# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1232 | 0 | 0.9901 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1219 | 1 | 0.9901 | Characterization of extended-spectrum beta-lactamase and carbapenemase genes in bacteria from environment in Burkina Faso. INTRODUCTION: This study aimed to characterize extended-spectrum beta-lactamase (ESBL) and carbapenemase genes in bacteria from the environment in Bobo-Dioulasso, Burkina Faso. METHODOLOGY: This study was conducted from January 18 to December 31, 2019. Environmental samples were collected from the effluents of Souro Sanou University Hospital Center and the wastewater treatment plant at Bobo-Dioulasso. MacConkey agar media supplemented with 4 µg/mL cefotaxime was used for bacterial growth, and identification of bacteria was performed using API 20E system (BioMerieux SA, Lyon, France). Antibiotic susceptibility testing, synergy test, carbapenem inactivation method and molecular characterization were performed. RESULTS: A total of 180 bacterial isolates were identified from the different sites with a predominance of Klebsiella oxytoca and Klebsiella pneumoniae (27.5%). All 180 bacterial isolates were ESBL producers and 18 (10.0%) of them produced carbapenemases. Out of the 180 bacterial isolates, DNAs of 98.9% (178/180) bacterial isolates were extracted and tested through polymerase chain reaction (PCR) for characterization of resistant genes. The study showed that 89.8% (160/178) carried the bla-CTX-M genes including 54.4 (87/160) from hospital effluents and 45.6 (73/160) from the wastewater treatment plant. Regarding the carriage of carbapenemase genes, 7.9 (14/178) blaNDM-1 was found in all the sites including 71.4% (10/14) from hospital effluents and 28.6 (4/14) from the wastewater treatment plant. blaOXA-48-like was only found in bacteria from hospital effluents and represented 2.2% (4/178). CONCLUSIONS: This study highlights the need to build hospital effluent treatment plants to reduce the load of resistant bacteria before discharging the effluents into the urban wastewater system. | 2023 | 38252715 |
| 1233 | 2 | 0.9901 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1220 | 3 | 0.9899 | Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae in Wastewater Effluent in Blantyre, Malawi. Background/Objectives: Wastewater treatment plants (WWTPs) serve as a sink for both antimicrobial residues and bacteria carrying resistant genes, which are later disseminated into the environment, facilitating the spread of antimicrobial resistance. This study investigated the presence of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (Ec), Klebsiella pneumoniae (Kp), and Enterobacter cloacae (Enc) in effluent from WWTP in Blantyre, Malawi, to generate evidence and provide baseline information for interventions. Methods: Selective chromogenic agar was used to identify ESBL-producing bacteria. Results: A total of 288 samples were collected between April 2023 and March 2024, and 97.6% (281/288) yielded one or more presumptive ESBL isolates. Bacterial growth was confirmed as 48.9% Ec (255/522), 33.0% Kp (172/522), and 10.0% Enc (52/522). Antibiotic susceptibility testing showed the highest resistance to ceftriaxone (Ec, 100.0%; Kp, 98.3%; Enc, 100.0%) and the lowest resistance to meropenem (Ec, 6.3%, Kp, 1.2%; Enc, 3.8%) among the antibiotics that were tested. Multiple antibiotic resistance phenotypes were observed in 73.1% of the isolates, with the most prevalent phenotype being amoxicillin + clavulanate/cotrimoxazole/doxycycline/ciprofloxacin/gentamicin/azithromycin/ceftriaxone (55, 15.7%). Conclusions: The study demonstrated ongoing environmental contamination with antibiotic-resistant bacteria from sewage effluent. Therefore, the functionality of WWTPs should be improved to minimize the release of these organisms into the environment. | 2025 | 40558152 |
