DRC - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
140500.9439The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC).202235732546
511710.9439Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC.202540445195
140720.9437World Health Organization priority antimicrobial resistance in Enterobacterales, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecium healthcare-associated bloodstream infections in Brazil (ASCENSION): a prospective, multicentre, observational study. BACKGROUND: Carbapenem-resistant Enterobacterales (CRE), Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA), methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) are listed by World Health Organization (WHO) as priority antimicrobial-resistant bacteria. Data on WHO Priority Antimicrobial resistance Phenotype (WPAP) bacteria from low- and middle-income countries are scarce. In this study, we investigated the occurrence of WPAP in healthcare-associated bloodstream infections (BSI) in Brazil, an upper-middle-income country in South America. METHODS: ASCENSION was a prospective, multicentre, observational study conducted in 14 hospitals from four of five Brazilian regions. Enterobacterales, A. baumannii, P. aeruginosa, S. aureus and E. faecium BSIs in hospitalised patients were analysed. The primary outcome was the frequency of WPAP among all bacteria of interest. Secondary outcomes were incidence-density of bacteria isolates in hospitalised patients, WPAP proportions within bacterial species, and 28-day mortality. PCR for carbapenemase genes was performed in carbapenem-resistant Gram-negative bacteria. FINDINGS: Between August 15, 2022, and August 14, 2023, 1350 isolates (1220 BSI episodes) were included. WPAP accounted for 38.8% (n = 524; 95% Confidence Interval 32.0-46.1) of all isolates, with CRE (19.3%) as the most frequent, followed by CRAB (9.6%), MRSA (4.9%), VRE (2.7%), and CRPA (2.4%). Incidence-density of all and WPAP isolates were 1.91 and 0.77/1000 patients-day, respectively. Carbapenem-resistant Klebsiella pneumoniae (CRKP) was the most common CRE, corresponding to 14.2% of all BSIs. A. baumannii isolates presented the highest proportion of WPAP (87.8%). Mortality rates were higher in patients with BSIs by WPAP than non-WPAP isolates. KPC (64.4%) was the predominant carbapenemase in CRE, followed by NDM (28.4%) and KPC + NDM co-production (7.1%). OXA-23 was the most frequent in CRAB. INTERPRETATION: A high frequency of WPAP bacteria, particularly CRKP and CRAB, were found in healthcare-associated BSIs in Brazil, posing them as a major public health problem in this country. FUNDING: National Council for Scientific and Technological Development, Brazil.202539957800
140130.9429Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance.202439530854
226040.9422Current status of resistance to antibiotics in the Democratic Republic of the Congo: A review. A review of literature was conducted to assess the prevalence and mechanisms of antibiotic resistance to date, mainly to β-lactam antibiotics, cephalosporins, carbapenems, colistin, and tigecycline in the Democratic Republic of the Congo (DRC). English and French publications were listed and analysed using PubMed/Medline, Google Scholar, and African Journals database between 1 January 1990 and 31 December 2019. For the 30 published articles found: (1) bacterial resistance to antibiotics concerned both Gram-negative and Gram-positive bacteria; (2) multidrug resistance prevalence was the same in half of Streptococcus pneumoniae isolates; (3) a worrying prevalence of methicillin-resistant Staphylococcus aureus (MRSA) was noted, which is associated with co-resistance to several other antibiotics; and (4) resistance to third-generation cephalosporins was very high in Enterobacteriaceae, mainly because of bla(CTX-M-1) group and bla(SHV) genes. Data on carbapenem and colistin resistance were not available in DRC until recently. Further work is required to set up a surveillance system for antibiotic resistance in DRC.202032688007
142450.9420Source-tracking ESBL-producing bacteria at the maternity ward of Mulago hospital, Uganda. INTRODUCTION: Escherichia coli, Klebsiella pneumoniae and Enterobacter (EKE) are the leading cause of mortality and morbidity in neonates in Africa. The management of EKE infections remains challenging given the global emergence of carbapenem resistance in Gram-negative bacteria. This study aimed to investigate the source of EKE organisms for neonates in the maternity environment of a national referral hospital in Uganda, by examining the phenotypic and molecular characteristics of isolates from mothers, neonates, and maternity ward. METHODS: From August 2015 to August 2016, we conducted a cross-sectional study of pregnant women admitted for elective surgical delivery at Mulago hospital in Kampala, Uganda; we sampled (nose, armpit, groin) 137 pregnant women and their newborns (n = 137), as well as health workers (n = 67) and inanimate objects (n = 70 -beds, ventilator tubes, sinks, toilets, door-handles) in the maternity ward. Samples (swabs) were cultured for growth of EKE bacteria and isolates phenotypically/molecularly investigated for antibiotic sensitivity, as well as