# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 99 | 0 | 0.9000 | Designer TAL effectors induce disease susceptibility and resistance to Xanthomonas oryzae pv. oryzae in rice. TAL (transcription activator-like) effectors from Xanthomonas bacteria activate the cognate host genes, leading to disease susceptibility or resistance dependent on the genetic context of host target genes. The modular nature and DNA recognition code of TAL effectors enable custom-engineering of designer TAL effectors (dTALE) for gene activation. However, the feasibility of dTALEs as transcription activators for gene functional analysis has not been demonstrated. Here, we report the use of dTALEs, as expressed and delivered by the pathogenic Xanthomonas oryzae pv. oryzae (Xoo), in revealing the new function of two previously identified disease-related genes and the potential of one developmental gene for disease susceptibility in rice/Xoo interactions. The dTALE gene dTALE-xa27, designed to target the susceptible allele of the resistance gene Xa27, elicited a resistant reaction in the otherwise susceptible rice cultivar IR24. Four dTALE genes were made to induce the four annotated Xa27 homologous genes in rice cultivar Nipponbare, but none of the four induced Xa27-like genes conferred resistance to the dTALE-containing Xoo strains. A dTALE gene was also generated to activate the recessive resistance gene xa13, an allele of the disease-susceptibility gene Os8N3 (also named Xa13 or OsSWEET11, a member of sucrose efflux transporter SWEET gene family). The induction of xa13 by the dTALE rendered the resistant rice IRBB13 (xa13/xa13) susceptible to Xoo. Finally, OsSWEET12, an as-yet uncharacterized SWEET gene with no corresponding naturally occurring TAL effector identified, conferred susceptibility to the Xoo strains expressing the corresponding dTALE genes. Our results demonstrate that dTALEs can be delivered through the bacterial secretion system to activate genes of interest for functional analysis in plants. | 2013 | 23430045 |
| 10 | 1 | 0.8970 | YODA Kinase Controls a Novel Immune Pathway of Tomato Conferring Enhanced Disease Resistance to the Bacterium Pseudomonas syringae. Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance. | 2020 | 33154763 |
| 7 | 2 | 0.8933 | An EDS1 heterodimer signalling surface enforces timely reprogramming of immunity genes in Arabidopsis. Plant intracellular NLR receptors recognise pathogen interference to trigger immunity but how NLRs signal is not known. Enhanced disease susceptibility1 (EDS1) heterodimers are recruited by Toll-interleukin1-receptor domain NLRs (TNLs) to transcriptionally mobilise resistance pathways. By interrogating the Arabidopsis EDS1 ɑ-helical EP-domain we identify positively charged residues lining a cavity that are essential for TNL immunity signalling, beyond heterodimer formation. Mutating a single, conserved surface arginine (R493) disables TNL immunity to an oomycete pathogen and to bacteria producing the virulence factor, coronatine. Plants expressing a weakly active EDS1(R493A) variant have delayed transcriptional reprogramming, with severe consequences for resistance and countering bacterial coronatine repression of early immunity genes. The same EP-domain surface is utilised by a non-TNL receptor RPS2 for bacterial immunity, indicating that the EDS1 EP-domain signals in resistance conferred by different NLR receptor types. These data provide a unique structural insight to early downstream signalling in NLR receptor immunity. | 2019 | 30770836 |
| 46 | 3 | 0.8919 | The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99(A) (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants. | 2018 | 29603592 |
| 49 | 4 | 0.8905 | Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases. Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. | 2016 | 27289079 |