| 1243 | 4 | 0.9896 | Population distribution of Beta-lactamase conferring resistance to third-generation cephalosporins in human clinical Enterobacteriaceae in the Netherlands. There is a global increase in infections caused by Enterobacteriaceae with plasmid-borne β-lactamases that confer resistance to third-generation cephalosporins. The epidemiology of these bacteria is not well understood, and was, therefore, investigated in a selection of 636 clinical Enterobacteriaceae with a minimal inhibitory concentration >1 mg/L for ceftazidime/ceftriaxone from a national survey (75% E. coli, 11% E. cloacae, 11% K. pneumoniae, 2% K. oxytoca, 2% P. mirabilis). Isolates were investigated for extended-spectrum β-lactamases (ESBLs) and ampC genes using microarray, PCR, gene sequencing and molecular straintyping (Diversilab and multi-locus sequence typing (MLST)). ESBL genes were demonstrated in 512 isolates (81%); of which 446 (87%) belonged to the CTX-M family. Among 314 randomly selected and sequenced isolates, bla(CTX-M-15) was most prevalent (n = 124, 39%), followed by bla(CTX-M-1) (n = 47, 15%), bla(CTX-M-14) (n = 15, 5%), bla(SHV-12) (n = 24, 8%) and bla(TEM-52) (n = 13, 4%). Among 181 isolates with MIC ≥16 mg/L for cefoxitin plasmid encoded AmpCs were detected in 32 and 27 were of the CMY-2 group. Among 102 E. coli isolates with MIC ≥16 mg/L for cefoxitin ampC promoter mutations were identified in 29 (28%). Based on Diversilab genotyping of 608 isolates (similarity cut-off >98%) discriminatory indices of bacteria with ESBL and/or ampC genes were 0.994, 0.985 and 0.994 for E. coli, K. pneumoniae and E. cloacae, respectively. Based on similarity cut-off >95% two large clusters of E. coli were apparent (of 43 and 30 isolates) and 21 of 21 that were typed by belonged to ST131 of which 13 contained bla(CTX-M-15). Our findings demonstrate that bla(CTX-M-15) is the most prevalent ESBL and we report a larger than previously reported prevalence of ampC genes among Enterobacteriaceae responsible for resistance to third-generation cephalosporins. | 2012 | 23284886 |
| 1092 | 5 | 0.9896 | High qnrS retention of ESBL-producing and mcr-harbouring colistin-resistant Escherichia coli in Vietnamese food products. Plasmid-mediated antibiotic-resistant bacteria's transmission is fatal and a major threat to public health. This study aimed to clarify the presence of plasmid-mediated quinolone resistance(PMQR)genes in extended-spectrum β-lactamase(ESBL)-producing or/and mcr-harbouring colistin(COL)-resistant Escherichia coli(ESBL-COL-EC)isolates from Vietnamese and Japanese chicken meat. Resistance towards ciprofloxacin(CIP)was examined in 308 ESBL-COL-EC isolates; CIP-resistant ESBL-COL-EC isolates were examined for the PMQR gene. Approximately, 71.1% and 38.1% of ESBL-COL-EC and ESBLproducing E. coli isolates from Vietnamese and Japanese chicken meat were CIP-resistant, respectively. Multiplex PCR led PMQR detection showed that 35.2% of CIP-resistant ESBL-COL-EC isolates from Vietnamese food contained PMQR gene, whereas CIP-resistant ESBL-COL-EC isolates from Japanese chicken meat did not. Conjugation assays showed that the transmission of qnrS gene carried by E. coli to Salmonella. In conclusion, ESBL-COL-EC isolates from Vietnamese food are associated with a high frequency of fluoroquinolone resistance and a high distribution of the qnrS gene. | 2024 | 39343582 |
| 1230 | 6 | 0.9896 | Lentic and effluent water of Delhi-NCR: a reservoir of multidrug-resistant bacteria harbouring blaCTX-M, blaTEM and blaSHV type ESBL genes. Antimicrobial resistance is not restricted to clinics but also spreading fast in the aquatic environment. This study focused on the prevalence and diversity of extended-spectrum β-lactamase (ESBL) genes among bacteria from lentic and effluent water in Delhi-NCR, India. Phenotypic screening of 436 morphologically distinct bacterial isolates collected from diverse sites revealed that 106 (∼24%) isolates were ESBL positive. Antibiotic profiling showed