DS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
753600.9877The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Vermi-composting is considered to be a feasible method for reducing tetracycline resistance genes (TRGs) in the sludge. Nevertheless, the way different gut passages of earthworm might affect the fates of TRGs and whether this process is affected by tetracycline (TC) concentrations need to be further investigated. In this study, we examined the effects of TC concentrations on changes in TRGs and bacterial communities in gut passages of earthworm were determined by using quantitative PCR and Illumina high-throughput sequencing. TRGs and intI1 were mainly reduced in the hindgut under the TC concentrations ranging from 0 to 25 mg/kg, while they were enriched under higher TC stress exposure. Consequently, we suggest the TC limitation of 25 mg/kg in the domestic sludge (DS) for vermi-composting. Although the predominant genera were TC sensitive under TC stress, many bacterial hosts harboring multiple TRGs (especially those in the hindgut) should be paid further attention to. In the foregut, five genera with abundant tetracycline-resistant bacteria (TRB) were specialized taxa. Among these genera, Unclassified_Solirubrobacterales and Pirellulaceae were probably related to the digestion processes. Other unclassified taxa related to the TRGs were probably derived from the DS. Five genera with abundant TRB were shared in the gut passages, and three specialized genera in the hindgut. These genera could spread TRGs and intI1 to the environment. These results suggest that vermi-composting is a feasible approach for TRG control in the DS containing TC concentration that does not exceed 25 mg/kg. Fates of TRGs and intI1 widely differ in the gut passages, showing inevitable connections with bacterial communities.201931637618
354810.9868From flagellar assembly to DNA replication: CJSe's role in mitigating microbial antibiotic resistance genes. The emergence of Antibiotic Resistance Genes (ARGs) in Campylobacter jejuni (CJ) poses a severe threat to food safety and human health. However, the specific impact of CJ and its variants on ARGs and other related factors remains to be further elucidated. Herein, integrated metagenomic sequencing and co-occurrence network analysis approach were employed to investigate the impact of CJ and CJ incorporated with biogenic selenium (CJSe) on ARGs, flagellar assembly pathways, microbial communities, and DNA replication pathways in chicken manure. Compared to the Control (CON) and CJ groups, the CJSe group exhibited 2.4-fold increase selenium levels (P < 0.01) in chicken manure. Notable differences were also observed between the CJ and CJSe groups, with sequence results showing a CJ > CJSe > CON trend in total ARG copy numbers. Furthermore, the CJSe group showed 31.6 % fewer flagellar assembly genes compared to the CJ group. Additionally, compared to the CJ group, CJSe inhibited pathways such as basal body/hook (e.g., FliH, FliO, FliQ reduced by 25-52 %) and stator (MotB downregulated by 42.3 %), suppressing flagellar assembly. We also found that both CJ and CJSe influenced bacterial DNA replication pathways, with the former increasing ARG-carrying bacteria and the latter, under selenium-induced selective pressure, reducing ARG-carrying bacteria. Moreover, compared to the CJ group, the CJSe group showed a significantly lower 9.72 % copy number of total archaeal DNA replication genes. Furthermore, through intricate co-occurrence network analysis, we discovered the complex interplay between changes in ARGs and bacterial and archaeal DNA replication dynamics within the microbial community. These findings indicate that CJSe mitigates the threat posed by CJ and reduces ARG prevalence, while its dual functionality enables applications in biofortified crop production and soil remediation in selenium-deficient regions, thereby advancing circular economy systems. While the current study demonstrates CJSe's dual functionality under controlled conditions, future work will implement a dedicated ecological risk assessment framework encompassing Se speciation/leaching tests and non-target organism assays to confirm environmental safety under field-relevant scenarios. This approach aligns with sustainable strategies for food security and public health safeguarding.202541108960
798520.9867Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. Climate change is expected to increase the frequency of severe drought events followed by heavy rainfall, which will influence growth and activity of soil microorganisms, through osmotic stress and changes in nutrient concentration. There is evidence of rapid recovery of processes and adaptation of communities in soils regularly experiencing drying/rewetting and lower resistance and resilience in nonadapted soils. A microcosm-based study of ammonia-oxidising archaea (AOA) and bacteria (AOB), employing a grassland soil that rarely experiences drought, was used to test this hypothesis and also whether AOB were more resistant and resilient, through greater tolerance of high ammonia concentrations produced during drought and