# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8110 | 0 | 0.9927 | Removal of chlortetracycline and antibiotic resistance genes in soil by earthworms (epigeic Eisenia fetida and endogeic Metaphire guillelmi). The impacts of two ecological earthworms on the removal of chlortetracycline (CTC, 0.5 and 15 mg kg(-1)) and antibiotic resistance genes (ARGs) in soil were explored through the soil column experiments. The findings showed that earthworm could significantly accelerate the degradation of CTC and its metabolites (ECTC) in soil (P < 0.05), with epigeic Eisenia fetida promoting degradation rapidly and endogeic Metaphire guillelmi exhibiting a slightly better elimination effect. Earthworms alleviated the abundances of tetR, tetD, tetPB, tetG, tetA, sul1, TnpA, ttgB and intI1 in soil, with the total relative abundances of ARGs decreasing by 35.0-44.2% in earthworm treatments at the 28th day of cultivation. High throughput sequencing results displayed that the structure of soil bacteria community was modified apparently with earthworm added, and some possible CTC degraders, Aeromonas, Flavobacterium and Luteolibacter, were promoted by two kinds of earthworms. Redundancy analysis demonstrated that the reduction of CTC residues, Actinobacteria, Acidobacteria and Gemmatimonadetes owing to earthworm stimulation was responsible for the removal of ARGs and intI1 in soil. Additionally, intI1 declined obviously in earthworm treatments, which could weaken the risk of horizontal transmission of ARGs. Therefore, earthworm could restore the CTC-contaminated soil via enhancing the removal of CTC, its metabolites and ARGs. | 2021 | 33798888 |
| 8054 | 1 | 0.9923 | Effects of nanoscale zero-valent iron on the performance and the fate of antibiotic resistance genes during thermophilic and mesophilic anaerobic digestion of food waste. The effects of nanoscale zero-valent iron (nZVI) on the performance of food waste anaerobic digestion and the fate of antibiotic resistance genes (ARGs) were investigated in thermophilic (TR) and mesophilic (MR) reactors. Results showed that nZVI enhanced biogas production and facilitated ARGs reduction. The maximum CH(4) production was 212.00 ± 4.77 ml/gVS with 5 g/L of nZVI in MR. The highest ARGs removal ratio was 86.64 ± 0.72% obtained in TR at nZVI of 2 g/L. nZVI corrosion products and their contribution on AD performance were analyzed. The abundance of tetracycline genes reduced significantly in nZVI amended digesters. Firmicutes, Chloroflexi, Proteobacteria and Spirochaetes showed significant positive correlations with various ARGs (p < 0.05) in MR and TR. Redundancy analysis indicated that microbial community was the main factor that influenced the fate of ARGs. nZVI changed microbial communities, with decreasing the abundance bacteria belonging to Firmicutes and resulting in the reduction of ARGs. | 2019 | 31505392 |
| 8115 | 2 | 0.9921 | Effects of reductive soil disinfestation on potential pathogens and antibiotic resistance genes in soil. Reductive soil disinfestation (RSD) is commonly employed for soil remediation in greenhouse cultivation. However, its influence on antibiotic resistance genes (ARGs) in soil remains uncertain. This study investigated the dynamic changes in soil communities, potential bacterial pathogens, and ARG profiles under various organic material treatments during RSD, including distillers' grains, potato peel, peanut vine, and peanut vine combined with charcoal. Results revealed that applying diverse organic materials in RSD significantly altered bacterial community composition and diminished the relative abundance of potential bacterial pathogens (P < 0.05). The relative abundance of high-risk ARGs decreased by 10.7%-30.6% after RSD treatments, the main decreased ARG subtypes were AAC(3)_Via, dfrA1, ErmB, lnuB, aadA. Actinobacteria was the primary host of ARGs and was suppressed by RSD. Soil physicochemical properties, such as total nitrogen, soil pH, total carbon, were crucial factors affecting ARG profiles. Our findings demonstrated that RSD treatment inhibited pathogenic bacteria and could be an option for reducing high-risk ARG proliferation in soil. | 2025 | 39306413 |