that 42, 60, 78 and 59% ESBL producing isolates collected from Ghazipur slaughterhouse, Lodhi garden pond, Hauz Khas lake and Jasola wastewater treatment plant, respectively, were multidrug-resistant (MDR). The multiple antibiotic resistance (MAR) index varied from 0.20 to 0.32 among selected locations. The prevalence of ESBL gene variants blaSHV, blaTEM and blaCTX-M were found to be 17.64, 35.29 and 64%, respectively. Furthermore, the analysis of obtained gene sequences showed three variants of blaCTX-M (15, 152 and 205) and two variants of blaTEM (TEM-1 and TEM-116) among ESBL producers. The co-existence of 2-3 gene variants was recorded among 48% ESBL positive isolates. New reports from this study include the blaCTX-M gene in Acinetobacter lwoffii, Enterobacter ludwigii, Exiguobacterium mexicanum and Aeromonas caviae. Furthermore, the identification of blaTEM and blaSHV in an environmental isolate of A. caviae is a new report from India. | 2021 | 34371496 |
| 1229 | 7 | 0.9895 | Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)). | 2021 | 33513540 |
| 1412 | 8 | 0.9895 | A highly multiplexed melt-curve assay for detecting the most prevalent carbapenemase, ESBL, and AmpC genes. Resistance to third-generation cephalosporins and carbapenems in Gram-negative bacteria is chiefly mediated by beta-lactamases including extended-spectrum beta-lactamase (ESBL), AmpC, and carbapenemase enzymes. Routine phenotypic detection methods do not provide timely results, and there is a lack of comprehensive molecular panels covering all important markers. An ESBL/carbapenemase high-resolution melt analysis (HRM) assay (SHV, TEM, CTX-M ESBL families, and NDM, IMP, KPC, VIM and OXA-48-like carbapenemases) and an AmpC HRM assay (16S rDNA control, FOX, MOX, ACC, EBC, CIT, and DHA) were designed and evaluated on 111 Gram-negative isolates with mixed resistance patterns. The sensitivity for carbapenemase, ESBL, and AmpC genes was 96.7% (95% confidence interval [CI]: 82.8-99.9%), 93.6% (95% CI: 85.7-97.9%), and 93.8% (95% CI: 82.8-98.7%), respectively, with a specificity of 100% (95% CI: 95.6-100%), 93.9% (95% CI: 79.8-99.3%), and 93.7% (95% CI: 84.5-98.2%). The HRM assays enable the simultaneous detection of the 14 most important ESBL, carbapenemase, and AmpC genes and could be used as a molecular surveillance tool or to hasten detection of antimicrobial resistance for treatment management. | 2020 | 32521424 |
| 1391 | 9 | 0.9894 | Faecal carriage of extended-spectrum β-lactamase-producing and AmpC β-lactamase-producing bacteria among Danish army recruits. During May and June 2008, 84 Danish army recruits were tested for faecal carriage of extended-spectrum β-lactamase (ESBL)-producing and AmpC β-lactamase-producing bacteria. Three ESBL-producing (CTX-M-14a) Escherichia coli isolates, two AmpC-producing (CMY-2) E. coli isolates and one AmpC-producing (CMY-34) Citrobacter freundii isolate were detected. Two of the CTX-M-14a E. coli isolates had similar pulsed-field gel electrophoresis and multilocus sequence typing profiles, indicating the same origin or transmission between the two army recruits. The bla(CTX-M-14a) genes were transferable to an E. coli recipient. These commensal bacteria therefore constitute a reservoir of resistance genes that can be transferred to other pathogenic bacteria in the intestine. | 2011 | 20718802 |
| 1231 | 10 | 0.9894 | Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad. | 2012 | 23493415 |
