffs, which were then tested in the validation set for identifying pathogens and predicting staphylococcal antibacterial resistance. Metagenomic analysis detected bacteria in 94.8% (109/115) of sonicate fluid culture-positive PJIs and 37.8% (37/98) of sonicate fluid culture-negative PJIs. Metagenomic analysis showed sensitivities ranging from 65.7 to 85.0% for predicting staphylococcal antibacterial resistance. In conclusion, the CosmosID platform has the potential to provide fast, reliable bacterial detection and identification from metagenomic shotgun sequencing data derived from sonicate fluid for the diagnosis of PJI. Strategies for metagenomic detection of antibiotic resistance genes for predicting staphylococcal antibacterial resistance need further development.201930429253
818130.9554Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation.19989661023
5210140.9552Whole genome sequence data of Lactiplantibacillus plantarum IMI 507027. Here we report the draft genome sequence of the Lactiplantibacillus plantarum IMI 507027 strain. The genome consists of 37 contigs with a total size of 3,235,614 bp and a GC% of 44.51. After sequence trimming, 31 contigs were annotated, revealing 3,126 genes, of which 3,030 were coding sequences. The Average Nucleotide Identity (ANI) gave a value of 99.9926% between IMI 507027 and L. plantarum JDM1, identifying the strain as L. plantarum. No genes of concern for safety-related traits such as antimicrobial resistance or virulence factors were found. The annotated genome and raw sequence reads were deposited at NCBI under Bioproject with the accession number PRJNA791753.202235310818
5435150.9552Distribution of fibronectin-binding protein genes (prtF1 and prtF2) and streptococcal pyrogenic exotoxin genes (spe) among Streptococcus pyogenes in Japan. Two hundred and seventy-two strains of Streptococcus pyogenes isolated from patients with invasive and noninvasive infections in Japan were evaluated for the prevalence of fibronectin-binding protein genes (prtF1 and prtF2). The possible associations of the genes with streptococcal pyrogenic exotoxin genes, macrolide resistance genes, and emm types were also evaluated. Overall, about 50% of S. pyogenes isolates carried fibronectin-binding protein genes. The prevalence of the prtF1 gene was significantly higher among isolates from noninvasive infections (71.4%) than among isolates from invasive infections (30.8%; P = 0.0037). Strains possessing both the prtF1 and prtF2 genes were more likely to be isolates from noninvasive infections than isolates from invasive infections (50.6% vs 15.4%; P = 0.019). S. pyogenes isolates with streptococcus pyrogenic exotoxin genes (speA and speZ) were more common among isolates without fibronectin-binding protein genes. The speC gene was more frequently identified among isolates with fibronectin-binding protein genes (P = 0.05). Strains belonging to emm75 or emm12 types more frequently harbored macrolide resistance genes than other emm types (P = 0.0094 and P = 0.043, respectively). Strains carrying more than one repeat at the RD2 region of the prtF1 gene and the FBRD region of the prtF2 gene were more prevalent among strains with macrolide resistance genes than among strains negative for macrolide resistance genes. These genes (i.e., the prtF1, prtF2, and spe genes) may enable host-bacteria interaction, and internalization in the host cell, but may not enable infection complications such as invasive diseases.200920012726
3050160.9551The type VII dihydrofolate reductase: a novel plasmid-encoded trimethoprim-resistant enzyme from gram-negative bacteria isolated in Britain. Plasmid pUN835 was identified in an Escherichia coli strain isolated from an outbreak of porcine diarrhoea on a farm near Nottingham, UK. The trimethoprim resistance gene did not hybridize with any of the gene probes derived from known plasmid-encoded trimethoprim resistance genes. The trimethoprim resistance gene of pUN835 was shown to encode the production of a dihydrofolate reductase which confers high-level resistance on its host. This enzyme was smaller than most plasmid-encoded dihydrofolate reductases (molecular mass = 11,500) and was labile to heat. It had relatively low affinity for the substrate dihydrofolate (Km = 20 microM) and it was resistant to competitive inhibition by trimethoprim (Ki = 7.0 microM). We classify this novel enzyme as type VII.19892676936
5192170.9551Genome Sequencing Analysis of a Rare Case of Blood Infection Caused by Flavonifractor plautii. BACKGROUND Flavonifractor plautii belongs to the clostridium family, which can lead to local infections as well as the bloodstream infections. Flavonifractor plautii caused infection is rarely few in the clinic. To understand better Flavonifractor plautii, we investigated the drug sensitivity and perform genome sequencing of Flavonifractor plautii isolated from blood samples in China and explored the drug resistance and pathogenic mechanism of the bacteria. CASE REPORT The Epsilometer test method was used to detect the sensitivity of flavonoid bacteria to antimicrobial agents. PacBio sequencing technology was employed to sequence the whole genome of Flavonifractor plautii, and gene prediction and functional annotation were also analyzed. Flavonifractor plautii displayed sensitivity to most drugs but resistance to fluoroquinolones and tetracycline, potentially mediated by tet (W/N/W). The total genome size of Flavonifractor plautii was 4,573,303 bp, and the GC content was 59.78%. Genome prediction identified 4,506 open reading frames, including 9 ribosomal RNAs and 66 transfer RNAs. It was detected that the main virulence factor-coding genes of the bacteria were the capsule, polar flagella and FbpABC, which may be associated with bacterial movement, adhesion, and biofilm formation. CONCLUSIONS The results of whole-genome sequencing could provide relevant information about the drug resistance mechanism and pathogenic mechanism of bacteria and offer a basis for clinical diagnosis and treatment.202438881048
396180.9550A novel, highly efficient gene-cloning system in Micromonospora applied to the genetic analysis of fortimicin biosynthesis. We have developed a gene-cloning system in Micromonospora olivasterospora, a fortimicin A (astromicin) producer. Plasmids of Micromonospora from two strains of M. olivasterospora were used for construction of the vectors. Two antibiotic-resistance genes, nmrA and nmrB, cloned from a neomycin-producing Micromonospora, were introduced into these plasmids for the selection of transformants. In a new protoplasting protocol for lysozyme-resistant bacteria, protoplasts of M. olivasterospora were found in short-time incubation with lysozyme and transformed efficiently, indicating that the method was suitable to shotgun cloning. Using this system, seven biosynthetic genes for fortimicin A were cloned. Their physical maps revealed that at least four of these genes were clustered. Analysis of a cosmid library of M. olivasterospora showed that eleven biosynthetic genes and a self-defense gene existed in a region of approx. 25 kb of DNA.19921612453
422190.9549Further characterization of complement resistance conferred on Escherichia coli by the plasmid genes traT of R100 and iss of ColV,I-K94. We have shown that the traT gene product was responsible for the complement resistance of the R100 plasmid. We compared this resistance with that specified by the iss gene of the ColV,I-K94 plasmid. The levels of resistance specified by the two genes were similar, and there was no additive effect on resistance when both genes were present together. Under conditions in which traT and iss conferred at least a 50- and 10-fold increase in survival, respectively, the consumption of C6, C7, C8, and C9 was the same for bacteria with and without the plasmid genes. This result indicated that it was the action of the terminal complex, not its formation, which was blocked by traT and iss.19827035371