# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5859 | 0 | 0.9203 | Isolation of tetracycline-resistant Megasphaera elsdenii strains with novel mosaic gene combinations of tet(O) and tet(W) from swine. Anaerobic bacteria insensitive to chlortetracycline (64 to 256 microg/ml) were isolated from cecal contents and cecal tissues of swine fed or not fed chlortetracycline. A nutritionally complex, rumen fluid-based medium was used for culturing the bacteria. Eight of 84 isolates from seven different animals were identified as Megasphaera elsdenii strains based on their large-coccus morphology, rapid growth on lactate, and 16S ribosomal DNA sequence similarities with M. elsdenii LC-1(T). All eight strains had tetracycline MICs of between 128 and 256 microg/ml. Based on PCR assays differentiating 14 tet classes, the strains gave a positive reaction for the tet(O) gene. By contrast, three ruminant M. elsdenii strains recovered from 30-year-old culture stocks had tetracycline MICs of 4 microg/ml and did not contain tet genes. The tet genes of two tetracycline-resistant M. elsdenii strains were amplified and cloned. Both genes bestowed tetracycline resistance (MIC = 32 to 64 microg/ml) on recombinant Escherichia coli strains. Sequence analysis revealed that the M. elsdenii genes represent two different mosaic genes formed by interclass (double-crossover) recombination events involving tet(O) and tet(W). One or the other genotype was present in each of the eight tetracycline-resistant M. elsdenii strains isolated in these studies. These findings suggest a role for commensal bacteria not only in the preservation and dissemination of antibiotic resistance in the intestinal tract but also in the evolution of resistance. | 2003 | 12839756 |
| 6011 | 1 | 0.9202 | Identification and characterization of tetracycline resistance in Lactococcus lactis isolated from Polish raw milk and fermented artisanal products. To assess the occurrence of antibiotic-resistant Lactic Acid Bacteria (LAB) in Polish raw milk and fermented artisanal products, a collection comprising 500 isolates from these products was screened. Among these isolates, six strains (IBB28, IBB160, IBB161, IBB224, IBB477 and IBB487) resistant to tetracycline were identified. The strains showing atypical tetracycline resistance were classified as Lactococcus lactis: three of them were identified as L. lactis subsp. cremoris (IBB224, IBB477 and IBB487) and the other three (IBB28, IBB160, IBB161) were identified as L. lactis subsp. lactis. The mechanism involving Ribosomal Protection Proteins (RPP) was identified as responsible for tetracycline resistance. Three of the tested strains (IBB28, IBB160 and IBB224) had genes encoding the TetS protein, whereas the remaining three (IBB161, IBB477 and IBB487) expressed TetM. The results also demonstrated that the genes encoding these proteins were located on genetic mobile elements. The tet(S) gene was found to be located on plasmids, whereas tet(M) was found within the Tn916 transposon. | 2015 | 26204235 |
| 3062 | 2 | 0.9202 | Characterization of organotin-resistant bacteria from boston harbor sediments. Organotins are widely used in agriculture and industry. They are toxic to a variety of organisms including bacteria, although little is known of their physiology and ecology. Bacteria resistant to six organotins-tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and monophenyltin (MPT)-were isolated from Boston Harbor sediments, Massachusetts, USA. Bacteria resistant to each of the organotins, except DPT, were isolated directly from estuarine sediments. Viability of the organotin-resistant bacteria on serial transfer in the laboratory ranged from 80 to 91%. Each isolate was screened for resistance to the other organotins. All of 250 isolates were resistant to at least two organotins. No DPT-resistant isolates were found on initial isolation on DPT, although there was DPT resistance among the other organotin-resistant bacteria. Eighty percent of TBT-resistant bacteria were TPT-resistant, suggesting that antifouling paints containing TPT will not be a suitable substitute for TBT in paints designed to inhibit microbial biofilms. Debutylation reduced toxicity in some cases while dephenylation did not. Thus, even though trisubstituted organotins are generally believed to be more toxic than di- or monosubstituted organotins, this may not always be the case, and more than one mechanism of resistance may be involved. All the bacteria were resistant to at least six of eight heavy metals tested, suggesting that resistance to heavy metals may be associated with resistance to organotins. | 1998 | 9732471 |
