# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7657 | 0 | 0.9286 | Comparison of Fecal Antimicrobial Resistance Genes in Captive and Wild Asian Elephants. The Asian elephant (Elephas maximus) is a flagship species of tropical rainforests, and it has generated much concern. In this case, the gut bacterial communities of captive and wild Asian elephants are particularly noteworthy. We aim to compare the differences in bacterial diversity and antibiotic resistance gene (ARG) subtypes in fecal samples of Asian elephants from different habitats, which may affect host health. Analyses reveal that differences in the dominant species of gut bacteria between captive and wild Asian elephants may result in significant differences in ARGs. Network analysis of bacterial communities in captive Asian elephants has identified potentially pathogenic species. Many negative correlations in network analysis suggest that different food sources may lead to differences in bacterial communities and ARGs. Results also indicate that the ARG levels in local captive breeding of Asian elephants are close to those of the wild type. However, we found that local captive elephants carry fewer ARG types than their wild counterparts. This study reveals the profile and relationship between bacterial communities and ARGs in different sources of Asian elephant feces, providing primary data for captive breeding and rescuing wild Asian elephants. | 2023 | 37237762 |
| 9996 | 1 | 0.9255 | In Situ Localization of Staphylococcus shinii and Staphylococcus succinus in Infected Rhipicephalus microplus Ticks: Implications for Biocontrol Strategies. Rhipicephalus microplus is a blood-sucking parasite that causes heavy infestations on cattle and is a vector for severe tick-borne diseases, such as anaplasmosis and babesiosis, and poses a significant threat to the cattle industry. Cattle ticks show increasing acaricide resistance, which creates an additional problem concerning the inefficient chemical control of tick populations in cattle-grazing areas, necessitating the exploration of alternative tick biocontrol methods. Our study aimed to demonstrate the acaropathogenic efficacy of two bacterial species during experimental infections on R. microplus. Our experimental data confirmed that S. shinii and S. succinus exhibited significant acaropathogenic properties against R. microplus, as demonstrated by the tracking of fluorescent-labeled bacteria within the engorged-tick body. Our experiments revealed that both bacterial species could infect the hemolymph, salivary glands, and vestibular vagina of the tick, inducing histological changes in the affected organs that may impair feeding as well as reproductive capabilities. Gené's organ infection was detected only in S. succinus. Our findings offer valuable insights for developing biocontrol strategies to manage Rhipicephalus microplus populations effectively. | 2024 | 39770285 |
| 3066 | 2 | 0.9249 | Staphylococci and fecal bacteria as bioaerosol components in animal housing facilities in the Zoological Garden in Chorzów. Zoos are places open for a large number of visitors, adults and children, who can admire exotic as well as indigenous animal species. The premises for animals may contain pathogenic microbes, including those exhibiting antibiotic resistance. It poses a threat to people remaining within the zoo premises, both for animal keepers who meet animals on a daily basis and visitors who infrequently have contact with animals. There are almost no studies concerning the presence on the concentration of airborne bacteria, especially staphylococci and fecal bacteria in animal shelters in the zoo. There is no data about antibiotic resistance of staphylococci in these places. The results will enable to determine the scale of the threat that indicator bacteria from the bioaerosol pose to human health within zoo premises. This study conducted in rooms for 5 animals group (giraffes, camels, elephants, kangaroos, and Colobinae (species of monkey)) in the Silesian Zoological Garden in Chorzów (Poland). The bioaerosol samples were collected using a six-stage Andersen cascade impactor to assess the concentrations and size distribution of airborne bacteria. Staphylococci were isolated from bioaerosol and tested for antibiotic resistance. In our study, the highest contamination of staphylococci and fecal bacteria was recorded in rooms for camels and elephants, and the lowest in rooms for Colobinae. At least 2/3 of bacteria in bioaerosol constituted respirable fraction that migrates into the lower respiratory tract of the people. In investigated animal rooms, the greatest bacteria contribution was recorded for bioaerosol fraction sized 1.1-3.3μm. Bacterial concentrations were particularly strong in spring and autumn, what is related to shedding fur by animals. Among the isolated staphylococci which most often occurred were Staphylococcus succinus, S. sciuri, and S. vitulinus. The highest antibiotic resistance was noted in the case of Staphylococcus epidermidis, while the lowest for S. xylosus. In addition to standard cleaning of animal rooms, periodic disinfection should be considered. Cleaning should be carried out wet, which should reduce dust, and thus the concentrations of bacteria in the air of animal enclosures. | 2021 | 34061267 |