| 50 | 5 | 0.8871 | OsNPR1 Enhances Rice Resistance to Xanthomonas oryzae pv. oryzae by Upregulating Rice Defense Genes and Repressing Bacteria Virulence Genes. The bacteria pathogen Xanthomonas oryzae pv. oryzae (Xoo) infects rice and causes the severe disease of rice bacteria blight. As the central regulator of the salic acid (SA) signaling pathway, NPR1 is responsible for sensing SA and inducing the expression of pathogen-related (PR) genes in plants. Overexpression of OsNPR1 significantly increases rice resistance to Xoo. Although some downstream rice genes were found to be regulated by OsNPR1, how OsNPR1 affects the interaction of rice-Xoo and alters Xoo gene expression remains unknown. In this study, we challenged the wild-type and OsNPR1-OE rice materials with Xoo and performed dual RNA-seq analyses for the rice and Xoo genomes simultaneously. In Xoo-infected OsNPR1-OE plants, rice genes involved in cell wall biosynthesis and SA signaling pathways, as well as PR genes and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes, were significantly upregulated compared to rice variety TP309. On the other hand, Xoo genes involved in energy metabolism, oxidative phosphorylation, biosynthesis of primary and secondary metabolism, and transportation were repressed. Many virulence genes of Xoo, including genes encoding components of type III and other secretion systems, were downregulated by OsNPR1 overexpression. Our results suggest that OsNPR1 enhances rice resistance to Xoo by bidirectionally regulating gene expression in rice and Xoo. | 2023 | 37240026 |
| 48 | 6 | 0.8867 | Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Boosted responsiveness of plant cells to stress at the onset of pathogen- or chemically induced resistance is called priming. The chemical β-aminobutyric acid (BABA) enhances Arabidopsis thaliana resistance to hemibiotrophic bacteria through the priming of the salicylic acid (SA) defence response. Whether BABA increases Arabidopsis resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) is not clear. In this work, we show that treatment with BABA protects Arabidopsis against the soft-rot pathogen Pcc. BABA did not prime the expression of the jasmonate/ethylene-responsive gene PLANT DEFENSIN 1.2 (PDF1.2), the up-regulation of which is usually associated with resistance to necrotrophic pathogens. Expression of the SA marker gene PATHOGENESIS RELATED 1 (PR1) on Pcc infection was primed by BABA treatment, but SA-defective mutants demonstrated a wild-type level of BABA-induced resistance against Pcc. BABA primed the expression of the pattern-triggered immunity (PTI)-responsive genes FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1), ARABIDOPSIS NON-RACE SPECIFIC DISEASE RESISTANCE GENE (NDR1)/HAIRPIN-INDUCED GENE (HIN1)-LIKE 10 (NHL10) and CYTOCHROME P450, FAMILY 81 (CYP81F2) after inoculation with Pcc or after treatment with purified bacterial microbe-associated molecular patterns, such as flg22 or elf26. PTI-mediated callose deposition was also potentiated in BABA-treated Arabidopsis, and BABA boosted Arabidopsis stomatal immunity to Pcc. BABA treatment primed the PTI response in the SA-defective mutants SA induction deficient 2-1 (sid2-1) and phytoalexin deficient 4-1 (pad4-1). In addition, BABA priming was associated with open chromatin configurations in the promoter region of PTI marker genes. Our data indicate that BABA primes the PTI response upon necrotrophic bacterial infection and suggest a role for the PTI response in BABA-induced resistance. | 2013 | 22947164 |
| 8 | 7 | 0.8867 | The hawthorn CpLRR-RLK1 gene targeted by ACLSV-derived vsiRNA positively regulate resistance to bacteria disease. Virus-derived small interfering RNAs (vsiRNAs) can target not only viruses but also plant genes. Apple chlorotic leaf spot virus (ACLSV) is an RNA virus that infects Rosaceae plants extensively, including apple, pear and hawthorn. Here, we report an ACLSV-derived vsiRNA [vsiR1360(-)] that targets and down-regulates the leucine-rich repeat receptor-like kinase 1 (LRR-RLK1) gene of hawthorn (Crataegus pinnatifida). The targeting and cleavage of the CpLRR-RLK1 gene by vsiR1360(-) were validated by RNA ligase-mediated 5' rapid amplification of cDNA ends and tobacco transient transformation assays. And the CpLRR-RLK1 protein fused to green fluorescent protein localized to the cell membrane. Conserved domain and phylogenetic tree analyses showed that CpLRR-RLK1 is closely related to the proteins of the LRRII-RLK subfamily. The biological function of CpLRR-RLK1 was explored by heterologous overexpression of CpLRR-RLK1 gene in Arabidopsis. The results of inoculation of Pst DC3000 in Arabidopsis leaves showed that the symptoms of CpLRR-RLK1 overexpression plants infected with Pst DC3000 were significantly reduced compared with the wild type. In addition, the detection of reactive oxygen species and callose deposition and the expression analysis of defense-related genes showed that the CpLRR-RLK1 gene can indeed enhance the resistance of Arabidopsis to bacteria disease. | 2020 | 33180701 |