| 1216 | 11 | 0.9893 | Coexistence of multidrug resistance and ESBL encoding genes - bla(TEM), bla(SHV), and bla(CTX-M); its amplification and dispersion in the environment via municipal wastewater treatment plant. Municipal wastewater treatment plants (MWWTPs) are a global source of antibiotic resistance genes (ARGs), collecting wastewater from a variety of sources, including hospital wastewater, domestic wastewater, runoff from agricultural and livestock farms, etc. These sources are contaminated with organic and inorganic pollutants, ARGs and antibiotic-resistant bacteria (ARB). Such pollutants aided eutrophication and encouraged bacterial growth. During bacterial growth horizontal gene transfer (HGT) and vertical gene transfer (VGT) of ARGs and extended-spectrum β-lactamase (ESBL) encoding genes may facilitate, resulting in the spread of antibiotic resistance exponentially. The current study investigated the prevalence of multidrug resistance (MDR) and ESBL encoding genes in various treatment units of MWWTP and their spread in the environment. A total of three sampling sites (BUT, BRO, and BFB) were chosen, and 33 morphologically distinct bacterial colonies were isolated. 14 of the 33 isolates tested positive for antibiotic resistance and were further tested for the coexistence of MDR and ESBL production. The selected 14 isolates showed the highest resistance to trimethoprim (85.71%), followed by ciprofloxacin, azithromycin, and ampicillin (71.42%), tetracycline (57.14%), and vancomycin, gentamicin, and colistin sulphate (50%). A total of 9 isolates (64.28%) were phenotypically positive for ESBL production (BUT2, BUT3, BUT5, BRO1, BRO2, BRO3, BRO4, BRO5 and BFB1). The molecular detection of ESBL encoding genes, i.e. bla(TEM), bla(SHV), and bla(CTX-M) was carried out. The most prevalent gene was bla(TEM) (69.23%), followed by bla(SHV) (46.15%), and bla(CTX-M) (23.07%). In this study, 9 isolates (64.28%) out of 14 showed the coexistence of MDR and ESBL encoding genes, namely BUT3, BUT4, BUT5, BUT6, BUT7, BRO1, BRO2, BRO4, and BFB1. The coexistence of ESBL encoding genes and resistance to other antibiotic classes exacerbates human health and the environment. | 2024 | 38992444 |
| 1242 | 12 | 0.9893 | An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Wastewater treatment plants (WWTPs) are significant reservoirs of bacterial resistance. This work aims to identify the determinants of resistance produced by Gram-negative bacteria in the influent and effluent of two WWTPs in Portugal. A total of 96 wastewater samples were obtained between 2016 and 2019. The numbers of total aerobic and fecal contamination bacteria were evaluated, and genomic features were searched by polymerase chain reaction (PCR) and Next-Generation Sequencing (NGS). Enterobacteriaceae corresponded to 78.6% (n = 161) of the 205 isolates identified by 16sRNA. The most frequent isolates were Escherichia spp. (57.1%, n = 117), followed by Aeromonas spp. (16.1%, n = 33) and Klebsiella spp. (12.7%, n = 26). The remaining 29 isolates (14.1%) were distributed across 10 different genera. Among the 183 resistant genes detected, 54 isolates produced extended spectrum β-lactamases (ESBL), of which bla(CTX-M-15) was predominant (37 isolates; 68.5%). A KPC-3 carbapenemase-producing K. oxytoca was identified (n = 1), with bla(KPC-3) included in a transposon Tn4401 isoform b. A higher number of virulence genes (VG) (19 genes) was found in the E. coli 5301 (O25b-ST131-B2) isolate compared with a commensal E. coli 5281 (O25b-ST410-A) (six genes). Both shared five VG [Enterobactin; Aerobactin, CFA/1 (clade α); Type1 (clade γ1); Type IV]. In conclusion, this work highlights the role of relevant clinical bacteria in WWTPs, such as KPC-3-producing K. oxytoca, and, for the first time, a CTX-M-15-producing Ochromobactrum intermedium, a human opportunistic pathogen, and a SED-1-producing Citrobacter farmeri, an uncommon CTX-M-type extended-spectrum beta-lactamase. | 2021 | 33799747 |