| 7646 | 3 | 0.9241 | Assessment of Bacterial Community and Other Microorganism Along the Lam Takhong Watercourse, Nakhon Ratchasima, Thailand. Lam Takhong, a vital watercourse in Nakhon Ratchasima province, Thailand, supports agricultural, recreational, and urban activities. Originating in a national park, it flows through urban areas before discharging into a dam and running off via the sluice gate. While water quality monitoring is routine, microbial community data have never been reported. This study assesses the microorganism diversity and functional genes in Lam Takhong watercourse using a shotgun sequencing metagenomics approach. Water samples were collected from the upstream, midstream, and downstream sections. The midstream area exhibited the highest abundance of fecal coliform bacteria, plankton, and benthos, suggesting elevated pollution levels. Genes related to metabolism, particularly carbohydrate and amino acid pathways, were predominant. Proteobacteria was the most abundant phylum found in the water, with Limnohabitans as the dominant planktonic bacteria. Bacteria such as Staphylococcus, Mycobacterium, Escherichia, Pseudomonas, Enterococcus, Neisseria, Streptomyces, and Salmonella were detected, along with antibiotic resistance genes, raising public health concerns. These findings emphasize the need for microbial monitoring in the Lam Takhong to determine the potential water quality bioindicator and prevent potential disease spread through the water system. | 2025 | 40244481 |
| 6790 | 4 | 0.9227 | Overlooked dissemination risks of antimicrobial resistance through green tide proliferation. Green tides, particularly those induced by Enteromorpha, pose significant environmental challenges, exacerbated by climate change, coastal eutrophication, and other anthropogenic impacts. More concerningly, these blooms may influence the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) within ecosystems. However, the manner in which Enteromorpha blooms affect the distribution and spread of antimicrobial resistance (AMR) remains uncertain. This study investigated ARG profiles, dynamic composition, and associated health risks within the Enteromorpha phycosphere and surrounding seawater in typical bays (Jiaozhou, Aoshan, and Lingshan) in the South Yellow Sea. The Enteromorpha phycosphere exhibited significantly higher ARG abundance (p < 0.05) but lower diversity compared to the surrounding seawater. Source-tracking and metagenomic analyses revealed that the phycosphere was the main contributor to the resistome of surrounding seawater. Moreover, resistant pathogens, especially ESKAPE pathogens, with horizontal gene transfer (HGT) potential, were more abundant in the phycosphere than in the surrounding seawater. The phycosphere released high-risk ARGs to the surrounding seawater during Enteromorpha blooms, posing serious health and ecological AMR risks in marine environments. This study highlights the significant role of Enteromorpha blooms in ARG spread and associated risks, urging a reassessment of AMR burden from a public health perspective. | 2025 | 39488061 |
| 8127 | 5 | 0.9226 | Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem. | 2022 | 35876241 |
| 3072 | 6 | 0.9221 | Faecal microbiota and antibiotic resistance genes in migratory waterbirds with contrasting habitat use. Migratory birds may have a vital role in the spread of antimicrobial resistance across habitats and regions, but empirical data remain scarce. We investigated differences in the gut microbiome composition and the abundance of antibiotic resistance genes (ARGs) in faeces from four migratory waterbirds wintering in South-West Spain that differ in their habitat use. The white stork Ciconia ciconia and lesser black-backed gull Larus fuscus are omnivorous and opportunistic birds that use highly anthropogenic habitats such as landfills and urban areas. The greylag goose Anser anser and common crane Grus grus are herbivores and use more natural habitats. Fresh faeces from 15 individuals of each species were analysed to assess the composition of bacterial communities using 16S rRNA amplicon-targeted sequencing, and to quantify the abundance of the Class I integron integrase gene (intI1) as well as genes encoding resistance to sulfonamides (sul1), beta-lactams (bla(TEM), bla(KPC) and bla(NDM)), tetracyclines (tetW), fluoroquinolones (qnrS), and colistin (mcr-1) using qPCR. Bacterial communities in gull faeces were the richest and most diverse. Beta diversity analysis showed segregation in faecal communities between bird species, but those from storks and gulls were the most similar, these being the species that regularly feed in landfills. Potential bacterial pathogens identified in faeces differed significantly between bird species, with higher relative abundance in gulls. Faeces from birds that feed in landfills (stork and gull) contained a significantly higher abundance of ARGs (sul1, bla(TEM), and tetW). Genes conferring resistance to last resort antibiotics such as carbapenems (bla(KPC)) and colistin (mcr-1) were only observed in faeces from gulls. These results show that these bird species are reservoirs of antimicrobial resistant bacteria and suggest that waterbirds may disseminate antibiotic resistance across environments (e.g., from landfills to ricefields or water supplies), and thus constitute a risk for their further spread to wildlife and humans. | 2021 | 33872913 |
