DUCKS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
153600.9891Complete Genetic Analysis of Plasmids Carried by Two Nonclonal bla(NDM-5)- and mcr-1-Bearing Escherichia coli Strains: Insight into Plasmid Transmission among Foodborne Bacteria. Our objective was to characterize the genetic features of plasmids harbored by two genetically related, MCR-1 and NDM-5-producing Escherichia coli strains recovered from a chicken meat sample. The genetic profiles of all plasmids harbored by the two test strains, namely, 1106 and 1107, were determined by whole-genome sequencing, S1-pulsed-field gel electrophoresis (PFGE), Southern hybridization, and bioinformatics analysis. The transferability of plasmids harbored by the two strains was assessed by filter mating assay. Strains 1106 and 1107 were resistant to almost all the antibiotics, including colistin and fosfomycin, but remained susceptible to amikacin and tigecycline. The plasmids of p1107-NDM-5 and p1106-NDM-5 both contain a class I integron which lacks the ISAba125 element. The backbone of p1106-IncFII exhibited a high degree of similarity with that of p1106-NDM-5 and p1107-NDM-5, implying that events of plasmid fusion and resolution were involved in the formation of the two plasmids. The plasmids p1106-IncHI2MCR and p1107-IncHI2MCR belong to an IncHI2 replicon type, with three copies of ISApl1 being observed in p1106-IncHI2MCR, implying that the mcr-1 gene was transferable among bacteria that reside in the same food matrix. In this study, p1106-IncFIB, p1107-99K, p1107-111K, and p1107-118K were all found to be phage-like plasmids, with p1106-IncFIB and p1107-118K containing several virulence genes, including iroBCDEN, iucABCD, sitABCD, hlyF, and iss. Surprisingly, resistance genes such as aph(3')-Ia, sul3, and aac(3')-IId could also be found in p1107-118K, but resistance genes were not detected in other phage-like plasmids. In conclusion, enhanced surveillance is required to monitor and control the dissemination of various resistance determinants among foodborne pathogens. IMPORTANCE Carbapenem and colistin are last-resort antibiotics used to treat serious clinical infections caused by multidrug-resistant (MDR) bacterial pathogens. Plasmids encoding resistance to carbapenems and colistin have been reported in clinical pathogens in recent years, and yet few studies reported cocarriage of mcr and bla(NDM) genes in Escherichia coli strains of food origin. How plasmids encoding these two important resistance determinants are being evolved and transmitted in bacterial pathogens is not well understood. In this study, we investigated the genetic features of plasmids harbored by two nonclonal, mcr-1- and bla(NDM-5)-bearing E. coli strains (1106 and 1107) recovered from a fresh chicken meat sample to understand and provide evidence of the level and dynamics of MDR plasmid transmission. Our data confirmed that active plasmid fusion and resolution events were involved in the formation of plasmids that harbor multiple resistance genes, which provide insights into the further control of plasmid evolution in bacterial pathogens.202134468190
295010.9888High rate of multidrug resistance and integrons in Escherichia coli isolates from diseased ducks in select regions of China. With the increasing number of ducks being raised and consumed, it is crucial to monitor the presence of multidrug resistant (MDR) bacteria in duck farming. Waterfowl, such as ducks, can contribute to the rapid dissemination of antibiotic resistance genes (ARGs). The objective of this study was to investigate the antimicrobial resistance (AMR), ARGs, and mobile genetic elements (MGEs), such as IS26, tbrC, ISEcp1 in Escherichia coli(E. coli) isolated from the intestinal contents of diseased ducks between 2021 and 2022 in Sichuan, Chongqing and Anhui, China. The AMR phenotypes of 201 isolated E. coli strains were determined using the minimum inhibitory concentrations (MICs) method. Subsequently, polymerase chain reaction and sequencing techniques were employed to screen for integron-integrase genes (intI1, intI2, intI3 genes), gene cassettes (GCs), MGEs, and ARGs. The results demonstrated that 96.5% of the E. coli isolates were resistant to at least 1 antibiotic, with 88.1% of the strains displaying MDR phenotype. The highest AMR phenotype observed was for trimethoprim-sulfamethoxazole (88.1%). Furthermore, class 1 and class 2 integrons were detected in 68.2% and 3.0% of all the isolates, respectively, whereas no class 3 integrons were found. Ten types of GCs were identified in the variable regions of class 1 and class 2 integrons. Moreover, 10 MGEs were observed in 46 combinations, with IS26 exhibiting the highest detection rate (89.6%). Among the 22 types of ARGs, tetA (77.1%) was the most frequently detected. In the conjugational transfer experiment, transconjugants were found to carry specific ARGs and MGEs, with their MIC values were significantly higher than those of recipient E. coli J53, indicating their status as MDR bacteria. This study emphasizes the necessity of monitoring MGEs, ARGs, and integrons in duck farms. It provides valuable insights into the complex formation mechanisms of AMR and may aid in preventing and controlling the spread of MDR bacteria in waterfowl breeding farm.202337586192