| 6149 | 3 | 0.9199 | Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5 mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain. | 2023 | 36332226 |
| 5221 | 4 | 0.9188 | Molecular cloning of the DNA gyrase genes from Methylovorus sp. strain SS1 and the mechanism of intrinsic quinolone resistance in methylotrophic bacteria. The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones. | 2005 | 16404155 |
| 6147 | 5 | 0.9184 | Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains. | 2005 | 16085855 |
| 3040 | 6 | 0.9172 | Similarity in the Structure of tetD-Carrying Mobile Genetic Elements in Bacterial Strains of Different Genera Isolated from Cultured Yellowtail. Structure analysis was performed on the antibiotic-resistance-gene region of conjugative plasmids of four fish farm bacteria.The kanamycin resistance gene, IS26, and tetracycline resistance gene (tetA(D)) were flanked by two IS26s in opposite orientation in Citrobacter sp. TA3 and TA6, and Alteromonas sp. TA55 from fish farm A. IS26-Inner was disrupted with ISRSB101. The chloramphenicol resistance gene, IS26 and tetA (D) were flanked by two IS26s in direct orientation in Salmonella sp. TC67 from farm C. Structures of tetA (D) and IS26 were identical among the four bacteria, but there was no insertion within the IS26-Inner of Salmonella sp. TC67. Horizontal gene transfer between the strains of two different genera in fish farm A was suggested by the structure homologies of mobile genetic elements and antibiotic resistance genes. | 2016 | 27667524 |
| 827 | 7 | 0.9170 | Characterization of a ST137 multidrug-resistant Campylobacter jejuni strain with a tet(O)-positive genomic island from a bloodstream infection patient. Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and rarely cause bloodstream infection. Herein, we characterized a multidrug-resistant C. jejuni strain LZCJ isolated from a tumor patient with bloodstream infection. LZCJ was resistant to norfloxacin, ampicillin, ceftriaxone, ciprofloxacin and tetracycline. It showed high survival rate in serum and acidic environment. Whole genome sequencing (WGS) analysis revealed that strain LZCJ had a single chromosome of 1,629,078 bp (30.6 % G + C content) and belonged to the ST137 lineage. LZCJ shared the highest identity of 99.66 % with the chicken-derived C. jejuni MTVDSCj20. Four antimicrobial resistance genes (ARGs) were detected, bla(OXA-61), tet(O), gyrA (T86I), and cmeR (G144D and S207G). In addition, a 12,746 bp genomic island GI_LZCJ carrying 15 open reading frames (ORFs) including the resistance gene tet(O) was identified. Sequence analysis found that the GI_LZCJ was highly similar to the duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. 137 non-synonymous mutations in motility related genes (flgF, fapR, flgS), capsular polysaccharide (CPS) coding genes (kpsE, kpsF, kpsM, kpsT), metabolism associated genes (nuoF, nuoG, epsJ, holB), and transporter related genes (comEA, gene0911) were confirmed in LZCJ compared with the best closed chicken-derived strain MTVDSCj20. Our study showed that C. jejuni strain LZCJ was highly similar to the chicken-derived strain MTVDSCj20 but with a lot of SNPs involved in motility, CPS and metabolism coding genes. This strain possessed a tet(O)-positive genomic island GI_LZCJ, which was closed to duck-derived C. jejuni ZS004, but with an additional ISChh1-like sequence. The above data indicated that the LZCJ strain may originate from foodborne bacteria on animals and the importance of continuous surveillance for the spread of foodborne bacteria. | 2024 | 39208964 |
| 5222 | 8 | 0.9165 | Resistance to macrolides by ribosomal mutation in clinical isolates of Turicella otitidis. The genetic basis of erythromycin resistance in Turicella otitidis, a coryneform bacteria associated with otitis, was studied in five macrolide-resistant clinical isolates. Macrolide resistance genes were searched for by polymerase chain reaction (PCR). Genes for domain V of 23S rRNA (rrl) as well as rplD (L4 protein) and rplV (L22 protein) genes were characterised, amplified by PCR from total genomic DNA and sequenced. In the resistant isolates, cross-resistance to macrolides and clindamycin was associated with mutations at positions 2058 and/or 2059 (Escherichia coli numbering). Three isolates displayed A2058 mutations, one isolate had an A2059G mutation whereas another one contained mutations at positions 2058 and 2059. Southern blot experiments revealed that T. otitidis had three copies of the rrl gene. In conclusion, resistance to macrolides in T. otitidis is due, at least in part, to mutations in the rrl gene. | 2009 | 19414240 |