| 5244 | 7 | 0.9212 | Potentially pathogenic bacteria and antimicrobial resistance in bioaerosols from cage-housed and floor-housed poultry operations. BACKGROUND: Antibiotics are used in animal confinement buildings, such as cage-housed (CH) and floor-housed (FH) poultry operations, to lower the likeliness of disease transmission. In FH facilities, antibiotics may also be used at sub-therapeutic levels for growth promotion. Low levels of antibiotic create a selective pressure toward antimicrobial resistance (AMR) in chicken fecal bacteria. OBJECTIVE: The objective of this study was to compare bacteria and AMR genes in bioaerosols from CH and FH poultry facilities. METHODS: Bioaerosols were collected from 15 CH and 15 FH poultry operations, using stationary area samplers as well as personal sampling devices. Bacteria concentrations were determined by genus- or species-specific quantitative polymerase chain reaction (PCR) and AMR genes were detected using endpoint PCR. RESULTS: Enterococcus spp., Escherichia coli, and Staphylococcus spp. were significantly higher in bioaerosols of FH poultry operations than CH bioaerosols (P < 0.001) while Clostridium perfringens was significantly higher in area bioaerosols of CH operations than FH area bioaerosols (P < 0.05). Campylobacter spp. were detected only in bioaerosols of FH facilities. Zinc bacitracin resistance gene, bcrR, erythromycin resistance gene, ermA, and tetracycline resistance gene, tetA/C, were more prevalent in bioaerosols of FH facilities than CH bioaerosols (P < 0.01, P < 0.01, and P < 0.05, respectively). CONCLUSIONS: Most bacteria are more concentrated and most AMR genes are more prevalent in bioaerosols of FH poultry operations, where growth-promoting antibiotics may be used. | 2012 | 22156572 |
| 6796 | 8 | 0.9210 | Assessing the pig microbial health impacts of smallholder farming. The livestock industry has long been a hotspot environment for antibiotic resistance genes, with smallholder farming still holding a significant position in pig farming. However, the microbial antibiotic resistance and pathogen risks in pigs under the smallholder farming model remain unclear. We systematically analyzed the antibiotic resistance and microbial composition of pig feces from smallholder and large-scale farming models in Sichuan. The results indicated a lower abundance of antibiotic resistance genes (ARGs) and similar microbial composition in smallholder farming compared to large-scale farming. Beneficial bacteria were more abundant in small-scale farming, whereas large-scale farming exhibited more ARGs, virulence genes, and human pathogenic bacteria (HPBs), including ESBL Escherichia coli strains closely related to human strains, indicating higher zoonotic risk. The findings suggest that smallholder farming presents a relatively better microbial composition and resistance profile, highlighting its advantages over large-scale farming in terms of pig and human health. It is noteworthy that a considerable proportion of HPBs carrying ARGs still exist in the feces from smallholder farming, and given the openness of fecal handling, there remains a high risk of transmitting ARGs and pathogens to humans. | 2024 | 39454358 |
| 7656 | 9 | 0.9209 | The host-specific resistome in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) revealed by metagenomic sequencing. Investigation of feces of wildlife, which is considered as reservoirs, melting pots, vectors and secondary sources of antimicrobial resistance genes (ARGs), provides insights into the risks and ecology of ARGs in the environment. Here, we investigated microbiomes, virulence factor genes (VFGs) of bacterial pathogens, and resistomes in environmental feces of Eurasian otters (Lutra lutra) and leopard cats (Prionailurus bengalensis) using shotgun metagenome sequencing. As expected, the taxonomic compositions of bacteria were significantly different between the animals. Importantly, we found that the compositions of ARGs were also significantly different between the animals. We detected ARGs including iri, tetA(P), tetB(P), floR, sulII, strA, strB, tetW and tetY. Some of them were significantly more abundant in either of the host animals, such as strA, strB and tetY in Eurasian otters, and tetA(P), tetW and iri in leopard cats. We also found that some ARGs were selectively correlated to particular VFGs-related bacteria, such as tetA(P) and tetB(P) to Clostridium, and iri to Mycobacterium. We also found that there were positive correlations between Acinetobacter and ARGs of multiple antimicrobial classes. The host-specific resistomes and VFGs-related bacteria may be due to differences in the host's gut microbiome, diet and/or habitat, but further investigation is needed. Overall, this study provided important baseline information about the resistomes of the wildlife in Korea, which may help the conservation of these endangered species and assessment of human health risks posed by ARGs and bacterial pathogens from wildlife. | 2022 | 35399616 |