| 8058 | 3 | 0.9921 | Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. It is currently still difficult to decrease the high contents of antibiotics and their corresponding antibiotic resistance genes (ARGs) in sludge vermicompost. To decrease the environmental risk of vermicompost as a bio-fertilizer, this study investigated the feasibility of biochar addition to decrease the levels of antibiotics and ARGs during vermicomposting of dewatered sludge. To achieve this, 1.25% and 5% of corncob and rice husk biochars, respectively, were added to sludge, which was then vermicomposted by Eisenia fetida for 60 days. The sludge blended with corncob biochar showed increased decomposition and humification of organic matter. Higher biochar concentration promoted both the number and diversity of bacteria, and differed dominant genera. The level of antibiotics significantly decreased as a result of biochar addition (P < 0.05), and tetracycline was completely removed. Relative to the control without addition of biochars, ermF and tetX genes significantly decreased with corncob biochar treatment (P < 0.05). Rice husk biochar (5%) could effectively decrease sul-1 and sul-2 genes in vermicompost (P < 0.05). However, the abundance of the intI-1 gene increased with biochar concentration. This study suggests that biochar addition can lessen the antibiotic and ARG pollution in sludge vermicompost, depending on the type and concentration of biochars. | 2020 | 32388093 |
| 8105 | 4 | 0.9919 | Refluxing mature compost to replace bulking agents: A low-cost solution for suppressing antibiotic resistance genes rebound in sewage sludge composting. Antibiotic resistance genes (ARGs) rebounding during composting cooling phase is a critical bottleneck in composting technology that increased ARGs dissemination and application risk of compost products. In this study, mature compost (MR) was used as a substitute for rice husk (RH) to mitigate the rebound of ARGs and mobile genetic elements (MGEs) during the cooling phase of sewage sludge composting, and the relationship among ARGs, MGEs, bacterial community and environmental factors was investigated to explore the key factor influencing ARGs rebound. The results showed that aadD, blaCTX-M02, ermF, ermB, tetX and vanHB significantly increased 4.76-32.41 times, and the MGEs rebounded by 38.60% in the cooling phase of RH composting. Conversely, MR reduced aadD, tetM, ermF and ermB concentrations by 59.49-98.58%, and reduced the total abundance of ARGs in the compost product by 49.32% compared to RH, which significantly restrained ARGs rebound. MR promoted secondary high temperature inactivation of potential host bacteria, including Ornithinibacter, Rhizobiales and Caldicoprobacter, which could harbor aadE, blaCTX-M02, and blaVEB. It also reduced the abundance of lignocellulose degrading bacteria of Firmicutes, which were potential hosts of aadD, tetX, ermF and vanHB. Moreover, MR reduced moisture and increased oxidation reduction potential (ORP) that promoted aadE, tetQ, tetW abatement. Furthermore, MR reduced 97.36% of total MGEs including Tn916/1545, IS613, Tp614 and intI3, which alleviated ARGs horizontal transfer. Overall finding proposed mature compost reflux as bulking agent was a simple method to suppress ARGs rebound and horizontal transfer, improve ARGs removal and reduce composting plant cost. | 2025 | 39798649 |
| 8053 | 5 | 0.9919 | Increasing the removal efficiency of antibiotic resistance through anaerobic digestion with free nitrous acid pretreatment. Swine manure is a significant reservoir for antibiotic resistance. Anaerobic digestion (AD) is a common biological process used to treat swine manure but still faces low efficiencies in biogas production and antibiotic resistance removal. It is here shown that AD with free nitrous acid pretreatment (FNA) was effective in reducing antibiotic resistance genes (ARGs) in swine manure. FNA pretreatment (nitrite =250 mg N/L, pH=5.0, temperature=20 ± 1 °C) simultaneously reduced antibiotics (Tetracyclines, Quinones and Sulfonamides), inactivated antibiotics resistance bacteria (ARB) by 0.5-3 logs, and decreased ARGs tet, sul and qnr by 1-2, 1-3 and 0.5 logs, respectively. In the following AD step, the total residual ARGs was reduced to ~3.49 × 10(7) gene copies/g dry total solids (TS), ~1 log lower than that in the AD without pretreatment (3.55 ×10(8) gene copies/g dry TS). Microbial community and network analyses revealed that the ARG removal was mainly driven by the direct FNA effect on reducing ARGs and antibiotics, not related to ARB. Besides, the FNA pretreatment doubled biochemical methane production potential from swine manure. Together these results demonstrate that AD with FNA pretreatment is a useful process greatly facilitating swine manure management. | 2022 | 35816802 |
