# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6757 | 0 | 0.9883 | Survival of coliforms and bacterial pathogens within protozoa during chlorination. The susceptibility of coliform bacteria and bacterial pathogens to free chlorine residuals was determined before and after incubation with amoebae and ciliate protozoa. Viability of bacteria was quantified to determine their resistance to free chlorine residuals when ingested by laboratory strains of Acanthamoeba castellanii and Tetrahymena pyriformis. Cocultures of bacteria and protozoa were incubated to facilitate ingestion of the bacteria and then were chlorinated, neutralized, and sonicated to release intracellular bacteria. Qualitative susceptibility of protozoan strains to free chlorine was also assessed. Protozoa were shown to survive and grow after exposure to levels of free chlorine residuals that killed free-living bacteria. Ingested coliforms Escherichia coli, Citrobacter freundii, Enterobacter agglomerans, Enterobacter cloacae, Klebsiella pneumoniae, and Klebsiella oxytoca and bacterial pathogens Salmonella typhimurium, Yersinia enterocolitica, Shigella sonnei, Legionella gormanii, and Campylobacter jejuni had increased resistance to free chlorine residuals. Bacteria could be cultured from within treated protozoans well after the time required for 99% inactivation of free-living cells. All bacterial pathogens were greater than 50-fold more resistant to free chlorine when ingested by T. pyriformis. Escherichia coli ingested by a Cyclidium sp., a ciliate isolated from a drinking water reservoir, were also shown to be more resistant to free chlorine. The mechanism that increased resistance appeared to be survival within protozoan cells. This study indicates that bacteria can survive ingestion by protozoa. This bacterium-protozoan association provides bacteria with increased resistance to free chlorine residuals which can lead to persistence of bacteria in chlorine-treated water. We propose that resistance to digestion by predatory protozoa was an evolutionary precursor of pathogenicity in bacteria and that today it is a mechanism for survival of fastidious bacteria in dilute and inhospitable aquatic environments. | 1988 | 3223766 |
| 6048 | 1 | 0.9883 | Safety Evaluation of Oral Care Probiotics Weissella cibaria CMU and CMS1 by Phenotypic |and Genotypic Analysis. Weissella cibaria CMU and CMS1 are known to exert beneficial effects on the oral cavity but have not yet been determined to be generally recognized as safe (GRAS), although they are used as commercial strains in Korea. We aimed to verify the safety of W. cibaria CMU and CMS1 strains through phenotypic and genotypic analyses. Their safety was evaluated by a minimum inhibitory concentration assay for 14 antibiotics, DNA analysis for 28 antibiotic resistance genes (ARGs) and one conjugative element, antibiotic resistance gene transferability, virulence gene analysis, hemolysis, mucin degradation, toxic metabolite production, and platelet aggregation reaction. W. cibaria CMU showed higher kanamycin resistance than the European Food Safety Authority (EFSA) cut-off, but this resistance was not transferred to the recipient strain. W. cibaria CMU and CMS1 lacked ARGs in chromosomes and plasmids, and genetic analysis confirmed that antibiotic resistance of kanamycin was an intrinsic characteristic of W. cibaria. Additionally, these strains did not harbor virulence genes associated with pathogenic bacteria and lacked toxic metabolite production, β-hemolysis, mucin degradation, bile salt deconjugation, β-glucuronidase, nitroreductase activity, gelatin liquefaction, phenylalanine degradation, and platelet aggregation. Our findings demonstrate that W. cibaria CMU and CMS1 can achieve the GRAS status in future. | 2019 | 31159278 |
| 321 | 2 | 0.9883 | Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. Mutable bacterial cells are defective in their DNA repair system and often have a phenotype different from that of their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotypes are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as a saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability or resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, whereas, in planta, both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here, we report that a high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava, but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype. | 2015 | 25649542 |