| 7130 | 10 | 0.9207 | Microbial community structure and resistome dynamics on elevator buttons in response to surface disinfection practices. BACKGROUND: Disinfectants have been extensively used in public environments since the COVID-19 outbreak to help control the spread of the virus. This study aims to investigate whether disinfectant use influences the structure of bacterial communities and contributes to bacterial resistance to disinfectants and antibiotics. METHODS: Using molecular biology techniques-including metagenomic sequencing and quantitative PCR (qPCR)-we analyzed the bacterial communities on elevator button surfaces from two tertiary hospitals, one infectious disease hospital, two quarantine hotels (designated for COVID-19 control), and five general hotels in Nanjing, Jiangsu Province, during the COVID-19 pandemic. We focused on detecting disinfectant resistance genes (DRGs), antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs). RESULTS: Significant differences were observed in the bacterial community structures on elevator button surfaces across the four types of environments. Quarantine hotels, which implemented the most frequent disinfection protocols, exhibited distinct bacterial profiles at the phylum, genus, and species levels. Both α-diversity (within-sample diversity) and β-diversity (between-sample diversity) were lower and more distinct in quarantine hotels compared to the other environments. The abundance of DRGs, ARGs, and MGEs was also significantly higher on elevator button surfaces in quarantine hotels. Notably, antibiotic-resistant bacteria (ARBs), including Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, were detected in all four settings. CONCLUSION: The structure of bacterial communities on elevator button surfaces varies across different environments, likely influenced by the frequency of disinfectant use. Increased resistance gene abundance in quarantine hotels suggests that disinfection practices may contribute to the selection and spread of resistant bacteria. Enhanced monitoring of disinfection effectiveness and refinement of protocols in high-risk environments such as hospitals and hotels are essential to limit the spread of resistant pathogens. | 2025 | 40520307 |
| 6391 | 11 | 0.9206 | Monitoring antibiotic resistomes and bacterial microbiomes in the aerosols from fine, hazy, and dusty weather in Tianjin, China using a developed high-volume tandem liquid impinging sampler. Accurate quantification of the airborne antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is critically important to assess their health risks. However, the currently widely used high-volume filter sampler (HVFS) often causes the desiccation of the sample, interfering with subsequent bacterial culture. To overcome this limitation, a high-volume tandem liquid impinging sampler (HVTLIS) was developed and optimized to investigate the airborne bacterial microbiomes and antibiotic resistomes under different weathers in Tianjin, China. Results revealed that HVTLIS can capture significantly more diverse culturable bacteria, ARB, and ARGs than HVFS. Compared with fine and hazy weathers, dusty weather had significantly more diverse and abundant airborne bacteria, ARGs, and human opportunistic pathogens with the resistance to last-resort antibiotics of carbapenems and polymyxin B, implicating a potential human health threat of dusty bioaerosols. Intriguingly, we represented the first report of Saccharibacteria predominance in the bioaerosol, demonstrating that the potential advantage of HVTLIS in collecting airborne microbes. | 2020 | 32438084 |
| 5160 | 12 | 0.9205 | Multiomics analysis reveals the presence of a microbiome in the gut of fetal lambs. OBJECTIVE: Microbial exposure is critical to neonatal and infant development, growth and immunity. However, whether a microbiome is present in the fetal gut prior to birth remains debated. In this study, lambs delivered by aseptic hysterectomy at full term were used as an animal model to investigate the presence of a microbiome in the prenatal gut using a multiomics approach. DESIGN: Lambs were euthanised immediately after aseptic caesarean section and their cecal content and umbilical cord blood samples were aseptically acquired. Cecal content samples were assessed using metagenomic and metatranscriptomic sequencing to characterise any existing microbiome. Both sample types were analysed using metabolomics in order to detect microbial metabolites. RESULTS: We detected a low-diversity and low-biomass microbiome in the prenatal fetal gut, which was mainly composed of bacteria belonging to the phyla Proteobacteria, Actinobacteria and Firmicutes. Escherichia coli was the most abundant species in the prenatal fetal gut. We also detected multiple microbial metabolites including short chain fatty acids, deoxynojirimycin, mitomycin and tobramycin, further indicating the presence of metabolically active microbiota. Additionally, bacteriophage phiX174 and Orf virus, as well as antibiotic resistance genes, were detected in the fetal gut, suggesting that bacteriophage, viruses and bacteria carrying antibiotic resistance genes can be transmitted from the mother to the fetus during the gestation period. CONCLUSIONS: This study provides strong evidence that the prenatal gut harbours a microbiome and that microbial colonisation of the fetal gut commences in utero. | 2021 | 33589511 |