| 8056 | 6 | 0.9918 | Antibiotic resistance gene profiles and evolutions in composting regulated by reactive oxygen species generated via nano ZVI loaded on biochar. In this study, nano zero-valent iron loaded on biochar (BC-nZVI) was analyzed for its effects on antibiotic resistance genes (ARGs) in composting. The results showed that BC-nZVI increased reactive oxygen species (ROS) production, and the peak values of H(2)O(2) and OH were 22.95 % and 55.30 % higher than those of the control group, respectively. After 65 days, the relative abundances of representative ARGs decreased by 56.12 % in the nZVI group (with BC-nZVI added). An analysis of bacterial communities and networks revealed that Actinobacteria, Proteobacteria, and Firmicutes were the main hosts for ARGs, and BC-nZVI weakened the link between ARGs and host bacteria. Distance-based redundancy analysis showed that BC-nZVI altered the microbial community structure through environmental factors and that most ARGs were negatively correlated with ROS, suggesting that ROS significantly affected the relative abundance of ARGs. According to these results, BC-nZVI showed potential for decreasing the relative abundance of ARGs in composting. | 2023 | 37611721 |
| 8112 | 7 | 0.9917 | Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment. The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. | 2016 | 26970692 |
| 8109 | 8 | 0.9917 | The fate of antibiotic resistance genes and their influential factors in swine manure composting with sepiolite as additive. Manures are storages for antibiotic resistance genes (ARGs) entering the environment. This study investigated the effects of adding sepiolite at 0%, 2.5%, 5%, and 7.5% (CK, T1, T2, and T3, respectively) on the fates of ARGs during composting. The relative abundances (RAs) of the total ARGs in CK and T3 decreased by 0.23 and 0.46 logs, respectively, after composting. The RAs of 10/11 ARGs decreased in CK, whereas they all decreased in T3. The reduction in the RA of the total mobile genetic elements (MGEs) was 1.26 times higher in T3 compared with CK after composting. The bacterial community accounted for 47.93% of the variation in the abundances of ARGs. Network analysis indicated that ARGs and MGEs shared potential host bacteria (PHB), and T3 controlled the transmission of ARGs by reducing the abundances of PHB. Composting with 7.5% sepiolite is an effective strategy for reducing the risk of ARGs proliferating. | 2022 | 35063626 |
| 8055 | 9 | 0.9916 | Effects of nano-zerovalent iron on antibiotic resistance genes during the anaerobic digestion of cattle manure. This study investigated the effects of adding nano-zerovalent iron (nZVI) at three concentrations (0, 80, and 160 mg/L) on the methane yield and the fate of antibiotic resistance genes (ARGs) during the anaerobic digestion (AD) of cattle manure. The addition of nZVI effectively enhanced the methane yield, where it significantly increased by 6.56% with 80 mg/L nZVI and by 6.43% with 160 mg/L nZVI. The reductions in the abundances of ARGs and Tn916/1545 were accelerated by adding 160 mg/L nZVI after AD. Microbial community analysis showed that nZVI mainly increased the abundances of bacteria with roles in hydrolysis and acidogenesis, whereas it reduced the abundance of Acinetobacter. Redundancy analysis indicated that the changes in mobile genetic elements made the greatest contribution to the fate of ARGs. The results suggest that 160 mg/L nZVI is a suitable additive for reducing the risks due to ARGs in AD. | 2019 | 31247529 |
| 7746 | 10 | 0.9916 | Phosphate-modified calamus-based biochar filler enhanced constructed wetland mitigating antibiotic resistance risks: insight from metagenomics. In this study, an innovative phosphate-modified calamus-biochar (PBC) filler with high antibiotic adsorption capacity was developed to enhance constructed wetlands (CWs) wastewater treatment. Results showed that the erythromycin (ERY) and sulfamethoxazole (SMX) removal efficiency of PBC-CW was 86.5 % and 84.0 %, which was 2-fold higher than those of the blank group. Metagenomic analysis found that the ERY and SMX would significantly promote the increase in abundance of antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and virulence factor genes (VFGs). Compared to blank group, the abundances of ARGs, MGEs and VFGs were reduced by 67.2 %, 33.3 % and 11.1 % in PBC-CW. Among them, the abundance of sulfonamide and MLS, which were key genes to resistance to SMX and ERY, respectively, were reduced by 71.8 % and 63.1 % in PBC-CW. Moreover, these persistent ARG subtypes, detected simultaneously in all the samples, reduced the total abundance by 44.8 %. In addition, microbial community analysis found that the sum abundance of Arenimonas, Chryseobacterium and Hydrogenophaga, which were suggested as potential antibiotic-resistant bacteria (ARB) via correlation analysis, were significantly decreased from 1.54 % in blank group to 0.23 % in PBC group. Moreover, Chryseobacterium and Hydrogenophaga were positively correlated with VFGs, they could be pathogens with resistance genes. Therefore, PBC-CW could effectively reduce the abundance of ARGs and pathogenic microorganisms, thereby improving water security. | 2025 | 40845656 |