| 817 | 9 | 0.9165 | Mercury resistance transposons in Bacilli strains from different geographical regions. A total of 65 spore-forming mercury-resistant bacteria were isolated from natural environments worldwide in order to understand the acquisition of additional genes by and dissemination of mercury resistance transposons across related Bacilli genera by horizontal gene movement. PCR amplification using a single primer complementary to the inverted repeat sequence of TnMERI1-like transposons showed that 12 of 65 isolates had a transposon-like structure. There were four types of amplified fragments: Tn5084, Tn5085, Tn(d)MER3 (a newly identified deleted transposon-like fragment) and Tn6294 (a newly identified transposon). Tn(d)MER3 is a 3.5-kb sequence that carries a merRETPA operon with no merB or transposase genes. It is related to the mer operon of Bacillus licheniformis strain FA6-12 from Russia. DNA homology analysis shows that Tn6294 is an 8.5-kb sequence that is possibly derived from Tn(d)MER3 by integration of a TnMERI1-type transposase and resolvase genes and in addition the merR2 and merB1 genes. Bacteria harboring Tn6294 exhibited broad-spectrum mercury resistance to organomercurial compounds, although Tn6294 had only merB1 and did not have the merB2 and merB3 sequences for organomercurial lyases found in Tn5084 of B. cereus strain RC607. Strains with Tn6294 encode mercuric reductase (MerA) of less than 600 amino acids in length with a single N-terminal mercury-binding domain, whereas MerA encoded by strains MB1 and RC607 has two tandem domains. Thus, Tn(d)MER3 and Tn6294 are shorter prototypes for TnMERI1-like transposons. Identification of Tn6294 in Bacillus sp. from Taiwan and in Paenibacillus sp. from Antarctica indicates the wide horizontal dissemination of TnMERI1-like transposons across bacterial species and geographical barriers. | 2016 | 26802071 |
| 823 | 10 | 0.9165 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 2997 | 11 | 0.9163 | Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain. | 2020 | 33584554 |
| 3036 | 12 | 0.9163 | Complete nucleotide sequences of 84.5- and 3.2-kb plasmids in the multi-antibiotic resistant Salmonella enterica serovar Typhimurium U302 strain G8430. The multi-antibiotic resistant (MR) Salmonella enterica serovar Typhimurium phage type U302 strain G8430 exhibits the penta-resistant ACSSuT-phenotype (ampicillin, chloramphenicol, streptomycin, sulfonamides and tetracycline), and is also resistant to carbenicillin, erythromycin, kanamycin, and gentamicin. Two plasmids, 3.2- and 84.5-kb in size, carrying antibiotic resistance genes were isolated from this strain, and the nucleotide sequences were determined and analyzed. The 3.2-kb plasmid, pU302S, belongs to the ColE1 family and carries the aph(3')-I gene (Kan(R)). The 84.5-kb plasmid, pU302L, is an F-like plasmid and contains 14 complete IS elements and multiple resistance genes including aac3, aph(3')-I, sulII, tetA/R, strA/B, bla(TEM-1), mph, and the mer operon. Sequence analyses of pU302L revealed extensive homology to various plasmids or transposons, including F, R100, pHCM1, pO157, and pCTX-M3 plasmids and TnSF1 transposon, in regions involved in plasmid replication/maintenance functions and/or in antibiotic resistance gene clusters. Though similar to the conjugative plasmids F and R100 in the plasmid replication regions, pU302L does not contain oriT and the tra genes necessary for conjugal transfer. This mosaic pattern of sequence similarities suggests that pU302L acquired the resistance genes from a variety of enteric bacteria and underscores the importance of a further understanding of horizontal gene transfer among the enteric bacteria. | 2007 | 16828159 |