| 7175 | 13 | 0.9203 | Key Contribution and Risk of Airborne Antibiotic Resistance: Total Suspended Particles or Settled Dust? The atmosphere is an important environmental medium in spreading antimicrobial resistance (AMR) in animal farming systems, yet the exposure risks associated with airborne pathways remain underexplored. This study employed metagenomic sequencing to investigate the airborne transmission of AMR in chicken farms (i.e., chicken feces, total suspended particles (TSP), and dust) and its exposure risks on the gut and nasal cavities of workers, office staff, and nearby villagers. Results revealed that TSP exhibited greater abundance, diversity, and transfer potential of antibiotic resistance genes (ARGs) compared to dust. The abundance of airborne resistome decreased with distance from the chicken house, and ARGs were estimated to spread up to 9.48 km within 1 h. While the gut resistome of workers and villagers showed limited differences, emerging tet(X) variants and high-risk dfrA remain future concerns. More nasal resistome was attributable to TSP compared to dust. Workers faced significantly higher inhalable exposures to antibiotic-resistant bacteria (ARB) and human pathogenic antibiotic-resistant bacteria (HPARB), exceeding those of office staff and villagers by an order of magnitude. We also compiled lists of high-risk and potential-risk airborne ARGs to inform monitoring. These findings highlight the need for regular air disinfection in animal farms and better protective measures for workers. | 2025 | 40434009 |
| 7357 | 14 | 0.9200 | Metagenomic surveys show a widespread diffusion of antibiotic resistance genes in a transect from urbanized to marine protected area. Ports are hot spots of pollution; they receive pollution from land-based sources, marine traffic and port infrastructures. Marine ecosystems of nearby areas can be strongly affected by pollution from port-related activities. Here, we investigated the microbiomes present in sea floor sediments along a transect from the harbour of Livorno (Central Italy) to a nearby marine protected area. Results of 16S rRNA amplicon sequencing and metagenome assembled genomes (MAGs) analyses indicated the presence of different trends of specific bacterial groups (e.g. phyla NB1-j, Acidobacteriota and Desulfobulbales) along the transect, correlating with the measured pollution levels. Human pathogenic bacteria and antibiotic resistance genes (ARGs) were also found. These results demonstrate a pervasive impact of human port activities and highlight the importance of microbiological surveillance of marine sediments, which may constitute a reservoir of ARGs and pathogenic bacteria. | 2025 | 39908950 |
| 3228 | 15 | 0.9199 | Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants' gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time. | 2021 | 34072124 |
| 7176 | 16 | 0.9199 | Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Inhalation of airborne antibiotic resistance genes (ARGs) can lead to antimicrobial resistance and potential health risk. In modern society, increasing individuals stay more indoors, however, studies regarding the exposure to airborne ARGs in indoor environments and the associated risks remain limited. Here, we compared the variance of aerosol-associated ARGs, bacterial microbiomes, and their daily intake (DI) burden in dormitory, office, and outdoor environments in a university in Tianjin. The results indicated that compared to outdoor aerosols, indoors exhibited significantly higher absolute abundance of both ARG subtypes and mobile genetic elements (MGEs) (1-7 orders of magnitude), 16S rRNA genes (2-3 orders), and total culturable bacteria (1-3 orders). Furthermore, we observed that significantly different airborne bacterial communities are the major drivers contributing to the variance of aerosol-associated ARGs in indoor and outdoor aerosols. Notably, the high abundances of total bacteria, potential pathogenic genera, and ARGs (particularly those harbored by pathogens) in indoor and outdoor aerosols, especially in indoors, may pose an increased exposure risk via inhalation. The successful isolation of human pathogens such as Elizabethkingia anopheles, Klebsiella pneumonia, and Delftia lacustris resistant to the "last-resort" antibiotics carbapenems and polymyxin B from indoor aerosols further indicated an increased exposure risk in indoors. Together, this study highlights the potential risks associated with ARGs and their inhalation to human health in indoor environments. | 2021 | 33120141 |