200420.9887Deciphering the Structural Diversity and Classification of the Mobile Tigecycline Resistance Gene tet(X)-Bearing Plasmidome among Bacteria. The emergence of novel plasmid-mediated resistance genes constitutes a great public concern. Recently, mobile tet(X) variants were reported in diverse pathogens from different sources. However, the diversity of tet(X)-bearing plasmids remains largely unknown. In this study, the phenotypes and genotypes of all the tet(X)-positive tigecycline-resistant strains isolated from a slaughterhouse in China were characterized by antimicrobial susceptibility testing, conjugation, pulsed-field gel electrophoresis with S1 nuclease (S1-PFGE), and PCR. The diversity and polymorphism of tet(X)-harboring strains and plasmidomes were investigated by whole-genome sequencing (WGS) and single-plasmid-molecule analysis. Seventy-four tet(X4)-harboring Escherichia coli strains and one tet(X6)-bearing Providencia rettgeri strain were identified. The tet(X4)-bearing elements in 27 strains could be transferred to the recipient strain via plasmids. All tet(X4)-bearing plasmids isolated in this study and 15 tet(X4)-bearing plasmids reported online were analyzed. tet(X4)-bearing plasmids ranged from 9 to 294 kb and were categorized as ColE2-like, IncQ, IncX1, IncA/C2, IncFII, IncFIB, and hybrid plasmids with different replicons. The core tet(X4)-bearing genetic contexts were divided into four major groups: ISCR2-tet(X4)-abh, △ISCR2-abh-tet(X4)-ISCR2, ISCR2-abh-tet(X4)-ISCR2-virD2-floR, and abh-tet(X4)-ISCR2-yheS-cat-zitR-ISCR2-virD2-floR Tandem repeats of tet(X4) were universally mediated by ISCR2 Different tet(X)-bearing strains existed in the same microbiota. Reorganization of tet(X4)-bearing multidrug resistance plasmids was found to be mediated by IS26 and other homologous regions. Finally, single-plasmid-molecule analysis captured the heterogenous state of tet(X4)-bearing plasmids. These findings significantly expand our knowledge of the tet(X)-bearing plasmidome among microbiotas, which establishes a baseline for investigating the structure and diversity of human, animal, and environmental tigecycline resistomes. Characterization of tet(X) genes among different microbiotas should be performed systematically to understand the evolution and ecology.IMPORTANCE Tigecycline is an expanded-spectrum tetracycline used as a last-resort antimicrobial for treating infections caused by superbugs such as carbapenemase-producing or colistin-resistant pathogens. Emergence of the plasmid-mediated mobile tigecycline resistance gene tet(X4) created a great public health concern. However, the diversity of tet(X4)-bearing plasmids and bacteria remains largely uninvestigated. To cover this knowledge gap, we comprehensively identified and characterized the tet(X)-bearing plasmidome in different sources using advanced sequencing technologies for the first time. The huge diversity of tet(X4)-bearing mobile elements demonstrates the high level of transmissibility of the tet(X4) gene among bacteria. It is crucial to enhance stringent surveillance of tet(X) genes in animal and human pathogens globally.202032345737
176730.9886Integron-mediated multidrug resistance in a global collection of nontyphoidal Salmonella enterica isolates. Salmonella enterica bacteria have become increasingly resistant to antimicrobial agents, partly as a result of genes carried on integrons. Clonal expansion and horizontal gene transfer may contribute to the spread of antimicrobial drug-resistance integrons in these organisms. We investigated this resistance and integron carriage among 90 isolates with the ACSSuT phenotype (resistance to ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline) in a global collection of S. enterica isolates. Four integrons, dfrA12/orfF/aadA2, dfrA1/aadA1, dfrA7, and arr2/blaOXA30/cmlA5/aadA2, were found in genetically unrelated isolates from 8 countries on 4 continents, which supports a role for horizontal gene transfer in the global dissemination of S. enterica multidrug resistance. Serovar Typhimurium isolates containing identical integrons with the gene cassettes blaPSE1 and aadA2 were found in 4 countries on 3 continents, which supports the role of clonal expansion. This study demonstrates that clonal expansion and horizontal gene transfer contribute to the global dissemination of antimicrobial drug resistance in S. enterica.200919239750
542440.9886The large plasmid carried class 1 integrons mediated multidrug resistance of foodborne Salmonella Indiana. Salmonella enterica serovar Indiana (S. Indiana) has aroused widespread concern as an important zoonotic pathogen. The molecular mechanism of multidrug resistance (MDR) in S. Indiana is not known and should be assessed. We aim to investigate the molecular mechanism of MDR and the importance of large plasmids carried class 1 integrons in the MDR of foodborne S. Indiana. Class 1 integrons in 48 S. Indiana isolates and 200 isolates of 7 other Salmonella serotypes were detected by polymerase chain reaction (PCR). To analyze the antimicrobial resistance genes (ARGs) of two S. Indiana isolates, designated S. Indiana 15 and S. Indiana 222, next-generation sequencing (NGS) was performed, and the resulting sequences were compared with the complete nucleotide sequences of S. Indiana D90 and S. Indiana C629. Comparative functional analysis was conducted between the intI1 (1,014 bp) of S. Indiana 222 and the intI1 (699 bp) of S. Indiana 15. Plasmid conjugation transfer analysis was performed to analyze the horizontal gene transfer of the integrons-related resistance genes with integron-positive and integron-negative Salmonella isolates. 