| 58 | 8 | 0.8861 | A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility (S) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas-caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri (Xcc) causing canker in citrus and Xanthomonas campestris pv. vesicatoria (Xcv) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5(V 39E), CsTFIIAγ(V 39E), pepper CaTFIIAγ(V 39E), and tomato SlTFIIAγ(V 39E) also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγ(V 39E)-type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops. | 2017 | 29163628 |
| 547 | 9 | 0.8850 | Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. | 2007 | 17586628 |
| 54 | 10 | 0.8849 | Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance. | 2022 | 35563637 |
| 90 | 11 | 0.8844 | Non-host defense response in a novel Arabidopsis-Xanthomonas citri subsp. citri pathosystem. Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is one of the most destructive diseases of citrus. Progress of breeding citrus canker-resistant varieties is modest due to limited resistant germplasm resources and lack of candidate genes for genetic manipulation. The objective of this study is to establish a novel heterologous pathosystem between Xcc and the well-established model plant Arabidopsis thaliana for defense mechanism dissection and resistance gene identification. Our results indicate that Xcc bacteria neither grow nor decline in Arabidopsis, but induce multiple defense responses including callose deposition, reactive oxygen species and salicylic aicd (SA) production, and defense gene expression, indicating that Xcc activates non-host resistance in Arabidopsis. Moreover, Xcc-induced defense gene expression is suppressed or attenuated in several well-characterized SA signaling mutants including eds1, pad4, eds5, sid2, and npr1. Interestingly, resistance to Xcc is compromised only in eds1, pad4, and eds5, but not in sid2 and npr1. However, combining sid2 and npr1 in the sid2npr1 double mutant compromises resistance to Xcc, suggesting genetic interactions likely exist between SID2 and NPR1 in the non-host resistance against Xcc in Arabidopsis. These results demonstrate that the SA signaling pathway plays a critical role in regulating non-host defense against Xcc in Arabidopsis and suggest that the SA signaling pathway genes may hold great potential for breeding citrus canker-resistant varieties through modern gene transfer technology. | 2012 | 22299054 |
| 97 | 12 | 0.8842 | Universal gene co-expression network reveals receptor-like protein genes involved in broad-spectrum resistance in pepper (Capsicum annuum L.). Receptor-like proteins (RLPs) on plant cells have been implicated in immune responses and developmental processes. Although hundreds of RLP genes have been identified in plants, only a few RLPs have been functionally characterized in a limited number of plant species. Here, we identified RLPs in the pepper (Capsicum annuum) genome and performed comparative transcriptomics coupled with the analysis of conserved gene co-expression networks (GCNs) to reveal the role of core RLP regulators in pepper-pathogen interactions. A total of 102 RNA-seq datasets of pepper plants infected with four pathogens were used to construct CaRLP-targeted GCNs (CaRLP-GCNs). Resistance-responsive CaRLP-GCNs were merged to construct a universal GCN. Fourteen hub CaRLPs, tightly connected with defense-related gene clusters, were identified in eight modules. Based on the CaRLP-GCNs, we evaluated whether hub CaRLPs in the universal GCN are involved in the biotic stress response. Of the nine hub CaRLPs tested by virus-induced gene silencing, three genes (CaRLP264, CaRLP277, and CaRLP351) showed defense suppression with less hypersensitive response-like cell death in race-specific and non-host resistance response to viruses and bacteria, respectively, and consistently enhanced susceptibility to Ralstonia solanacearum and/or Phytophthora capsici. These data suggest that key CaRLPs are involved in the defense response to multiple biotic stresses and can be used to engineer a plant with broad-spectrum resistance. Together, our data show that generating a universal GCN using comprehensive transcriptome datasets can provide important clues to uncover genes involved in various biological processes. | 2022 | 35043174 |