| 6909 | 17 | 0.9197 | Effect of meddling ARBs on ARGs dynamics in fungal infested soil and their selective dispersal along spatially distant mycelial networks. During the recent times, environmental antibiotic resistance genes (ARGs) and their potential transfer to other bacterial hosts of pathogenic importance are of serious concern. However, the dissemination strategies of such ARGs are largely unknown. We tested that saprotrophic soil fungi differentially enriched antibiotic resistant bacteria (ARBs) and subsequently contributed in spatial distribution of selective ARGs. Wafergen qPCR analysis of 295 different ARGs was conducted for manure treated pre-sterilized soil incubated or not with selected bacterial-fungal consortia. The qPCR assay detected unique ARGs specifically found in the mycosphere of ascomycetous and basidiomycetous fungi. Both fungi exerted potentially different selection pressures on ARBs, resulting in different patterns of ARGs dissemination (to distant places) along their respective growing fungal highways. The relative abundance of mobile genetic elements (MGEs) was significantly decreased along fungal highways compared to the respective inoculation points. Moreover, the decrease in MGEs and ARGs (along fungal highways) was more prominent over time which depicts the continuous selection pressure of growing fungi on ARBs for enrichment of particular ARGs in mycosphere. Such data also indicate the potential role of saprotrophic soil fungi to facilitate horizontal gene transfer within mycospheric environmental settings. Our study, therefore, advocates to emphasize the future investigations for such (bacteria-fungal) interactive microbial consortia for potential (spatial) dissemination of resistance determinants which may ultimately increase the exposure risks of ARGs. | 2024 | 38992349 |
| 3221 | 18 | 0.9197 | Age influences the temporal dynamics of microbiome and antimicrobial resistance genes among fecal bacteria in a cohort of production pigs. BACKGROUND: The pig gastrointestinal tract hosts a diverse microbiome, which can serve to select and maintain a reservoir of antimicrobial resistance genes (ARG). Studies suggest that the types and quantities of antimicrobial resistance (AMR) in fecal bacteria change as the animal host ages, yet the temporal dynamics of AMR within communities of bacteria in pigs during a full production cycle remains largely unstudied. RESULTS: A longitudinal study was performed to evaluate the dynamics of fecal microbiome and AMR in a cohort of pigs during a production cycle; from birth to market age. Our data showed that piglet fecal microbial communities assemble rapidly after birth and become more diverse with age. Individual piglet fecal microbiomes progressed along similar trajectories with age-specific community types/enterotypes and showed a clear shift from E. coli/Shigella-, Fusobacteria-, Bacteroides-dominant enterotypes to Prevotella-, Megaspheara-, and Lactobacillus-dominated enterotypes with aging. Even when the fecal microbiome was the least diverse, the richness of ARGs, quantities of AMR gene copies, and counts of AMR fecal bacteria were highest in piglets at 2 days of age; subsequently, these declined over time, likely due to age-related competitive changes in the underlying microbiome. ARGs conferring resistance to metals and multi-compound/biocides were detected predominately at the earliest sampled ages. CONCLUSIONS: The fecal microbiome and resistome-along with evaluated descriptors of phenotypic antimicrobial susceptibility of fecal bacteria-among a cohort of pigs, demonstrated opposing trajectories in diversity primarily driven by the aging of pigs. | 2023 | 36624546 |
| 7487 | 19 | 0.9197 | Impact of cyanobacterial bloom on microbiomes of freshwater lakes. Cyanobacterial blooms are harmful because of their cyanotoxins production. It occurs due to the eutrophication of freshwater reserves. Nagpur city has three lakes which serves as public water resource and are affected by algal bloom events. Metagenomic approach was used for the exploration of taxonomic, catabolic, and resistome profile of these lakes. Taxonomic profiling indicated prevalence of cyanobacterial species like Microcystis, Anabaena, Trichodesmium, Microcoleus, and Nodularia. These bacteria are well known for their association with algal bloom and microcystin production. High Performance Liquid Chromatography (HPLC) detected the presence of microcystin toxin and concentration was relatively higher in Ambazari lakewater. In addition, the presence of several antibiotic resistance genes like vancomycin, beta-lactamase, methicillin, and fluoroquinolones were observed. Genes conferring metal resistance such as copper, cadmium, zinc were also mined indicating presence of metal resistant microorganisms. The study suggests that lake water contaminated with Microcystis (algal bloom) harbors complex microbial community having diverse catabolic and resistome profiles, which negatively affect the ecosystems services. | 2021 | 34785623 |