| 818 | 13 | 0.9162 | Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. We isolated and sequenced a plasmid, named pIP1714 (4,978 bp), which specifies resistance to streptogramins A and B and the mixture of these compounds. pIP1714 was isolated from a Staphylococcus cohnii subsp. cohnii strain found in the environment of a hospital where pristinamycin was extensively used. Resistance to both compounds and related antibiotics is encoded by two novel, probably cotranscribed genes, (i) vatC, encoding a 212-amino-acid (aa) acetyltransferase that inactivates streptogramin A and that exhibits 58.2 to 69.8% aa identity with the Vat, VatB, and SatA proteins, and (ii) vgbB, encoding a 295-aa lactonase that inactivates streptogramin B and that shows 67% aa identity with the Vgb lactonase. pIP1714 includes a 2,985-bp fragment also found in two rolling-circle replication and mobilizable plasmids, pUB110 and pBC16, from gram-positive bacteria. In all three plasmids, the common fragment was delimited by two direct repeats of four nucleotides (GGGC) and included (i) putative genes closely related to repB, which encodes a replication protein, and to pre(mob), which encodes a protein required for conjugative mobilization and site-specific recombination, and (ii) sequences very similar to the double- and single-strand origins (dso, ssoU) and the recombination site, RSA. The antibiotic resistance genes repB and pre(mob) carried by each of these plasmids were found in the same transcriptional orientation. | 1998 | 9661023 |
| 3021 | 14 | 0.9161 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 5864 | 15 | 0.9161 | Characterization of the tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 reveals a composite structure. The 10,877bp tetracycline resistance plasmid pMD5057 from Lactobacillus plantarum 5057 was completely sequenced. The sequence revealed a composite structure containing DNA from up to four different sources. The replication region had homology to other plasmids of lactic acid bacteria while the tetracycline resistance region, containing a tet(M) gene, had high homology to sequences from Clostridium perfringens and Staphylococcus aureus. Within the tetracycline resistance region a Lactobacillus IS-element was found. The remaining part of the plasmid contained three open reading frames with unknown functions. The composite structure with several truncated genes suggests a recent assembly of the plasmid. This is the first sequence of an antibiotic resistance plasmid isolated from L. plantarum. | 2002 | 12383727 |
| 2995 | 16 | 0.9161 | Antibiotic resistance in bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) from west Wales. The prevalence of antibiotic-resistant bacteria in wild animal and bird populations is largely unknown, with little consistency among the few published reports. We therefore examined intestinal bacteria from magpies (Pica pica) and rabbits (Oryctolagus cuniculus) collected in rural west Wales. Escherichia coli isolates resistant to multiple antibiotics were grown from eight of 20 magpies trapped in spring, 1999 and one of 17 in spring, 2000; the most prevalent resistance trait among these isolates was to tetracycline, but resistances to ampicillin, chloramphenicol, kanamycin, sulphonamide, tetracycline and trimethoprim were also found. Tetracycline-resistant Enterococcus spp. were found in one of 20 magpies in 1999 and three of 17 in 2000. Only one resistant E. coli isolate was detected among gut bacteria from 13 rabbits, and this strain was resistant only to tetracycline. Differences in the prevalence of resistance between bacteria from rabbits and magpies may reflect differences in diet: rabbits graze field edges, whereas magpies are omnivorous and opportunistic. The resistance genes found in E. coli isolates from magpies mostly corresponded to those common among human isolates, but those conferring tetracycline resistance were unique. | 2001 | 11722546 |
| 826 | 17 | 0.9159 | Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States. | 1995 | 7695291 |
| 820 | 18 | 0.9158 | Nucleotide sequence analysis of a transposon (Tn5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria. | 1993 | 8380801 |
| 3046 | 19 | 0.9154 | Presence of STRA-STRB linked streptomycin-resistance genes in clinical isolate of Escherichia coil 2418. The streptomycin resistance of Escherichia coli 2418 strain has been shown to be associated with a 1.2-kb DNA fragment found in the naturally occurring plasmid R2418S. Here, nucleotide sequence analysis of the 1.2-kb DNA fragment revealed the presence of the strB gene which is located immediately downstream of the strA gene. Both sequences are identical to those of strA and strB genes in plasmid RSF1010. Thus, the observed resistance in the clinical isolate is due to the presence of strA-strB genes encoding streptomycin-modifying enzymes. The sequence downstream of strB gene showed a perfect homology with that of RSF1010. In addition, it contained the right inverted repeat of the transposon Tn5393 that has been suggested to be a relic of this transposon found in DNA plasmids isolated from human- and animal-associated bacteria. | 2010 | 21598829 |