| 57 | 13 | 0.8842 | Functional analysis of NtMPK2 uncovers its positive role in response to Pseudomonas syringae pv. tomato DC3000 in tobacco. Mitogen-activated protein kinase cascades are highly conserved signaling modules downstream of receptors/sensors and play pivotal roles in signaling plant defense against pathogen attack. Extensive studies on Arabidopsis MPK4 have implicated that the MAP kinase is involved in multilayered plant defense pathways. In this study, we identified tobacco NtMPK2 as an ortholog of AtMPK4. Transgenic tobacco overexpressing NtMPK2 markedly enhances resistance to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) virulent and avirulent strains. Transcriptome analysis of NtMPK2-dependent genes shows that possibly the basal resistance system is activated by NtMPK2 overexpression. In addition to NtMPK2-mediated resistance, multiple pathways are involved in response to the avirulent bacteria based on analysis of Pst-responding genes, including SA and ET pathways. Notably, it is possible that biosynthesis of antibacterial compounds is responsible for inhibition of Pst DC3000 avirulent strain when programmed cell death processes in the host. Our results uncover that NtMPK2 positively regulate tobacco defense response to Pst DC3000 and improve our understanding of plant molecular defense mechanism. | 2016 | 26482478 |
| 556 | 14 | 0.8842 | An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27. Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn(2+) /Cd(2+) -dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells. | 2017 | 28696001 |
| 69 | 15 | 0.8839 | Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Plant pathogenic bacteria of the genus Xanthomonas possess transcription activator-like effectors (TALEs) that activate transcription of disease susceptibility genes in the host, inducing a state of disease. Here we report that some isolates of the rice pathogen Xanthomonas oryzae use truncated versions of TALEs (which we term interfering TALEs, or iTALEs) to overcome disease resistance. In comparison with typical TALEs, iTALEs lack a transcription activation domain but retain nuclear localization motifs and are expressed from genes that were previously considered pseudogenes. We show that the rice gene Xa1, encoding a nucleotide-binding leucine-rich repeat protein, confers resistance against X. oryzae isolates by recognizing multiple TALEs. However, the iTALEs present in many isolates interfere with the otherwise broad-spectrum resistance conferred by Xa1. Our findings illustrate how bacterial effectors that trigger disease resistance in the host can evolve to interfere with the resistance process and, thus, promote disease. | 2016 | 27811915 |
| 5 | 16 | 0.8838 | GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. RAR1, SGT1, and HSP90 are important components of effector-triggered immunity (ETI) in diverse plants, where RAR1 and SGT1 are thought to serve as HSP90 co-chaperones. We show that ETI in soybean requires RAR1 and SGT1 but not HSP90. Rsv1-mediated extreme resistance to Soybean mosaic virus (SMV) and Rpg-1b-mediated resistance to Pseudomonas syringae were compromised in plants silenced for GmRAR1 and GmSGT1-2 but not GmHSP90. This suggests that RAR1- or SGT1-dependant signaling is not always associated with a dependence on HSP90. Unlike in Arabidopsis, SGT1 in soybean also mediates ETI against the bacterial pathogen P. syringae. Similar to Arabidopsis, soybean RAR1 and SGT1 proteins interact with each other and two related HSP90 proteins. Plants silenced for GmHSP90 genes or GmRAR1 exhibited altered morphology, suggesting that these proteins also contribute to developmental processes. Silencing GmRAR1 and GmSGT1-2 impaired resistance to virulent bacteria and systemic acquired resistance (SAR) in soybean as well. Because the Arabidopsis rar1 mutant also showed a defect in SAR, we conclude that RAR1 and SGT1 serve as a point of convergence for basal resistance, ETI, and SAR. We demonstrate that, although soybean defense signaling pathways recruit structurally conserved components, they have distinct requirements for specific proteins. | 2009 | 19061405 |