| 337 | 3 | 0.9881 | Effect of nifA product on suppression of Nif- phenotype of gln mutation and constitutive synthesis of nitrogenase in Klebsiella pneumoniae. This paper describes the role of nifA product on the ammonia regulation of nitrogen fixation in K. pneumoniae. A plasmid carrying nifA gene under the promoter of tetracycline resistance gene was constructed. When this nifA carrying plasmid was introduced into a glnAG mutant, the Nif- phenotype of this gln mutant was suppressed. Furthermore, when the plasmid was introduced into the wild type and glnAG mutant, derepression of nitrogenase synthesis in ammonia occurred in both strains and the products of nif genes can be detected by two-dimensional gel electrophoresis in the extracts of these ammonia-grown bacterial cells. The constitutive synthesis of nitrogenase in NH4+ was also demonstrated in free living nitrogen-fixing bacteria, Enterobacter cloacae, when the bacteria received the plasmid carrying nifA gene from K. pneumoniae. | 1983 | 6143398 |
| 384 | 4 | 0.9881 | Broad-host-range mobilizable suicide vectors for promoter trapping in gram-negative bacteria. Here we report the construction of three different vectors for the identification of bacterial genes induced in vitro and/or in vivo. These plasmids contain kanamycin, gentamicin, or tetracycline resistance genes as selectable markers. A promoterless cat and an improved GFP (mut3-gfp) can be used to follow the induction of gene expression by measuring chloramphenicol resistance and fluorescence, respectively. | 2002 | 12449381 |
| 394 | 5 | 0.9881 | Introduction of bacteriophage Mu into bacteria of various genera and intergeneric gene transfer by RP4::Mu. The host range of coliphage Mu was greatly expanded to various genera of gram-negative bacteria by using the hybrid plasmic RP4::Mu cts, which is temperature sensitive and which confers resistance to ampicillin, kanamycin, and tetracycline. These drug resistance genes were transferred from Escherichia coli to members of the general Klebsiella, Enterobacter, Citrobacter, Salmonella, Proteus, Erwinia, Serratia, Alcaligenes, Agrobacterium, Rhizobium, Pseudomonas, Acetobacter, and Bacillus. Mu phage was produced by thermal induction from the lysogens of all these drug-resistant bacteria except Bacillus. Mu phage and RP4 or the RP4::Mu plasmid were used to create intergeneric recombinant strains by transfer of some genes, including the arylsulfatase gene, between Klebsiella aerogenes and E. coli. Thus, genetic analysis and intergeneric gene transfer are possible in these RP4::Mu-sensitive bacteria. | 1981 | 6450749 |
| 9713 | 6 | 0.9880 | Versatile lifestyles of Edwardsiella: Free-living, pathogen, and core bacterium of the aquatic resistome. Edwardsiella species in aquatic environments exist either as individual planktonic cells or in communal biofilms. These organisms encounter multiple stresses, include changes in salinity, pH, temperature, and nutrients. Pathogenic species such as E. piscicida, can multiply within the fish hosts. Additionally, Edwardsiella species (E. tarda), can carry antibiotic resistance genes (ARGs) on chromosomes and/or plasmids, that can be transmitted to the microbiome via horizontal gene transfer. E. tarda serves as a core in the aquatic resistome. Edwardsiela uses molecular switches (RpoS and EsrB) to control gene expression for survival in different environments. We speculate that free-living Edwardsiella can transition to host-living and vice versa, using similar molecular switches. Understanding such transitions can help us understand how other similar aquatic bacteria switch from free-living to become pathogens. This knowledge can be used to devise ways to slow down the spread of ARGs and prevent disease outbreaks in aquaculture and clinical settings. | 2022 | 34969351 |
| 8346 | 7 | 0.9880 | Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles. | 2018 | 29550331 |
| 9315 | 8 | 0.9880 | Abortive transduction of resistance factor by bacteriophage P22 in Salmonella typhimurium. When R factor 222 is transduced by bacteriophage P22 in Salmonella typhimurium, most recipient bacteria which adsorb transducing particles do not give rise to transductant clones (i.e., transduction is abortive); however the transduced drug-resistance genes can be rescued by recombination with the resistance-transfer factor or R factor carried by the recipient. | 1970 | 4911551 |