64.58% of S. Indiana isolates carried class 1 integrons, which was significantly higher than that of other Salmonella serotypes (p < 0.001). The NGS results showed that the S. Indiana 15 and S. Indiana 222 isolates carried a large plasmid with a class 1 integron and multiple ARGs, similar to S. Indiana D90 and S. Indiana C629. Two integrases found in S. Indiana isolates belong to class 1 integrases and could integrate resistance genes into specific integration sites of the integrons. The conjugation frequency of intI1 (1,014 bp) was 6.08 × 10(-5), which was significantly higher than that of intI1 (699 bp) (p < 0.01). The large plasmids carrying a class 1 integron and the number of ARGs were strongly correlated (p < 0.001). The conjugation frequency of integron-positive S. Indiana recipient isolates was significantly higher than that of integron-negative recipient isolates (p < 0.05). S. Indiana containing large plasmids carrying a class 1 integron more easily captured resistance genes from other bacteria (S. Enteritidis and S. Derby), which could be an important cause of the emerging pandemic of MDR clones. Graphical abstractS. Indiana containing large plasmids carrying a class 1 integron more easily captured resistance genes from other bacteria (S. Enteritidis and S. Derby), which could be an important cause of the emerging pandemic of MDR clones.202236312970
151450.9886Widespread prevalence and molecular epidemiology of tet(X4) and mcr-1 harboring Escherichia coli isolated from chickens in Pakistan. The emergence and spread of plasmid-mediated tigecycline resistance gene tet(X4) and colistin resistance gene mcr-1 in Escherichia coli (E. coli) pose a potential threat to public health, due to the importance of colistin and tigecycline for treating serious clinical infections. However, the characterization of bacteria coharboring both genes was few reported. Here, we described the molecular epidemiology of tet(X4) and mcr-1 harboring E. coli strains of chicken origin in Pakistan, with methods including PCR, antimicrobial susceptibility testing, DNA transfer assays, plasmid replicon typing, whole-genome sequencing and bioinformatics analysis. The tet(X4) gene was identified in 36 isolates exhibiting high levels of tigecycline resistance (MICs, 16-128 mg/L). Worryingly, 24 of the 36 tet(X4)-bearing isolates were confirmed as colistin resistance, positive for plasmid-borne mcr-1. We observed the prevalence of tet(X4)-bearing IncFII plasmid with mcr-1-bearing IncI2 plasmid in 12 E. coli isolates, with a high co-transfer frequency except for one strain PK8233, in which tet(X4)- and mcr-1-bearing plasmids were non-transferable. Coexistence of tet(X4)-bearing IncFII plasmid with mcr-1-carrying multidrug-resistant (MDR) IncHI2 plasmid was also identified in 10 E. coli isolates, and a relatively low co-transfer frequency was obtained except PK8575, in which mcr-1 was non-transferable. The transferability of pPK8275-tetX in PK8275 and pPK8233-tetX in PK8233, that could transfer from E. coli J53 to C600 by conjugation, was interfered by certain factors in PK8275 and PK8233. This may provide new insights to prevent and control the spread of antibiotic resistance genes. Two strains were reported to co-carry tet(X4)-positive IncQ1 plasmid and mcr-1-positive IncI2 plasmid. Convergence of tet(X4) and mcr-1 genes in E. coli by conjugative or mobilizable plasmids may lead to potentially widespread transmission of such resistance genes, which may incur antibiotic-resistance crisis globally.202234599956
541760.9886Molecular characteristics of oxazolidinone resistance in enterococci from a multicenter study in China. BACKGROUND: Linezolid-resistant enterococci pose great challenges in clinical practice. The aim of this study is to study the mechanisms underlying the resistance and genetic environment of antimicrobial resistance gene of linezolid-resistant enterococci. RESULTS: The linezolid MICs of 16 enterococci were 4 mg/L to 16 mg/L. Four strains belonged to multi-drug resistant (MDR) bacteria. The sequence types (STs) of 13 enterococci strains performed WGS were diverse: 3 ST476, 1 ST86, ST116, ST480, ST59, ST416, ST21, ST67, ST16, ST585 and ST18. None of them carried multi-drug resistance gene cfr. Only one strain had the G2658 T mutation of target 23S rRNA gene. Thirteen (13/16, 81.3%) strains harbored the novel oxazolidinone resistance gene optrA. WGS analysis showed that the optrA gene was flanked by sequence IS1216E insertion in 13 strains, and optrA was adjacent to transposons Tn558 in two strains and Tn554 in one strain. The optrA gene was identified to be co-localized with fexA, the resistance genes mediated florfenicol resistance in 13 strains, and ermA1, the resistance genes mediated erythromycin resistance in 9 strains, indicating that linezolid-resistant strains may be selected due to non-oxazolidinone antibiotics (i.e. macrolides and florfenicol) usage. CONCLUSION: Our findings demonstrate the high diversity of optrA-carrying genetic platforms. The mobile genetic elements (MGEs) may play an important role in the dissemination of optrA into the enterococci isolates of human origin. The genetic evidence of transferable feature and co-selection of optrA should be gave more attention in clinical practice.201931299904