rewetting. Treated soils were dried, incubated for 3 weeks, rewetted, incubated for a further 3 weeks and compared to untreated soils, maintained at a constant moisture content. Nitrate accumulation and AOA and AOB abundance (abundance of respective amoA genes) and community composition (DGGE analysis of AOA amoA and AOB 16S rRNA genes) were poorly adapted to drying-rewetting. AOA abundance and community composition were less resistant than AOB during drought and less resilient after rewetting, at times when ammonium concentration was higher. Data provide evidence for poor adaptation of microbial communities and processes to drying-rewetting in soils with no history of drought and indicate niche differentiation of AOA and AOB associated with high ammonia concentration.201425070168
677930.9866Intestinal flora metabolites indole-3-butyric acid and disodium succinate promote IncI2 mcr-1-carrying plasmid transfer. INTRODUCTION: Plasmid-driven horizontal transfer of resistance genes in bacterial communities is a major factor in the spread of resistance worldwide. The gut microbiome, teeming with billions of microorganisms, serves as a reservoir for resistance genes. The metabolites of gut microorganisms strongly influence the physiology of their microbial community, but the role of the metabolites in the transfer of resistance genes remains unclear. METHODS: A dual-fluorescence conjugation model was established. We assessed the effects of different concentrations of indole-3-butyric acid (IBA) and disodium succinate (DS) on plasmid transfer using conjugation assays. The growth of bacteria (donors, recipients, and transconjugants), the reactive oxygen species (ROS) levels and membrane permeability were measured under IBA and DS exposure. The plasmid copy number, and transcriptional levels of conjugation-related genes (including the related genes of the regulation of ROS production, the SOS response, cell membrane permeability, pilus generation, ATP synthesis, and the type IV secretion system (T4SS) ) were evaluated by qPCR. RESULTS: In this study, we demonstrated that IBA and DS at low concentrations, which can also be ingested through diet, enhance the interspecies transfer ratio of IncI2 mcr-1-carrying plasmid in Escherichia coli. At 20 mg/L, the transfer ratios in the presence of IBA or DS increased by 2.5- and 2.7-fold compared to that of the control, respectively. Exposure to this concentration of IBA or DS increased the production of reactive oxygen species (ROS), the SOS response, cell membrane permeability, and plasmid copy number. The transcription of genes of the related pathways and of pilus, ATP, and the T4SS was upregulated. DISCUSSION: Our findings revealed that low-dose gut microbiota metabolites-particularly those with dietary origins-promote plasmid-mediated resistance gene dissemination through multifaceted mechanisms involving oxidative stress, SOS activation, and conjugation machinery enhancement. This highlights potential public health risks associated with microbiota metabolites, especially those utilized in food production.202540529306
700840.9864Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes of bacterial communities and ARG profiles in food crops produced with contaminated soils and waters. This study examined the level and type of ARGs and bacterial community composition in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may have lower risks of producing food crops with high abundance of ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of changes were observed. MGE intl1 was consistently more abundant with pharmaceutical exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, there were significant interplays among bacteria community, antibiotic concentrations, and ARG abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ).201931336252
691150.9864Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.202438643583
790460.9864Effect of the coexposure of sulfadiazine, ciprofloxacin and zinc on the fate of antibiotic resistance genes, bacterial communities and functions in three-dimensional biofilm-electrode reactors. Three-dimensional biofilm electrode reactors (3D-BERs) with high treatment efficiency were constructed to treat wastewater containing sulfadiazine (SDZ) and ciprofloxacin (CIP) coexposure with Zinc (Zn). The results showed that coexposure to target antibiotics and Zn increased the absolute and relative abundances of target antibiotic resistance genes (ARGs). Additionally, the target ARG abundances were higher on cathode of 3D-BER compared with ordinary anaerobic reactor while the abundances of total ARGs were decreased in the effluent. Meanwhile, redundancy analysis results revealed that the composition of bacteria carrying ARGs was greatly influenced in the cathode by the accumulation of Zn and antibiotic, which dominated the changes of ARG abundances. Additionally, ARGs with their host bacteria revealed by network analysis were partially deposited on electrode substrates when being removed from wastewater. Thus, 3D-BER exhibits capability of simultaneously eliminating antibiotic and Zn, and greatly reduces the risks of ARGs spread.202031677404