| 7622 | 9 | 0.9880 | Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Antibiotic resistant pathogenic bacteria (ARPB) residual in soil-plant system has caused serious threat against public health and environmental safety. Being capable of targeted lysing host bacteria, phage therapy has been proposed as promising method to control the ARPB contamination in environments. In this study, microcosm trials were performed to investigate the impact of various phage treatments on the dissipation of tetracycline resistant Escherichia coli K-12 and chloramphenicol resistant Pseudomonas aeruginosa PAO1 in soil-carrot system. After 70 days of incubation, all the four phage treatments significantly decreased the abundance of the pathogenic bacteria and the corresponding antibiotic resistance genes (tetW and cmlA) in the soil-carrot system (p < 0.05), following the order of the cocktail phage treatment (phages ΦYSZ1 + ΦYSZ2) > the polyvalent phage (ΦYSZ3 phage with broad host range) treatment > host-specific phage (ΦYSZ2 and ΦYSZ1) treatments > the control. In addition, the polyvalent phage treatment also exerted positive impact on the diversity and stability of the bacterial community in the system, suggesting that this is an environmentally friendly technique with broad applications in the biocontrol of ARPB/ARGs in soil-plant system. | 2019 | 30677957 |
| 3753 | 10 | 0.9879 | Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Bambermycin (flavophospholipol) is a phosphoglycolipid antimicrobial produced by various strains of Streptomyces. It is active primarily against Gram-positive bacteria because of inhibition of transglycosylase and thus of cell wall synthesis. Bambermycin is used as a feed additive growth promoter in cattle, pigs, chickens, and turkeys, but has no therapeutic use in humans or animals. Flavophospholipol is known to suppress certain microorganisms (e.g., Staphylococcus spp. and Enterococcus faecalis) and thus contributes to an improved equilibrium of the gut microflora providing a barrier to colonization with pathogenic bacteria and resultant improved weight gain and feed conversion. Flavophospholipol has also been shown to decrease the frequency of transferable drug resistance among Gram-negative enteropathogens and to reduce the shedding of pathogenic bacteria such as Salmonella in pigs, calves, and chickens. Plasmid-mediated resistance to bambermycin has not been described. Likewise, cross-resistance among bacteria between bambermycin and penicillin, tetracycline, streptomycin, erythromycin, or oleandromycin has not been observed. This brief review summarizes the antimicrobial properties of bambermycin, in particular, its potentially favorable role in decreasing antimicrobial resistance. | 2006 | 16698216 |
| 8959 | 11 | 0.9879 | Elevated proton motive force is a tetracycline resistance mechanism that leads to the sensitivity to gentamicin in Edwardsiella tarda. Tetracycline is a commonly used human and veterinary antibiotic that is mostly discharged into environment and thereby tetracycline-resistant bacteria are widely isolated. To combat these resistant bacteria, further understanding for tetracycline resistance mechanisms is needed. Here, GC-MS based untargeted metabolomics with biochemistry and molecular biology techniques was used to explore tetracycline resistance mechanisms of Edwardsiella tarda. Tetracycline-resistant E. tarda (LTB4-R(TET) ) exhibited a globally repressed metabolism against elevated proton motive force (PMF) as the most characteristic feature. The elevated PMF contributed to the resistance, which was supported by the three results: (i) viability was decreased with increasing PMF inhibitor carbonylcyanide-3-chlorophenylhydrazone; (ii) survival is related to PMF regulated by pH; (iii) LTB4-R(TET) were sensitive to gentamicin, an antibiotic that is dependent upon PMF to kill bacteria. Meanwhile, gentamicin-resistant E. tarda with low PMF are sensitive to tetracycline is also demonstrated. These results together indicate that the combination of tetracycline with gentamycin will effectively kill both gentamycin and tetracycline resistant bacteria. Therefore, the present study reveals a PMF-enhanced tetracycline resistance mechanism in LTB4-R(TET) and provides an effective approach to combat resistant bacteria. | 2024 | 38085112 |
| 3620 | 12 | 0.9879 | A multiple antibiotic-resistant enterobacter cloacae strain isolated from a bioethanol fermentation facility. An Enterobacter cloacae strain (E. cloacae F3S3) that was collected as part of a project to assess antibiotic resistance among bacteria isolated from bioethanol fermentation facilities demonstrated high levels of resistance to antibiotics added prophylactically to bioethanol fermentors. PCR assays revealed the presence of canonical genes encoding resistance to penicillin (ampC) and erythromycin (ermG). Assays measuring biofilm formation under antibiotic stress indicated that erythromycin induced biofilm formation in E. cloacae F3S3. Planktonic growth and biofilm formation were observed at a high ethanol content, indicating E. cloacae F3S3 can persist in a bioethanol fermentor under the highly variable environmental conditions found in fermentors. | 2014 | 24941895 |