97470.9885First report on class 1 integrons and Trimethoprim-resistance genes from dfrA group in uropathogenic E. coli (UPEC) from the Aleppo area in Syria. Horizontal gene transfer (HGT) introduces advantageous genetic elements into pathogenic bacteria using tools such as class1 integrons. This study aimed at investigating the distribution of these integrons among uropathogenic E. coli (UPEC) isolated from patients in Aleppo, Syria. It also set to uncover the frequencies of the clinically relevant DfrA1 and DfrA17,7, as well as various associations leading to reduced susceptibility. This study involved 75 Trimethoprim-resistant E. coli isolates from in- and outpatients with urinary tract infections (UTIs) from 3 major hospitals in Aleppo. Bacterial identification, resistance and extended-spectrum-β-lactamase (ESBL) production testing were performed according to Clinical Laboratory Standards Institute guidelines. Detection of integrons and DfrA genes was done using PCR and statistical significance was inferred through χ2 (Fisher's) test. Class1 integrons were detected in 54.6% of isolates while DfrA1 and DfrA17,7 were found in 16% and 70.6% of tested samples respectively. Furthermore, only DfrA17,7 were strongly associated with class1 integrons, as were reduced susceptibility to the majority of individual antibiotics, multidrug resistance and ESBL production. This study demonstrated the high prevalence of class1 integrons among UPEC strains in Aleppo, Syria, as well as their significant associations with MDR. This data give information for local healthcare provision using antibiotic chemotherapy.201323956949
176380.9885Multidrug Resistance Genes Carried by a Novel Transposon Tn7376 and a Genomic Island Named MMGI-4 in a Pathogenic Morganella morganii Isolate. Antimicrobial resistance in Morganella morganii is increasing in recent years, which is mainly introduced via extra genetic and mobile elements. The aim of our study is to analyze the multidrug resistance (MDR) and characterize the mobile genetic elements (MGEs) in M. morganii isolates. Here, we report the characteristic of a pathogenic M. morganii isolate containing multidrug resistance genes that are mainly carried by a novel transposon Tn7376 and a genomic island. Sequence analysis suggested that the Tn7376 could be generated through homologous recombination between two different IS26-bounded translocatable units (TUs), namely, module A (IS26-Hp-IS26-mph(A)-mrx(A)-mphR-IS6100-chrA-sul1-qacEΔ1) and module B (ISCR1-sul1-qacEΔ1-cmlA1-aadA1-aadB-intI1-IS26), and the genomic island named MMGI-4 might derive from a partial structure of different original genomic islands that also carried IS26-mediated TUs. Notably, a 2,518-bp sequence linked to the module A and B contains a 570-bp dfrA24 gene. To the best of our knowledge, this is the first report of the novel Tn7376 possessing a complex class 1 integron that carried an infrequent gene dfrA24 in M. morganii. IMPORTANCE Mobile genetic elements (MGEs), especially for IS26-bounded translocatable units, may act as a reservoir for a variety of antimicrobial resistance genes in clinically important pathogenic bacteria. We expounded this significant genetic characteristic by investigating a representative M. morganii isolate containing multidrug resistance genes, including the infrequent dfrA24. Our study suggested that these acquired resistance genes were mainly driven by IS26-flanked important MGEs, such as the novel Tn7376 and the MMGI-4. We demonstrated that IS26-related MGEs contributed to the emergence of the extra gene dfrA24 in M. morganii through some potential genetic events like recombination, transposition, and integration. Therefore, it is of importance to investigate persistently the prevalence these MEGs in the clinical pathogens to provide risk assessment of emergence and development of novel resistance genes.202235510850
303490.9885The Integrative and Conjugative Element ICECspPOL2 Contributes to the Outbreak of Multi-Antibiotic-Resistant Bacteria for Chryseobacterium Spp. and Elizabethkingia Spp. Antibiotic resistance genes (ARGs) and horizontal transfer of ARGs among bacterial species in the environment can have serious clinical implications as such transfers can lead to disease outbreaks from multidrug-resistant (MDR) bacteria. Infections due to antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the multi-antibiotic-resistant strain Chryseobacterium sp. POL2 was isolated from the wastewater of a livestock farm. Whole-genome sequencing and annotation revealed that the POL2 genome encodes dozens of ARGs. The integrative and conjugative element (ICE) ICECspPOL2, which encodes ARGs associated with four types of antibiotics, including carbapenem, was identified in the POL2 genome, and phylogenetic affiliation analysis suggested that ICECspPOL2 evolved from related ICEEas of Elizabethkingia spp. Conjugation assays verified that ICECspPOL2 can horizontally transfer