| 1091 | 13 | 0.9892 | Co-harboring of cephalosporin (bla)/colistin (mcr) resistance genes among Enterobacteriaceae from flies in Thailand. The spreading of antimicrobial-resistant Enterobacteriaceae, especially those co-harboring plasmid-mediated cephalosporin (bla) and colistin (mcr) resistance genes, is becoming increasingly problematic. As a vector, flies carry antimicrobial-resistant bacteria (ARB) into human and livestock habitats. To investigate ARB in flies, we collected 235 flies from 27 sites (18 urban areas, five pig farms and four chicken farms) in Thailand during 2013-2015. Cefotaxime-resistant Enterobacteriaceae (CtxRE) and bla-positive CtxRE were isolated from 70 (29.8%) and 48 (20.4%) flies, respectively. In 93 bla-positive CtxRE isolates that included Escherichia coli, Enterobacter spp., and Klebsiella pneumoniae from 48 flies, the most frequent bla gene was TEM (n = 62), followed by CTX-M-55 (n = 31), CTX-M-14 (n = 26), CMY-2 (n = 24) and SHV (n = 10), and 58 isolates harbored multiple types of these genes. In addition, we detected the mcr-1 (n = 1) and mcr-3 (n = 19) genes in bla-positive CtxRE isolates from 16 flies. In conjugation experiments, 10 mcr-3- and bla-positive isolates exhibited co-transfer of mcr-3 and blaTEM-1 genes. These results suggest that a relatively high proportion of flies in Thailand carries cephalosporin-resistant Enterobacteriaceae harboring co-transmissible cephalosporin and colistin resistance genes. | 2018 | 30010911 |
| 1067 | 14 | 0.9892 | Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk. | 2015 | 26042965 |
| 1218 | 15 | 0.9891 | Whole genome sequencing snapshot of multi-drug resistant Klebsiella pneumoniae strains from hospitals and receiving wastewater treatment plants in Southern Romania. We report on the genomic characterization of 47 multi-drug resistant, carbapenem resistant and ESBL-producing K. pneumoniae isolates from the influent (I) and effluent (E) of three wastewater treatment plants (WWTPs) and from Romanian hospital units which are discharging the wastewater in the sampled WWTPs. The K. pneumoniae whole genome sequences were analyzed for antibiotic resistance genes (ARGs), virulence genes and sequence types (STs) in order to compare their distribution in C, I and E samples. Both clinical and environmental samples harbored prevalent and widely distributed ESBL genes, i.e. blaSHV, blaOXA, blaTEM and blaCTX M. The most prevalent carbapenemase genes were blaNDM-1, blaOXA-48 and blaKPC-2. They were found in all types of isolates, while blaOXA-162, a rare blaOXA-48 variant, was found exclusively in water samples. A higher diversity of carbapenemases genes was seen in wastewater isolates. The aminoglycoside modifying enzymes (AME) genes found in all types of samples were aac(6'), ant(2'')Ia, aph(3'), aaD, aac(3) and aph(6). Quinolone resistance gene qnrS1 and the multi-drug resistance oqxA/B pump gene were found in all samples, while qnrD and qnrB were associated to aquatic isolates. The antiseptics resistance gene qacEdelta1 was found in all samples, while qacE was detected exclusively in the clinical ones. Trimethroprim-sulfamethoxazole (dfrA, sul1 and sul2), tetracyclines (tetA and tetD) and fosfomycin (fosA6, known to be located on a transpozon) resistance genes were found in all samples, while for choramphenicol and macrolides some ARGs were detected in all samples (catA1 and catB3 / mphA), while other (catA2, cmIA5 and aac(6')Ib / mphE and msrE) only in wastewater samples. The rifampin resistance genes arr2 and 3 (both carried by class I integrons) were detected only in water samples. The highly prevalent ARGs preferentially associating with aquatic versus clinical samples could ascribe potential markers for the aquatic (blaSHV-145, qacEdelta1, sul1, aadA1, aadA2) and clinical (blaOXA-1, blaSHV-106,blaTEM-150, aac(3)Iia, dfrA14, oqxA10; oqxB17,catB3, tetD) reservoirs of AR. Moreover, some ARGs (oqxA10; blaSHV-145; blaSHV-100, aac(6')Il, aph(3')VI, armA, arr2, cmlA5, blaCMY-4, mphE, msrE, oqxB13, blaOXA-10) showing decreased prevalence in influent versus effluent wastewater samples could be used as markers for the efficiency of the WWTPs in eliminating AR bacteria and ARGs. The highest number of virulence genes (75) was recorded for the I samples, while for E and C samples it was reduced to half. The most prevalent belong to three