| 8057 | 11 | 0.9916 | SiO(2) nanoparticles can enhance nitrogen retention and reduce copper resistance genes during aerobic composting of swine manure. SiO(2) nanoparticles (SiO(2) NPs) are low-cost, environmentally friendly materials with significant potential to remove pollutants from complex environments. In this study, SiO(2) NPs were used for the first time as an additive in aerobic composting to enhance nitrogen retention and reduce the expression of copper resistance genes. The addition of 0.5 g kg(-1) SiO(2) NPs effectively reduced nitrogen loss by 72.33 % by decreasing denitrification genes (nosZ, nirK, and napA) and increasing nitrogen fixation gene (nifH). The dominant factors affecting nitrification and denitrification genes were Firmicutes and C/N ratio. Additionally, SiO(2) NPs decreased copper resistance genes by 28.96 % - 37.52 % in compost products. Copper resistance genes decreased most in the treatment with 0.5 g kg(-1) SiO(2) NPs. In summary, 0.5 g kg(-1) SiO(2) NPs have the potential to reduce copper resistance genes and enhance nitrogen retention during aerobic composting, which may be used to improve compost quality. | 2024 | 39374833 |
| 8067 | 12 | 0.9916 | Enhanced control of sulfonamide resistance genes and host bacteria during thermophilic aerobic composting of cow manure. Traditional composting has already shown a certain effect in eliminating antibiotic residues, antibiotic-resistant bacteria (ARBs), and antibiotic resistance genes (ARGs). It is worth noting that the rebounding of ARGs and the succession of the bacterial community during conventional aerobic composting are still serious threats. Considering the probable risk, improved and adaptable technologies are urgently needed to control antibiotic resistance efficiently. This study monitored how thermophilic aerobic composting affected the ARGs, as well as the bacterial diversity during the composting of cow manure spiked with sulfamethoxazole (SMX) at different concentrations. Results showed that the degradation of SMX was enhanced during thermophilic aerobic composting (control > SMX25 > SMX50 > SMX100) and was no longer detected after 20 days of composting. High temperature or heat significantly stimulated the rebounding of certain genes. After 35 days, the abundance of detected genes (sul2, sulA, dfrA7, and dfrA1) significantly decreased (p < 0.05) in control and antibiotic-spiked treatments, except for sul1. The addition of three concentrations of SMX elicited a sharp effect on bacterial diversity, and microbial structure in SMX25 led to significant differences with others (p < 0.05). The network analysis revealed more rigorous interactions among ARGs and abundant genera, suggesting that the host of ARGs potentially increased at low concentrations of SMX. Especially, genera g_norank_f__Beggiatoaceae, Ruminiclostridium, Caldicoprobacter, g_norank_o_MBA03, Hydrogenispora, and Ruminiclostridium_1 were major potential hosts for sul1. In conclusion, the rebounding of ARGs could be intermitted partially, and more efficient control of antibiotic resistance could be achieved in the thermophilic composting compared to conventional methods. | 2021 | 33582626 |
| 7743 | 13 | 0.9915 | Integrated meta-omics study on rapid tylosin removal mechanism and dynamics of antibiotic resistance genes during aerobic thermophilic fermentation of tylosin mycelial dregs. For efficient treatment of tylosin mycelial dregs (TMDs), rapid tylosin removal mechanism and dynamics of ARGs during TMDs fermentation were investigated using integrated meta-omics (genomics, metaproteomics and metabolomics) and qPCR approaches. The results showed that over 86% of tylosin was degraded on day 7 regardless of the type of bulking agents. The rapid removal of tylosin was mainly attributed to de-mycarose reaction (GH3) and esterase hydrolysis (C7MYQ7) of Saccharomonospora, and catalase-peroxidase oxidation of Bacillus (A0A077JB13). In addition, the moisture content and mobile genetic elements were vital to control the rebound of ARGs. The removal efficiency of antibiotic resistant bacteria (Streptomyces, Pseudomonas, norank_f__Sphingobacteriaceae, and Paenalcaligenes) and Intl1 (98.8%) in fermentation treatment TC21 with corncob as the bulking agent was significantly higher than that in other three treatments (88.3%). Thus, appropriate bulking agents could constrain the abundance of antibiotic resistant bacteria and Intl1, which is crucial to effectively reduce the resistance. | 2022 | 35307520 |