to Elizabethkingia species, suggesting that ICECspPOL2 contributes to the dissemination of multiple ARGs among Chryseobacterium spp. and Elizabethkingia spp. Because Elizabethkingia spp. is associated with clinically significant infections and high mortality, there would be challenges to clinical treatment if these bacteria acquire ICECspPOL2 with its multiple ARGs, especially the carbapenem resistance gene. Therefore, the results of this study support the need for monitoring the dissemination of this type of ICE in Chryseobacterium and Elizabethkingia strains to prevent further outbreaks of MDR bacteria. IMPORTANCE Infections with multiple antibiotic-resistant Chryseobacterium and Elizabethkingia in intensive care units have been increasing in recent years. In this study, the mobile integrative and conjugative element ICECspPOL2, which was associated with the transmission of a carbapenem resistance gene, was identified in the genome of the multi-antibiotic-resistant strain Chryseobacterium sp. POL2. ICECspPOL2 is closely related to the ICEEas from Elizabethkingia species, and ICECspPOL2 can horizontally transfer to Elizabethkingia species with the tRNA-Glu-TTC gene as the insertion site. Because Elizabethkingia species are associated with clinically significant infections and high mortality, the ability of ICECspPOL2 to transfer carbapenem resistance from environmental strains of Chryseobacterium to Elizabethkingia is of clinical concern.202134937181
1888100.9885High prevalence of Escherichia coli co-harboring conjugative plasmids with colistin- and carbapenem resistance genes in a wastewater treatment plant in China. Emergence and dissemination of resistance to last-resort antibiotics such as carbapenem and colistin is a growing, global health concern. Wastewater treatment plants (WWTPs) link human activities and the environment, can act as reservoirs and sources for emerging antibiotic resistance, and likely play a large role in antibiotic resistance transmission. The aim of this study was to investigate occurrence and characteristics of colistin- and carbapenem-resistant Escherichia coli (CCREC) in wastewater and sludge samples collected over a one-year period from different functional areas of an urban WWTP in Jinan city, Shandong, China. A total of 8 CCREC were isolated from 168 samples with selective agar and PCR, corresponding to high prevalence of 4.8%, co-harboring carbapenem resistance genes (bla(NDM)) and colistin resistance gene (mcr-1) and subsequently whole-genome sequenced. Additionally, all isolates were multidrug-resistant by antimicrobial susceptibility testing and carried a variety of antibiotic resistance genes. Two isolates carrying virulence genes associated with avian pathogenic E. coli were identified, one belonging to the high-risk clone O101:H9-ST167. Southern blotting was used to characterize CCREC isolates and plasmids carrying bla(NDM)-genes or mcr-1 could be transferred to a recipient strain E. coli J53 by in vitro conjugation assays. Resistance to other antibiotic classes were sporadically co-transferred to the transconjugant. Transposition of and mcr-1-carrying element from a transferable IncHI2-plasmid was observed among two CCREC clones isolated within 4 days of each other. The occurrence of multidrug-resistant CCREC capable of transferring their antibiotic resistance genotypes via conjugative plasmids is alarming. WWTPs bring bacteria from different sources together, providing opportunities for horizontal exchange of DNA among compatible hosts. Further dissemination of the colistin-, carbapenem-, or both colistin- and carbapenem resistant E. coli could lead to a serious threat to public health.202336989999
9962110.9885Metadata Analysis of mcr-1-Bearing Plasmids Inspired by the Sequencing Evidence for Horizontal Transfer of Antibiotic Resistance Genes Between Polluted River and Wild Birds. We sequenced the whole genomes of three mcr-1-positive multidrug-resistant E. coli strains, which were previously isolated from the environment of egret habitat (polluted river) and egret feces. The results exhibit high correlation between antibiotic-resistant phenotype and genotype among the three strains. Most of the mobilized antibiotic resistance genes (ARGs) are distributed on plasmids in the forms of transposons or integrons. Multidrug-resistant (MDR) regions of high homology are detected on plasmids of different E. coli isolates. Therefore, horizontal transfer of resistance genes has facilitated the transmission of antibiotic resistance between the environmental and avian bacteria, and the transfer of ARGs have involved multiple embedded genetic levels (transposons, integrons, plasmids, and bacterial lineages). Inspired by this, systematic metadata analysis was performed for the available sequences of mcr-1-bearing plasmids. Among these plasmids, IncHI2 plasmids carry the most additional ARGs. The composition of these additional ARGs varies according to their geographical distribution. The phylogenetic reconstruction of IncI2 and IncX4 plasmids provides the evidence for their multiregional evolution. Phylogenetic analysis at the level of mobile genetic element (plasmid) provides important epidemiological information for the global dissemination of mcr-1 gene. Highly homologous mcr-1-bearing IncI2 plasmids have been isolated from different regions along the East Asian-Australasian Flyway, suggesting that migratory birds may mediate the intercontinental transportation of ARGs.202032210943