761670.9864Transport of antibiotic resistance genes in the landfill plume: Experiment and numerical modeling. Antibiotic resistance genes (ARGs) in the landfill site would potentially seep into groundwater by leachate infiltration, which poses great threat of ARGs dissemination through groundwater flow. However, the transport characteristics of ARGs in the landfill plume are still unclear, impeding the risk management and remediation of landfill sites. This study carried out a series of column experiments to investigate the transport of various ARGs in the landfill plume and its influencing factors. Besides, a numerical model was also developed to simulate the transport of ARGs in the porous media, which could determine the attachment and decay rates of ARGs in various scenarios. Experimental results showed that high contents of organic matter and corresponding antibiotics in the landfill plume promoted the transport of antibiotic-resistant bacteria (ARB) and reduced the decay rates of intracellular ARGs (iARGs) in the porous media. Inorganic ions such as Cl(-) and SO(4)(2-) inhibited the mobility of ARB, while they had little influence on iARGs decay. Extracellular ARGs (eARGs) in plasmids exhibited higher decay rate in pore water, leading to shorter transport distance in porous media. In the landfill plume, sul1 had higher mobility than aadA and ermB, which was tightly correlated with its lower decay rate in groundwater and the smaller bacterial host. The decrease of particle size greatly inhibited the transport of ARGs in porous media due to the attachment of ARB on sand surface, while the attached ARGs would easily detach from sand surface during background water flushing. This study could guide the accurate risk assessment of ARGs in the landfill plume as well as the optimization of management strategy for landfill site.202540320129
609280.9864Colony-forming analysis of bacterial community succession in deglaciated soils indicates pioneer stress-tolerant opportunists. We investigated the response of bacterial communities inhabiting two deglaciated soils (10 and 100 years post-deglaciation) to two stimuli: (i) physical disruption (mixing), and (ii) disruption plus nutrient addition. PCR/DGGE analysis of 16S rRNA genes extracted from soil during a 168-h incubation period following the stimuli revealed that more bacterial phylotypes were stimulated in the 10-y soil than in the 100-y soil. In addition to 10-y and 100-y soils, two additional soils (46 and 70 y) were further differentiated using colony-forming curve (CFC) analysis during a 168-h incubation period, which revealed that younger soils contained a higher proportion of rapidly colonizing bacteria than successively older soils. "Eco-collections" of CFC isolates that represented colonies that formed "fast" (during the first 24 h) and "slow" (final 36 h) were harvested from 10-y and 100-y soils and differentiated according to response to three stress parameters: (i) tolerance to nutrient limitation, (ii) tolerance to temperature change, and (iii) resistance to antibiotics. The tested parameters distinguished "fast" from "slow" bacteria regardless of the age of the soil from which they were isolated. Specifically, eco-collections of "fast" bacteria exhibited greater nutrient- and temperature-stress tolerance as well as more frequent antibiotic resistance than "slow" bacteria. Further DGGE analysis showed that several eco-collection phylotype bands matched (electrophoretically) those of soil phylotypes enriched by mixing and nutrient stimulus. Overall, the results of this study indicated that the succession of colony-forming bacteria was differentiated by bacterial opportunism and temporal response to stimuli. Furthermore, although stress tolerance strategies are associated with opportunistic bacteria regardless of successional age, it appears that the proportion of opportunistic bacteria distinguishes early vs late succession forefield bacterial populations.200415692851
724390.9864Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields.201830031308
8066100.9864Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH(3) emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO(2), N(2)O, and NH(3) were generally inhibited, while CO(2) fixation and N(2)O and NH(3) reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N(2)O, NH(3), and CO(2). Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.202539642832
8674110.9863Genetic basis for nitrate resistance in Desulfovibrio strains. Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance.201424795702
7537120.9863Swine-manure composts induce the enrichment of antibiotic-resistant bacteria but not antibiotic resistance genes in soils. Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t(1/2)) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.202337536132