| 95 | 17 | 0.8838 | NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Pathogenesis-related proteins (PRs) are associated with the development of systemic acquired resistance (SAR) against further infection enforced by fungi, bacteria and viruses. PR1a is the first PR-1 member that could be purified and characterized. Previous studies have reported its role in plants' resistance system against oomycete pathogens. However, the role of PR1a in Solanaceae plants against the bacterial wilt pathogen Ralstonia solanacearum remains unclear. To assess roles of NtPR1a in tobacco responding to R. solanacearum, we performed overexpression experiments in Yunyan 87 plants (a susceptible tobacco cultivar). The results illuminated that overexpression of NtPR1a contributed to improving resistance to R. solanacearum in tobacco Yunyan 87. Specifically speaking, NtPR1a gene could be induced by exogenous hormones like salicylic acid (SA) and pathogenic bacteria R. Solanacearum. Moreover, NtPR1a-overexpressing tobacco significantly reduced multiple of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. Importantly, overexpression of NtPR1a activated a series of defense-related genes expression, including the hypersensitive response (HR)-associated genes NtHSR201 and NtHIN1, SA-, JA- and ET-associated genes NtPR2, NtCHN50, NtPR1b, NtEFE26, and Ntacc oxidase, and detoxification-associated gene NtGST1. In summary, our results suggested that NtPR1a-enhanced tobacco resistance to R. solanacearum may be mainly dependent on activation of the defense-related genes. | 2019 | 30545635 |
| 25 | 18 | 0.8837 | Ectopic expression of Tsi1 in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. In many plants, including hot pepper plants, productivity is greatly affected by pathogen attack. We reported previously that tobacco stress-induced gene 1 (Tsi1) may play an important role in regulating stress responsive genes and pathogenesis-related (PR) genes. In this study, we demonstrated that overexpression of Tsi1 gene in transgenic hot pepper plants induced constitutive expression of several PR genes in the absence of stress or pathogen treatment. The transgenic hot pepper plants expressing Tsi1 exhibited resistance to Pepper mild mottle virus (PMMV) and Cucumber mosaic virus (CMV). Furthermore, these transgenic plants showed increased resistance to a bacterial pathogen, Xanthomonas campestris pv. vesicatoria and also an oomycete pathogen, Phytophthora capsici. These results suggested that ectopic expression of Tsi1 in transgenic hot pepper plants enhanced the resistance of the plants to various pathogens, including viruses, bacteria, and oomycete. These results suggest that using transcriptional regulatory protein genes may contribute to developing broad-spectrum resistance in crop plants. | 2002 | 12437295 |
| 9 | 19 | 0.8835 | Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Loss-of-function alleles of plant-specific MLO (Mildew Resistance Locus O) genes confer broad-spectrum powdery mildew resistance in monocot (barley) and dicot (Arabidopsis thaliana, tomato) plants. Recessively inherited powdery mildew resistance in pea (Pisum sativum) er1 plants is, in many aspects, reminiscent of mlo-conditioned powdery mildew immunity, yet the underlying gene has remained elusive to date. We used a polymerase chain reaction (PCR)-based approach to amplify a candidate MLO cDNA from wild-type (Er1) pea. Sequence analysis of the PsMLO1 candidate gene in two natural er1 accessions from Asia and two er1-containing pea cultivars with a New World origin revealed, in each case, detrimental nucleotide polymorphisms in PsMLO1, suggesting that PsMLO1 is Er1. We corroborated this hypothesis by restoration of susceptibility on transient expression of PsMLO1 in the leaves of two resistant er1 accessions. Orthologous legume MLO genes from Medicago truncatula and Lotus japonicus likewise complemented the er1 phenotype. All tested er1 genotypes showed unaltered colonization with the arbuscular mycorrhizal fungus, Glomus intraradices, and with nitrogen-fixing rhizobial bacteria. Our data demonstrate that PsMLO1 is Er1 and that the loss of PsMLO1 function conditions durable broad-spectrum powdery mildew resistance in pea. | 2011 | 21726385 |