894120.9884Molecular characterisations of integrons in clinical isolates of Klebsiella pneumoniae in a Chinese tertiary hospital. BACKGROUND: Integrons are mobile genetic elements that play an important role in the distribution of antibiotic-resistance genes among bacteria. This study aimed to investigate the distribution of integrons in clinical isolates of Klebsiella pneumoniae and explore the molecular mechanism of integron-mediated multiple-drug resistance in K. pneumoniae. METHODS: Class 1, 2, and 3 integrases were identified by polymerase chain reaction (PCR) among 178 K. pneumoniae clinical isolates. Antibiotic susceptibility was examined by disk-diffusion method. Conjugation experiments were conducted to evaluate the horizontal-transfer capability, and multilocus sequence typing (MLST) assays were conducted to explore the genetic relationships among the isolates. Highly virulent serotypes were identified by PCR from the 44 integron-positive isolates with variable regions. RESULTS: Class1 and 2 integrons were detected in 60.1% and 1.7% of isolates, respectively. One isolate carried both class 1 and 2 integrons. Class 3 integrons were not detected in all 178 isolates. Among the 44 integrons containing variable regions, 39 were located in conjugative plasmids. Dihydrofolate reductase (dfrA) and aminoglycoside adenyltransferase (aad) were found to be the most common in class 1 and 2 integrons. These gene cassettes encoded resistance to trimethoprim and aminoglycosides. Moreover, the association between integron carriage and antibiotic resistance was most significant for aminoglycosides, phenicols, and fluoroquinolones. Among the 44 integron-positive isolates with variable regions, 9 were classified as highly virulent serotypes (k1, k2, k20, and k54). In addition, MLST analysis detected 13 sequence types (STs), with the predominant ones being ST11 and ST15. The eBURST analysis revalued the existence of 11 singleton STs and one group, which is comprised of ST11 and ST437. CONCLUSIONS: The wide diversity of detected integrons suggested that the horizontal transfer by mobile genetic elements played a major role in the distribution of antimicrobial resistance genes, thereby indicating the urgent need to use effective means of avoiding the spread of drug-resistant bacteria.201728111326
1778130.9884Four novel resistance integron gene-cassette occurrences in bacterial isolates from zhenjiang, china. Integrons, which are widely distributed among bacteria and are strongly associated with resistance, are specialized genetic elements that are capable of capturing, integrating, and mobilizing gene cassette. In this work, we investigated classes 1, 2, and 3 integrons associated integrases genes in 365 bacteria isolates, amplified and analyzed the structure of class 1 integron, detected 8 resistant gene cassettes [dfr17, aadA5, aadA1, aadA2, dhfrI, aadB, aac(6')-II, and pse-I], and found four novel gene-cassette arrays. We also found that commensal bacteria in the common microenvironment had the same integron gene cassette, which provided direct evidence that integron was an important horizontal transmission element.200919365688
1887140.9884Complete Genetic Analysis of Plasmids Carrying mcr-1 and Other Resistance Genes in Avian Pathogenic Escherichia coli Isolates from Diseased Chickens in Anhui Province in China. Antimicrobial resistance associated with colistin has emerged as a significant concern worldwide, threatening the use of one of the most important antimicrobials for treating human disease. This study aimed to investigate the prevalence of colistin-resistant avian-pathogenic Escherichia coli (APEC) and shed light on the possibility of transmission of mcr-1 (mobilized colistin resistance)-positive APEC. A total of 72 APEC isolates from Anhui Province in China were collected between March 2017 and December 2018 and screened for the mcr-1 gene. Antimicrobial susceptibility testing was performed using the broth dilution method. Pulsed-field gel electrophoresis, Southern blot analysis, and conjugation assay were performed to determine the location and conjugative ability of the mcr-1 gene. Whole-genome sequencing and analysis were performed using Illumina MiSeq and Nanopore MinION platforms. Three APEC isolates (AH25, AH62, and AH65) were found to be positive for the mcr-1 gene and showed multidrug resistance. The mcr-1 genes were located on IncI2 plasmids, and conjugation assays revealed that these plasmids were transferrable. Notably, strains AH62 and AH65, both belonging to ST1788, were collected from different places but carried the same drug resistance genes and shared highly similar plasmids. This study highlights the potential for a possible epidemic of mcr-1-positive APEC and the urgent need for continuous active monitoring.IMPORTANCE In this study, three plasmids carrying mcr-1 were isolated and characterized from APEC isolates from Anhui Province in China. The mcr-1 genes were located on IncI2 plasmids, and these plasmids were transferrable. These three IncI2 plasmids had high homology with the plasmids harbored by pathogenic bacteria isolated from other species. This finding showed that IncI2 plasmids poses a risk for the exchange of genetic material between different niches. Although colistin has been banned for use in food-producing animals in China, the coexistence of the broad-spectrum β-lactamase and mcr-1 genes on a plasmid can also lead to the stable existence of mcr-1 genes. The findings illustrated the need to improve the monitoring of drug resistance in poultry systems so as to curb the transmission or persistence of multidrug-resistant bacteria.202133853876