7054130.9863Effective removal of antibiotic resistance genes and potential links with archaeal communities during vacuum-type composting and positive-pressure composting. As a major reservoir of antibiotics, animal manure contributes a lot to the augmented environmental pressure of antibiotic resistance genes (ARGs). This might be the first study to explore the effects of different ventilation types on the control of ARGs and to identify the relationships between archaeal communities and ARGs during the composting of dairy manure. Several ARGs were quantified via Real-time qPCR and microbial communities including bacteria and archaea were analyzed by High-throughput sequencing during vacuum-type composting (VTC) and positive-pressure composting (PPC). The total detected ARGs and class I integrase gene (intI1) under VTC were significantly lower than that under PPC during each stage of the composting (p<0.001). The relative abundance of potential human pathogenic bacteria (HPB) which were identified based on sequencing information and correlation analysis decreased by 74.6% and 91.4% at the end of PPC and VTC, respectively. The composition of archaeal communities indicated that methane-producing archaea including Methanobrevibacter, Methanocorpusculum and Methanosphaera were dominant throughout the composting. Redundancy analysis suggested that Methanobrevibacter and Methanocorpusculum were positively correlated with all of the detected ARGs. Network analysis determined that the possible hosts of ARGs were different under VTC and PPC, and provided new sights about potential links between archaea and ARGs. Our results showed better performance of VTC in reducing ARGs and potential HPB and demonstrated that some archaea could also be influential hosts of ARGs, and caution the risks of archaea carrying ARGs.202031892399
8591140.9863Nanoscale zero-valent iron alleviate antibiotic resistance risk during managed aquifer recharge (MAR) by regulating denitrifying bacterial network. The frequent occurrence of antibiotics in reclaimed water is concerning, in the case of managed aquifer recharge (MAR), it inevitably hinders further water purification and accelerates the evolutionary resistance in indigenous bacteria. In this study, we constructed two column reactors and nanoscale zero-valent iron (nZVI) amendment was applied for its effects on water quality variation, microbial community succession, and antibiotic resistance genes (ARGs) dissemination, deciphered the underlying mechanism of resistance risk reduction. Results showed that nZVI was oxidized to iron oxides in the sediment column, and total effluent iron concentration was within permissible limits. nZVI enhanced NO(3)(-)-N removal by 15.5% through enriching denitrifying bacteria and genes, whereas made no effects on oxacillin (OXA) removal. In addition, nZVI exhibited a pivotal impact on ARGs and plasmids decreasing. Network analysis elucidated that the diversity and richness of ARG host declined with nZVI amendment. Denitrifying bacteria play a key role in suppressing horizontal gene transfer (HGT). The underlying mechanisms of inhibited HGT included the downregulated SOS response, the inhibited Type-Ⅳ secretion system and the weakened driving force. This study afforded vital insights into ARG spread control, providing a reference for future applications of nZVI in MAR.202438134694
7057150.9863Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp. The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.201829342372
6924160.9863Diversity of antibiotic resistance genes in soils with four different fertilization treatments. Although the enrichment of resistance genes in soil has been explored in recent years, there are still some key questions to be addressed regarding the variation of ARG composition in soil with different fertilization treatments, such as the core ARGs in soil after different fertilization treatments, the correlation between ARGs and bacterial taxa, etc. For soils after different fertilization treatments, the distribution and combination of ARG in three typical fertilization methods (organic fertilizer alone, chemical fertilizer alone, and conventional fertilizer) and non-fertilized soils were investigated in this study using high-throughput fluorescence quantitative PCR (HT-qPCR) technique. The application of organic fertilizers significantly increased the abundance and quantity of ARGs and their subtypes in the soil compared to the non-fertilized soil, where sul1 was the ARGs specific to organic fertilizers alone and in higher abundance. The conventional fertilizer application also showed significant enrichment of ARGs, which indicated that manure addition often had a more decisive effect on ARGs in soil than chemical fertilizers, and three bacteria, Pseudonocardia, Irregularibacter, and Castllaniella, were the key bacteria affecting ARG changes in soil after fertilization. In addition, nutrient factors and heavy metals also affect the distribution of ARGs in soil and are positively correlated. This paper reveals the possible reasons for the increase in the number of total soil ARGs and their relative abundance under different fertilization treatments, which has positive implications for controlling the transmission of ARGs through the soil-human pathway.202337928655