| 4783 | 13 | 0.9879 | Helicobacter pylori may survive ampicillin treatment in the remnant stomach. Helicobacter pylori (H. pylori) is a Gram-negative curved rod-like or spiral bacterium that chronically infects the human gastric mucosa, and is a major risk factor for gastritis, gastric and duodenal ulcer and adenocarcinoma of the stomach. After partial gastrectomy, some patients may have persistent H. pylori infection for five years or more. In this study, we detected three bacteria, i.e., Klebsiella pneumoniae, Enterobacter aerogenes, and Escherichia coli, in the gastric juice of patients with a remnant stomach. Some of these bacteria produced beta-lactamase. These findings are potentially important since such bacteria could provide H. pylori with the chance to acquire drug resistance and to transfer drug resistance genes. This could be one reason why H. pylori is difficult to eradicate in the remnant stomach. | 2002 | 12139018 |
| 8844 | 14 | 0.9878 | Phage Selective Pressure Reduces Virulence of Hypervirulent Klebsiella pneumoniae Through Mutation of the wzc Gene. Hypervirulent Klebsiella pneumoniae (hvKp), one of the major community-acquired pathogens, can cause invasive infections such as liver abscess. In recent years, bacteriophages have been used in the treatment of K. pneumoniae, but the characteristics of the phage-resistant bacteria produced in the process of phage therapy need to be evaluated. In this study, two Podoviridae phages, hvKpP1 and hvKpP2, were isolated and characterized. In vitro and in vivo experiments demonstrated that the virulence of the resistant bacteria was significantly reduced compared with that of the wild type. Comparative genomic analysis of monoclonal sequencing showed that nucleotide deletion mutations of wzc and wcaJ genes led to phage resistance, and the electron microscopy and mucoviscosity results showed that mutations led to the loss of the capsule. Meanwhile, animal assay indicated that loss of capsule reduced the virulence of hvKp. These findings contribute to a better understanding of bacteriophage therapy, which not only can kill bacteria directly but also can reduce the virulence of bacteria by phage screening. | 2021 | 34690983 |
| 270 | 15 | 0.9878 | Three genes controlling streptomycin susceptibility in Agrobacterium fabrum. Streptomycin (Sm) is a commonly used antibiotic for its efficacy against diverse bacteria. The plant pathogen Agrobacterium fabrum is a model for studying pathogenesis and interkingdom gene transfer. Streptomycin-resistant variants of A. fabrum are commonly employed in genetic analyses, yet mechanisms of resistance and susceptibility to streptomycin in this organism have not previously been investigated. We observe that resistance to a high concentration of streptomycin arises at high frequency in A. fabrum, and we attribute this trait to the presence of a chromosomal gene (strB) encoding a putative aminoglycoside phosphotransferase. We show how strB, along with rpsL (encoding ribosomal protein S12) and rsmG (encoding a 16S rRNA methyltransferase), modulates streptomycin sensitivity in A. fabrum. IMPORTANCE The plant pathogen Agrobacterium fabrum is a widely used model bacterium for studying biofilms, bacterial motility, pathogenesis, and gene transfer from bacteria to plants. Streptomycin (Sm) is an aminoglycoside antibiotic known for its broad efficacy against gram-negative bacteria. A. fabrum exhibits endogenous resistance to somewhat high levels of streptomycin, but the mechanism underlying this resistance has not been elucidated. Here, we demonstrate that this resistance is caused by a chromosomally encoded streptomycin-inactivating enzyme, StrB, that has not been previously characterized in A. fabrum. Furthermore, we show how the genes rsmG, rpsL, and strB jointly modulate streptomycin susceptibility in A. fabrum. | 2023 | 37695858 |
| 3839 | 16 | 0.9878 | The agricultural antibiotic carbadox induces phage-mediated gene transfer in Salmonella. Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the US during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli (STEC) and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness genes in the environment. | 2014 | 24575089 |