| 8019 | 14 | 0.9915 | In-feed antibiotic use changed the behaviors of oxytetracycline, sulfamerazine, and ciprofloxacin and related antibiotic resistance genes during swine manure composting. The dynamics of oxytetracycline (OTC), sulfamerazine (SM1), ciprofloxacin (CIP) and related antibiotic resistance genes (ARGs) during swine manure composting were compared between manure collected from swine fed a diet containing these three antibiotics (T(D)) and manure directly spiked with these drugs (T(S)). The composting removal efficiency of OTC (94.9 %) and CIP (87.8 %) in the T(D) treatment was significantly higher than that of OTC (83.8 %, P < 0.01) and CIP (83.9 %, P < 0.05) in the T(S) treatment, while SM1 exhibited no significant difference (P > 0.05) between the two treatments. Composting effectively reduced the majority of ARGs in both T(D) and T(S) types of manure, especially tetracycline resistance genes (TRGs). Compared with the T(S) treatment, the abundance of some ARGs, such as tetG, qepA, sul1 and sul2, increased dramatically up to 309-fold in the T(D) treatment. The microbial composition of the composting system changed significantly during composting due to antibiotic feeding. Redundancy analysis suggested that the abundance of ARGs had a considerable impact on alterations in the physicochemical parameters (C/N, pH and temperature) and bacterial communities (Actinobacteria, Proteobacteria and Firmicutes) during the composting of swine manure. | 2021 | 33254754 |
| 7988 | 15 | 0.9915 | Electrokinetic treatment at the thermophilic stage achieves more effective control of heavy metal resistance in swine manure composting. Excessive heavy metals (HMs) and metal resistance genes (MRGs) in manure pose significant environmental and human health risks. Our previous work proved enhanced control of antibiotic resistance and quality of swine manure composting with electrokinetic technology (EK). As a continuous study, EK treatments were further employed at typical stages of composting. The humification level increased significantly in EK treatments applied at the thermophilic stage (EK1) and throughout the whole composting period (EK2). The immobilization efficiency of heavy metals increased by 3.02 %-20.90 % for EK1, and 3.86 %-20.56 % for EK2, compared with the EK treatment applied at maturity stage (EK3). EK1 showed the highest ability to remove MRGs (29.38 %-87.13 %), while the abundance of potential host bacteria increased in EK2, raising potential transmission risk of MRGs. Furthermore, there was an elevated presence of bacteria associated with membrane transport as a response mechanism to HMs stress in EK1. Considering economic factors and environmental effects, EK treatment during the thermophilic stage was more effective in compost maturation, HMs passivation, as well as control of HMs resistance. This study provides an effective method to address HMs-related contamination with highly efficient maturation in swine manure composting. | 2025 | 40543370 |
| 7992 | 16 | 0.9914 | Impact of bioaccessible pyrene on the abundance of antibiotic resistance genes during Sphingobium sp.- and sophorolipid-enhanced bioremediation in soil. Soils are exposed to various types of chemical contaminants due to anthropogenic activities; however, research on persistent organic pollutants and the existence of antibiotic resistance genes (ARGs) is limited. To our knowledge, the present work for the first time focused on the bioremediation of soil co-contaminated with pyrene and tetracycline/sulfonamide-resistance genes. After 90 days of incubation, the pyrene concentration and the abundance of the four ARGs (tetW, tetM, sulI, and sulII) significantly decreased in different treatment conditions (p<0.05). The greatest pyrene removal (47.8%) and greatest decrease in ARG abundance (from 10(-7) to 10(-8) ARG copies per 16S rRNA copy) were observed in microcosms with a combination of bacterial and sophorolipid treatment. Throughout the incubation, pyrene bioaccessibility constantly declined in the microcosm inoculated with bacteria. However, an increased pyrene bioaccessibility and ARG abundance at day 40 were observed in soil treated with sophorolipid alone. Tenax extraction methods and linear correlation analysis indicated a strong positive relationship between the rapidly desorbing fraction (Fr) of pyrene and ARG abundance. Therefore, we conclude that bioaccessible pyrene rather than total pyrene plays a major role in the maintenance and fluctuation of ARG abundance in the soil. | 2015 | 26164069 |