functional groups: adherence (fim genes), iron acquisition (ent, fep, fyu, irp and ybt genes) and the secretion system (omp genes). However, none of the genes associated with hypervirulent K. pneumoniae have been found. A total of 14 STs were identified. The most prevalent clones were ST101, ST219 in clinical samples and ST258, ST395 in aquatic isolates. These STs were also the most frequently associated with integrons. ST45 and ST485 were exclusively associated with I samples, ST11, ST35, ST364 with E and ST1564 with C samples. The less frequent ST17 and ST307 aquatic isolates harbored blaOXA-162, which was co-expressed in our strains with blaCTX-M-15 and blaOXA-1. | 2020 | 31999747 |
| 1451 | 16 | 0.9891 | Molecular Epidemiology of Extensively Drug-Resistant mcr Encoded Colistin-Resistant Bacterial Strains Co-Expressing Multifarious β-Lactamases. Plasmid-mediated colistin resistance (Col-R) conferred by mcr genes endangers the last therapeutic option for multifarious β-lactamase-producing bacteria. The current study aimed to explore the mcr gene molecular epidemiology in extensively drug-resistant (XDR) bacteria. Col-R gram-negative bacterial strains were screened using a minimum inhibitory concentration (MIC) breakpoint ≥4 µg/mL. Resistant isolates were examined for mcr variants, extended-spectrum β-lactamase, AmpC, and carbapenemase genes using polymerase chain reaction (PCR). The MIC breakpoints for mcr-positive strains were determined using broth microdilution and E-test strips. Overall, 19/718 (2.6%) gram-negative rods (GNRs) harboring mcr were identified, particularly in pus (p = 0.01) and tracheal secretions (p = 0.03). Molecular epidemiology data confirmed 18/19 (95%) mcr-1 and 1/19 (5%) mcr-2 genes. Integron detection revealed 15/17 (88%) Int-1 and 2/17 (12%) Int-2. Common co-expressing drug-resistant β-lactamase genes included 8/16 (50%) bla(CTM-1), 3/16 (19%) bla(CTM-15), 3/3 (100%) bla(CMY-2), 2/8 (25%) bla(NDM-1), and 2/8 (25%) bla(NDM-5). The MIC(50) and MIC(90) values (µg/mL) were as follows: Escherichia coli, 12 and 24; Klebsiella pneumoniae, 12 and 32; Acinetobacter baumannii, 8 and 12; and Pseudomonas aeruginosa, 32 and 64, respectively. Treatment of XDR strains has become challenging owing to the co-expression of mcr-1, mcr-2, multifarious β-lactamase genes, and integrons. | 2021 | 33923991 |
| 1353 | 17 | 0.9891 | Dissemination of antibiotic resistance genes, mobile genetic elements, and efflux genes in anthropogenically impacted riverine environments. Anthropogenically impacted surface waters are an important reservoir for multidrug-resistant bacteria and antibiotic-resistant genes. The present study aimed at MDR, ESBL, AmpC, efflux genes, and heavy metals resistance genes (HMRGs) in bacterial isolates from four Indian rivers belonging to different geo-climatic zones, by estimating the mode of resistance transmission exhibited by the resistant isolates. A total 71.27% isolates exhibited MDR trait, showing maximum resistance towards β-lactams (P = 66.49%; AMX = 59.04%), lincosamides (CD = 65.96%), glycopeptides (VAN = 25.19%; TEI = 56.91%), cephalosporins (CF = 53.72%; CXM = 30.32%) sulphonamide (COT = 43.62%; TRIM = 12.77%), followed by macrolide and tetracycline. The dfrA1 and dfrB genes were detected in total 37.5% isolates whereas; dfrA1 genes were detected in 33.34%. The sul1 gene was detected in 9.76% and sul2 gene was detected in 2.44% isolates. A total of 69.40% MDR integron positive isolates were detected with intI1and intI2 detected at 89.25% and 1.07%, respectively; encoding class 1 and class 2 integron-integrase. ESBL production was confirmed in 73.13% isolates that harboured the genes blaTEM (96.84%), blaSHV (27.37%), blaOXA (13.68%) and blaCTXM (18.95%) while the frequency of HMRGs; 52.24% (zntB), 33.58% (chrA), and 6.72% (cadD). Efflux activity was confirmed in 96.26% isolates that harbored the genes acrA (93.02%), tolC (88.37%), and acrB (86.04%). AmpC (plasmid-mediated) was detected in 20.9% of the riverine isolates. Detection of such hidden molecular modes of antibiotic resistance in the rivers is alarming that requires urgent and stringent measures to control the resistance threats. | 2021 | 33524742 |