| 6047 | 17 | 0.9878 | Safety Evaluation of Weissella cibaria JW15 by Phenotypic and Genotypic Property Analysis. Weissella cibaria is one of the bacteria in charge of the initial fermentation of kimchi and has beneficial effects such as immune-modulating, antagonistic, and antioxidant activities. In our study, we aimed to estimate the safety of W. cibaria JW15 for the use of probiotics according to international standards based on phenotypic (antibiotic resistance, hemolysis, and toxic metabolite production) and genotypic analysis (virulence genes including antibiotic resistance genes). The results of the safety assessment on W. cibaria JW15 were as follows; (1) antibiotic resistance genes (ARGs) (kanamycin and vancomycin etc.) were intrinsic characteristics; (2) There were no acquired virulence genes including Cytolysin (cylA), aggregation substance (asa1), Hyaluronidase (hyl), and Gelatinase (gelE); (3) this strain also lacked β-hemolysis and the production of toxic metabolites (D-lactate and bile salt deconjugation). Consequently, W. cibaria JW15 is expected to be applied as a functional food ingredient in the food market. | 2021 | 34946052 |
| 8481 | 18 | 0.9878 | Universal stress proteins contribute Edwardsiella piscicida adversity resistance and pathogenicity and promote blocking host immune response. Universal stress proteins (Usps) exist ubiquitously in bacteria and other organisms. Usps play an important role in adaptation of bacteria to a variety of environmental stresses. There is increasing evidence that Usps facilitate pathogens to adapt host environment and are involved in pathogenicity. Edwardsiella piscicida (formerly included in E. tarda) is a severe fish pathogen and infects various important economic fish including tilapia (Oreochromis niloticus). In E. piscicida, a number of systems and factors that are involved in stress resistance and pathogenesis were identified. However, the function of Usps in E. piscicida is totally unknown. In this study, we examined the expressions of 13 usp genes in E. piscicida and found that most of these usp genes were up-regulated expression under high temperature, oxidative stress, acid stress, and host serum stress. Particularly, among these usp genes, usp13, exhibited dramatically high expression level upon several stress conditions. To investigate the biological role of usp13, a markerless usp13 in-frame mutant strain, TX01Δusp13, was constructed. Compared to the wild type TX01, TX01Δusp13 exhibited markedly compromised tolerance to high temperature, hydrogen peroxide, and low pH. Deletion of usp13 significantly retarded bacterial biofilm growth and decreased resistance against serum killing. Pathogenicity analysis showed that the inactivation of usp13 significantly impaired the ability of E. piscicida to invade into host cell and infect host tissue. Introduction of a trans-expressed usp13 gene restored the lost virulence of TX01Δusp13. In support of these results, host immune response induced by TX01 and TX01Δusp13 was examined, and the results showed reactive oxygen species (ROS) levels in TX01Δusp13-infected macrophages were significantly higher than those in TX01-infected cells. The expression level of several cytokines (IL-6, IL-8, IL-10, TNF-α, and CC2) in TX01Δusp13-infected fish was significantly higher than that in TX01-infected fish. These results suggested that the deletion of usp13 attenuated the ability of bacteria to overcome the host immune response to pathogen infection. Taken together, our study indicated Usp13 of E. piscicida was not only important participant in adversity resistance, but also was essential for E. piscicida pathogenicity and contributed to block host immune response to pathogen infection. | 2019 | 31654767 |
| 3672 | 19 | 0.9877 | Multiple antibiotic resistance of heterotrophic bacteria in the littoral zone of Lake Shira as an indicator of human impact on the ecosystem. Resistance to Ampicillin and Kanamycin displayed by heterotrophic bacteria isolated in Summer and in Spring from the littoral and the central parts of Lake Shira (a therapeutic lake in the Khakasia Republic, Russia) has been investigated. It has been found that in Summer, human and animal microflora featuring multiple antibiotic resistance (to Ampicillin and Kanamycin) predominates in all the studied stations of the littoral zone of the lake. In Spring, concentrations of bacteria featuring multiple antibiotic resistance decrease significantly and bacteria sensitive to antibiotics predominate in the lake. Emergence of multiple antibiotic resistance in bacteria of Lake Shira is caused by the input of allochthonous bacteria into the lake; this feature of heterotrophic bacteria of Lake Shira can be used to monitor the impact on the ecosystem made by health resorts. | 2008 | 16762536 |