| 8068 | 17 | 0.9914 | Safety of composts consisting of hydrothermally treated penicillin fermentation residue: Degradation products, antibiotic resistance genes and bacterial diversity. Combining hydrothermal treatment and composting is an effective method to dispose of penicillin fermentation residue (PFR), but the safety and related mechanism are still unclear. In this study, penicillin solution was hydrothermally treated to decipher its degradation mechanism, and then hydrothermally treated PFR (HT-PFR) was mixed with bulking agents at ratios of 2:0 (CK), 2:1.5 (T1), and 2:5 (T2) to determine the absolute abundance of antibiotic resistance genes (ARGs) and the succession of bacterial community. Results showed that penicillin was degraded to several new compounds without the initial lactam structure after hydrothermal treatment. During composting, temperature and pH of the composts increased with the raising of HT-PFR proportion, except the pH at days 2. After 52 days of composting, the absolute copies of ARGs (blaTEM, blaCMY2, and blaSFO) and the relative abundance of bacteria related to pathogens were reduced significantly (P < 0.05). Especially, the total amount of ARGs in the samples of CK and T1 were decreased to equal level (around 5 log(10) copies/g), which indicated that more ARGs were degraded in the latter by the composting process. In the CK samples, Bacteroidetes and Proteobacteria accounted for ~69.8% of the total bacteria, but they were gradually replaced by Firmicutes with increasing proportions of HT-PFR, which can be caused by the high protein content in PFR. Consisting with bacterial community, more gram-positive bacteria were observed in T1 and T2, and most of them are related to manganese oxidation and chitinolysis. As composting proceeded, bacteria having symbiotic or pathogenic relationships with animals and plants were reduced, but those related to ureolysis and cellulolysis were enriched. Above all, hydrothermal treatment is effective in destroying the lactam structure of penicillin, which makes that most ARGs and pathogenic bacteria are eliminated in the subsequent composting. | 2021 | 34492529 |
| 7998 | 18 | 0.9914 | Seasonal variation and removal efficiency of antibiotic resistance genes during wastewater treatment of swine farms. The seasonal variation and removal efficiency of antibiotic resistance genes (ARGs), including tetracycline resistance genes (tetG, tetM, and tetX) and macrolide (ermB, ermF, ereA, and mefA), were investigated in two typical swine wastewater treatment systems in both winter and summer. ARGs, class 1 integron gene, and 16S rRNA gene were quantified using real-time polymerase chain reaction assays. There was a 0.31-3.52 log variation in ARGs in raw swine wastewater, and the abundance of ARGs in winter was higher than in summer. tetM, tetX, ermB, ermF, and mefA were highly abundant. The abundance of ARGs was effectively reduced by most individual treatment process and the removal efficiencies of ARGs were higher in winter than in summer. However, when examining relative abundance, the fate of ARGs was quite variable. Anaerobic digestion reduced the relative abundance of tetX, ermB, ermF, and mefA, while lagoon treatment decreased tetM, ermB, ermF, and mefA. Sequencing batch reactor (SBR) decreased tetM, ermB, and ermF, but biofilters and wetlands did not display consistent removal efficiency on ARGs in two sampling seasons. As far as the entire treatment system is concerned, ermB and mefA were effectively reduced in both winter and summer in both total and relative abundance. The relative abundances of tetG and ereA were significantly correlated with intI1 (p < 0.01), and both tetG and ereA increased after wastewater treatment. This may pose a great threat to public health. | 2017 | 26715413 |
| 7914 | 19 | 0.9914 | Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA. | 2020 | 32050397 |