| 1421 | 18 | 0.9891 | Predominance of Acinetobacter spp., Harboring the bla(IMP) Gene, Contaminating the Hospital Environment in a Tertiary Hospital in Mwanza, Tanzania: A Cross-Sectional Laboratory-Based Study. Data on colonization and hospital contamination of carbapenem-resistant Gram-negative bacteria (CR-GNB) are limited in low- and middle-income countries. We designed this study to determine the prevalence and co-existence of carbapenemase genes among CR-GNB isolated from clinical, colonization, and hospital environmental samples at a tertiary hospital in Mwanza, Tanzania. The modified Hodge test (MHT), the combined disk test (CDT), and the double-disk synergy test (DDST) were used for the phenotypic detection of carbapenemases. A multiplex PCR assay was used to detect bla(IMP) and bla(KPC), and a singleplex PCR assay was used to detect bla(OXA-48). Data were analyzed by STATA version 13.0. Overall, 68.8% (44/64) of the CR-GNB had at least one phenotype by phenotypic methods, whereby 60.9% (39/64) were both CDT and DDST positive and 31.3% (20/64) were MHT positive. A total of 23/64 (35.9%) had at least one of the genes tested with the predominance of bla(IMP) (91.3%; 21/23). In addition, 47.7% (21/44) of the CR-GNB phenotypes had at least one gene. Around 47.8% (11/23) of the CR-GNB carried multiple genes encoding for carbapenem resistance, with the maximum co-existence of bla(IMP)/bla(KPC)/bla(OXA-48) (45.5%; 5/11). The majority of carbapenem-resistant genes were detected in Acinetobacter spp. (82.6%; 19/23) and isolated from bed swabs (69.6%; 16/23). Acinetobacter spp. carrying the bla(IMP) gene predominantly contaminated the hospital environment. Therefore, we recommend routine decontamination of inanimate hospital surfaces, including patient beds. | 2022 | 35056011 |
| 1079 | 19 | 0.9890 | CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. OBJECTIVES: The global occurrence of antibiotic resistance genes in bacteria in water environments is an increasing concern. Treated wastewater was sampled daily over a 45 day period from the outflow of a municipal wastewater treatment plant in Brno, Czech Republic, and examined for extended-spectrum β-lactamase (ESBL)-producing bacteria. METHODS: Water samples were cultivated on MacConkey agar with cefotaxime (2 mg/L) and individual colonies were examined for ESBL production. Phenotypic ESBL-positive bacteria identified as Escherichia coli or Klebsiella spp. were tested for the presence of antibiotic resistance genes, the virulence gene afa/dra and the bla(CTX-M) upstream region. Genetic relatedness was analysed by PFGE, multilocus sequence typing and plasmid analysis. RESULTS: A total of 68 ESBL-producing Enterobacteriaceae isolates were detected in 34 out of 45 wastewater samples. ESBL-producing isolates included 26 E. coli isolates, 4 Klebsiella pneumoniae isolates and 1 Klebsiella oxytoca isolate. The pandemic and multiresistant B2-O25b-ST131 clone was predominant, being detected among 19 E. coli isolates, and 17 of the B2-O25b-ST131 isolates were positive for the FIA replicon and the afa/dra operon and had an IS26 element flanking bla(CTX-M-15). Seventeen of the B2-O25b-ST131 isolates showed closely related PFGE profiles (defined by 84% band similarity) and belonged to identical clonal groups. CONCLUSIONS: The results highlight the inadequacy of the treatment process in removing multiresistant bacteria from municipal wastewater and point to a risk of transmission of clinically important multiresistant strains, such as the pandemic ST131 clone, to the environment. This is the first study demonstrating the pandemic ST131 clone in wastewater. | 2011 | 21954457 |