9961150.9884Evolution and comparative genomics of pAQU-like conjugative plasmids in Vibrio species. OBJECTIVES: To investigate a set of MDR conjugative plasmids found in Vibrio species and characterize the underlying evolution process. METHODS: pAQU-type plasmids from Vibrio species were sequenced using both Illumina and PacBio platforms. Bioinformatics tools were utilized to analyse the typical MDR regions and core genes in the plasmids. RESULTS: The nine pAQU-type plasmids ranged from ∼160 to 206 kb in size and were found to harbour as many as 111 core genes encoding conjugative, replication and maintenance functions. Eight plasmids were found to carry a typical MDR region, which contained various accessory and resistance genes, including ISCR1-blaPER-1-bearing complex class 1 integrons, ISCR2-floR, ISCR2-tet(D)-tetR-ISCR2, qnrVC6, a Tn10-like structure and others associated with mobile elements. Comparison between a plasmid without resistance genes and different MDR plasmids showed that integration of different mobile elements, such as IS26, ISCR1, ISCR2, IS10 and IS6100, into the plasmid backbone was the key mechanism by which foreign resistance genes were acquired during the evolution process. CONCLUSIONS: This study identified pAQU-type plasmids as emerging MDR conjugative plasmids among important pathogens from different origins in Asia. These findings suggest that aquatic bacteria constitute a major reservoir of resistance genes, which may be transmissible to other human pathogens during food production and processing.201728637205
2336160.9884Distribution of disinfectant resistant genes in mcr-1-carrying Escherichia coli isolated from children in southern China. BACKGROUND: Colistin, a polymyxin antibiotic, serves as a crucial defense against multidrug-resistant gram-negative bacteria, despite its nephrotoxicity. However, the plasmid-mediated mobilization of the polymyxin resistance gene, mcr-1, presents a significant public health threat. The widespread use of disinfectants has resulted in Escherichia coli (E. coli) carrying mcr-1 also showing disinfectant resistance. The aim of this study is to investigate the distribution of disinfectant genes and resistance to disinfectants in mcr-1-carring E coli from children in the South China. METHODS: We evaluated the distribution of twelve disinfectant-resistance genes by PCR. Evaluated the correlation between disinfectant-resistance genes and resistance to disinfectants and antibiotics. We also examined the correlation between the strains' biofilm formation and the presence of disinfectant-resistance genes. Bioinformatic tools were employed to analyze resistance genes, virulence genes, and insertion sequences. Five strains were randomly selected to examine the effects of sub-inhibitory concentration (sub-MIC) of 8 disinfectants on the expression of the mcr-1 gene by qRT-PCR. RESULTS: The most prevalent of the nine biocide resistance genes were mdfA, sugE(c), ydgE, and ydgF (n = 21; all 100 %). The qacG, qacF, sugE(p) and tehA gene was not detected. Furthermore, benzalkonium chloride (BC) and potassium hydrogen persulfate (PMPS)-based disinfectants were effective against all mcr-1-carrying E. coli strains. The majority of mcr-1 were distributed among the InHI2 plasmid types, although three strains lacked mcr-1 on their plasmids. Biofilm formation was observed in 48 % of the strains. emrD and sitABCD showed significant associations with the susceptibility of the strains to 84 disinfectants (P of 0.0351 and 0.0300). In addition, sitABCD was significantly associated with susceptibility to povidone-iodine (PVP-I) (P value of 0.0062). Compared to the untreated group, stimulation with sub-MIC of peracetic acid (PAA) and PVP-I resulted in decreased or increased mcr-1 expression in five E. coli strains, respectively (P of 0.0011 for PAA and P of 0.0476 for PVP-I). CONCLUSION: BC and PMPS based disinfectants were effective against all mcr-1 carrying E. coli strains. Most of the mcr-1 genes were distributed among the InHI2 plasmid types. The emrD and sitABCD genes are highly associated with resistance to 84 disinfectants, and the sitABCD gene was highly associated with resistance to PVP-I. PVP-I selective pressure may encourage the maintenance of mcr-1 gene in E. coli.202539551109