6910170.9863Fallow practice mitigates antibiotic resistance genes in soil by shifting host bacterial survival strategies. Soil is a key reservoir of antibiotic resistance genes (ARGs), with cropland soils potentially transferring ARGs through the food chain, posing risks to human health. However, the profile of soil ARGs under different crop rotation patterns, particularly fallow practice aimed at enhancing soil fertility, remains inadequately understood. This study characterized the dynamic distribution of ARGs and survival strategies of ARGs host bacteria in two crop rotation patterns (rice-wheat rotation, RW, and rice-fallow rotation, RF), as well as the factors impacting the ARGs profiles. The results demonstrated ARGs abundance was significantly reduced by 45.04 % in the RF system, especially those related to multidrug resistance. In the RF system, the higher content of soil organic matter (SOM) serves as the primary nutrient source, driving a shift in host bacterial survival strategies toward K-strategists. Concurrently, the depletion of SOM restricts the proliferation of host bacteria, ultimately leading to a reduction in the abundance of ARGs. In contrast, fertilizer application in the RW system leads to NO(3)(-)-N accumulation, thereby favoring the proliferation of r-strategist bacteria that carry ARGs and exacerbating ARGs abundance in the soil. This study suggests that fallow could be an important field management practice for mitigating soil ARGs contamination in cropland.202540555016
7239180.9862Full-scale mesophilic biogas plants using manure as C-source: bacterial community shifts along the process cause changes in the abundance of resistance genes and mobile genetic elements. The application of manure, typically harboring bacteria carrying resistance genes (RGs) and mobile genetic elements (MGEs), as co-substrate in biogas plants (BGPs) might be critical when digestates are used as fertilizers. In the present study, the relative abundance of RGs and MGEs in total community (TC-) DNA from manure, fermenters and digestate samples taken at eight full-scale BGPs co-fermenting manure were determined by real-time PCR. In addition, the bacterial community composition of all digestates as well as manure and fermenter material from one BGP (BGP3) was characterized by 454-pyrosequencing of 16S rRNA amplicons from TC-DNA. Compared to respective input manures, relative abundances determined for sul1, sul2, tet(M), tet(Q), intI1, qacEΔ1, korB and traN were significantly lower in fermenters, whereas relative abundances of tet(W) were often higher in fermenters. The bacterial communities in all digestates were dominated by Firmicutes and Bacteroidetes while Proteobacteria were low in abundance and no Enterobacteriaceae were detected. High-throughput sequencing revealed shifts in bacterial communities during treatment for BGP3. Although in comparison to manure, digestate bacteria had lower relative abundances of RGs and MGEs except for tet(W), mesophilic BGPs seem not to be effective for prevention of the spread of RGs and MGEs via digestates into arable soils.201626772986
6954190.9862Temporal effects of repeated application of biogas slurry on soil antibiotic resistance genes and their potential bacterial hosts. Biogas slurry, a liquid end product of animal manure fermentation, is widely used as fertilizer in crop fields. Land application may introduce antibiotics and related resistance genes from livestock production into agricultural soil. Nevertheless, changes in antimicrobial resistance in soil where biogas slurry has been repeatedly applied are not fully understood. In the present study, 13 veterinary antibiotics were analyzed in soils that were repeatedly sprayed with biogas slurry, and simultaneously, temporal changes in antibiotic resistance genes (ARGs) and bacterial community composition were investigated using a real-time quantitative PCR assay and MiSeq sequencing. Long-term repeated application of biogas slurry did not result in excessive accumulation of antibiotic residuals in the soil but increased the abundance of ARGs and facilitated ARG transfer among potential hosts. Although the quantitative PCR assay showed a decreasing trend for the relative abundance of ARGs over time, a relevance network analysis revealed highly complex bacteria-ARG co-occurrence after long-term application, which implied that repeated application might intensify horizontal gene transfer (HGT) of ARGs among different bacterial hosts in soil. The increased relative abundance of the intl1 gene supported the shift in ARG-bacteria co-occurrence. Furthermore, ordination analysis showed that the distributions of antibiotic resistance bacteria (ARB) and ARGs were closely related to application duration than to the influence of antibiotic residuals in the biogas slurry-treated soil environment. Additionally, natural level of ARG abundance in untreated soils indirectly suggested the presence/absence of antibiotics was not a key determinant causing the spread of antimicrobial resistance. This study provides improved insight into the effects of long-term repeated application of biogas slurry on the shift in ARG abundances and bacteria-ARG co-occurrence in soils, highlighting the need to focus on the influence of changed soil environment on the ARG transfer.202031818620