1891170.9884Emergence of plasmid-mediated fosfomycin resistance among Escherichia coli harboring fosA4, tet(X4), and mcr-1 genes in wild birds. Fosfomycin represents a last-line reserve antibiotic for the treatment of infections caused by multidrug-resistant (MDR) bacteria. Nevertheless, the advent of plasmid-mediated fosfomycin resistance among bacteria from humans and food animals incurs great concern. This study reports the detection and genomic portrait of the plasmid-mediated fosfomycin resistance gene, fosA4, amid Escherichia coli from wild birds co-harboring plasmid-mediated tigecycline resistance gene, tet(X4), and colistin resistance gene, mcr-1. A total of 100 samples from fecal droppings of wild birds in the urban parks in Faisalabad, Pakistan were subjected for the isolation and characterization of fosfomycin-resistant E. coli. The fosA4 gene was identified in 11 (11%) of the E. coli isolates, and all exhibited an MDR phenotype. Genome sequencing confirmed that all the fosA4-positive isolates also co-harbored the mobile tigecycline resistance tet(X4) gene on a large MDR IncFII plasmid. One isolate PKF8 belonging to ST48 also co-carried the colistin resistance gene mcr-1 on the IncHI2 plasmid. To the extent of our knowledge, this is the first discovery of E. coli isolates in wild birds co-harboring the mcr-1, fosA4, and tet(X4) genes. The emergence of these pivotal antimicrobial resistance genes in wild birds native to South Asia with their close association to humans and animals is alarming. Our findings highlight the urgent need for further surveillance of bacterial resistance to last-resort antibiotics in the clinics, animal farming, and environment with the One Health approach. IMPORTANCE: The global spread of the plasmid-mediated fosfomycin resistance gene fosA4 bearing Escherichia coli strains incurs a public health concern. However, research focusing on the pervasiveness of fosA4-positive isolates in wild birds is still rare, and to the best of our knowledge, this is the first documentation from South Asia highlighting the concurrent presence of the fosA4, mcr-1, and tet(X4) genes within E. coli isolates recovered from fecal samples of wild birds in Pakistan. This co-existence of ARGs along with phylogenetic analysis revealed that MDR plasmids carried by E. coli isolates have the ability to spread horizontally between wild birds, food animals, and humans. Co-existence of fosA4, tet(X4), and mcr-1-carrying plasmids is worrying and warrants further investigation.202540079598
5431180.9884A comprehensive analysis of antimicrobial resistance of clinical emm89 Streptococcus pyogenes in Japan. OBJECTIVES: Streptococcus pyogenes is involved in a wide range of diseases, including pharyngitis and life-threatening invasive infections. Increasing prevalence of antimicrobial resistance (AMR) has been reported worldwide in various bacteria, limiting the use of antibiotics in infection cases. The present study investigated the AMR of most prevalent S. pyogenes emm types, including emm89 strains in Japan. METHODS: A total of 368 previously identified S. pyogenes isolates (311 emm89 strains and 57 of other emm types), which were previously isolated from patients with invasive and non-invasive infections throughout Japan, were used in the analyses. The minimum inhibitory concentrations of seven antibiotics, including penicillin-G, azithromycin (AZM) and clindamycin, were determined, and whole-genome sequences of AMR-associated genes were screened. RESULTS: We identified 47 resistant strains, of which 91.49% (43/47) were resistant to AZM and/or clindamycin. A strong correlation was observed between non-invasive phenotypes and AMR. Whole-genome analysis indicated the wide distribution of three AMR-related genes, ermT, folP and lmrP, among the emm89 strains. Additionally, tetO was detected in tetracycline-resistance and soxS and mel was detected in chloramphenicol-resistance only in emm4 strains. CONCLUSIONS: The high prevalence of S. pyogenes resistance to AZM and/or clindamycin poses a threat to public health in Japan; thus, the development of next-generation antimicrobial therapies is imperative.202539973909
1512190.9883Emergence of novel tigecycline resistance gene tet(X5) variant in multidrug-resistant Acinetobacter indicus of swine farming environments. Antibiotic-resistant bacteria are emerging all the time, but the continued emergence of novel resistance genes and genetic structures is even more alarming. Tigecycline is currently the important last barrier in the treatment of multidrug-resistant (MDR) infections. tet(X), a resistance gene to tigecycline, is the most prevalent and constantly emerging novel variants. In this research, we characterized two MDR Acinetobacter indicus strains to tigecycline that were identified and analyzed by antimicrobial susceptibility testing, conjugation transfer, whole genome sequencing (WGS) and bioinformatics analysis, and gene function analysis. The results showed that three tet(X) variants were carried in BDT201, including tet(X6) on the chromosome, tet(X3) on the plasmid pBDT201-2, and a novel tet(X5) variant adjacent to the ISAba1 elements on the plasmid pBDT201-3. The novel Tet(X5) variant showed 98.7% amino acid identity with Tet(X5) and was named Tet(X5.4). By expressing tet(X5.4) gene, the tigecycline minimum inhibitory concentration (MIC) values for Escherichia coli JM109 increased 32- fold (from 0.13 to 4 mg/L). BDT2076 contained tigecycline and carbapenems resistance genes, such as tet(X3), bla(OXA-58), bla(NDM-3), and bla(CARB-2). The continuous emergence of MDR bacteria and resistance genes is a global environmental health issue that can not be ignored and therefore needs to pay more urgent attention to it.202337531842