β-lactamase and carbapenemase activity. To infer relationships among the EKE isolates, spatial cluster analysis of phenotypic and genotypic susceptibility characteristics was done using the Ridom server. RESULTS: Gram-negative bacteria were isolated from 21 mothers (15%), 15 neonates (11%), 2 health workers (3%), and 13 inanimate objects (19%); a total of 131 Gram-negative isolates were identified of which 104 were EKE bacteria i.e., 23 (22%) E. coli, 50 (48%) K. pneumoniae, and 31 (30%) Enterobacter. Carbapenems were the most effective antibiotics as 89% (93/104) of the isolates were susceptible to meropenem; however, multidrug resistance was prevalent i.e., 61% (63/104). Furthermore, carbapenemase production and carbapenemase gene prevalence were low; 10% (10/104) and 6% (6/104), respectively. Extended spectrum β-lactamase (ESBL) production occurred in 37 (36%) isolates though 61 (59%) carried ESBL-encoding genes, mainly blaCTX-M (93%, 57/61) implying that blaCTX-M is the ideal gene for tracking ESBL-mediated resistance at Mulago. Additionally, spatial cluster analysis revealed isolates from mothers, new-borns, health workers, and environment with similar phenotypic/genotypic characteristics, suggesting transmission of multidrug-resistant EKE to new-borns. CONCLUSION: Our study shows evidence of transmission of drug resistant EKE bacteria in the maternity ward of Mulago hospital, and the dynamics in the ward are more likely to be responsible for transmission but not individual mother characteristics. The high prevalence of drug resistance genes highlights the need for more effective infection prevention/control measures and antimicrobial stewardship programs to reduce spread of drug-resistant bacteria in the hospital, and improve patient outcomes.202337289837
93960.9416Colonization of residents and staff of a long-term-care facility and adjacent acute-care hospital geriatric unit by multiresistant bacteria. Long-term-care facilities (LTCFs) are reservoirs of resistant bacteria. We undertook a point-prevalence survey and risk factor analysis for specific resistance types among residents and staff of a Bolzano LTCF and among geriatric unit patients in the associated acute-care hospital. Urine samples and rectal, inguinal, oropharyngeal and nasal swabs were plated on chromogenic agar; isolates were typed by pulsed-field gel electrophoresis; resistance genes and links to insertion sequences were sought by PCR; plasmids were analysed by PCR, restriction fragment length polymorphism and incompatibility grouping. Demographic data were collected. Of the LTCF residents, 74.8% were colonized with ≥1 resistant organism, 64% with extended-spectrum β-lactamase (ESBL) producers, 38.7% with methicillin-resistant Staphylococcus aureus (MRSA), 6.3% with metallo-β-lactamase (MBL) producers, and 2.7% with vancomycin-resistant enterococci. Corresponding rates for LTCF staff were 27.5%, 14.5%, 14.5%, 1.5% and 0%, respectively. Colonization frequencies for geriatric unit patients were lower than for those in the LTCF. Both clonal spread and plasmid transfer were implicated in the dissemination of MBL producers that harboured IncN plasmids bearing bla(VIM-1), qnrS, and bla(SHV-12). Most (44/45) ESBL-producing Escherichia coli isolates had bla(CTX-M) genes of group 1; a few had bla(CTX-M) genes of group 9 or bla(SHV-5); those with bla(CTX-M-15) or bla(SHV-5) were clonal. Risk factors for colonization of LTCF residents with resistant bacteria included age ≥86 years, antibiotic treatment in the previous 3 months, indwelling devices, chronic obstructive pulmonary disease, physical disability, and the particular LTCF unit; those for geriatric unit patients were age and dementia. In conclusion, ESBL-producing and MBL-producing Enterobacteriaceae and MRSA were prevalent among the LTCF residents and staff, but less so in the hospital geriatric unit. Education of LTCF employees and better infection control are proposed to minimize the spread of resistant bacteria in the facility.201019686277
125870.9415Occurrence of antimicrobial resistance and antimicrobial resistance genes in methicillin-resistant Staphylococcus aureus isolated from healthy rabbits. BACKGROUND AND AIM: Methicillin-resistant globally, Staphylococcus aureus (MRSA) is a major cause of disease in both humans and animals. Several studies have documented the presence of MRSA in healthy and infected animals. However, there is less information on MRSA occurrence in exotic pets, especially healthy rabbits. This study aimed to look into the antimicrobial resistance profile, hidden antimicrobial-resistant genes in isolated bacteria, and to estimate prevalence of MRSA in healthy rabbits. MATERIALS AND METHODS: Two-hundreds and eighteen samples, including 42 eyes, 44 ears, 44 oral, 44 ventral thoracic, and 44 perineal swabs, were taken from 44 healthy rabbits that visited the Prasu-Arthorn Animal Hospital, in Nakornpathom, Thailand, from January 2015 to March 2016. The traditional methods of Gram stain, mannitol fermentation, hemolysis on blood agar, catalase test, and coagulase production were used to confirm the presence of Staphylococcus aureus in all specimens. All bacterial isolates were determined by antimicrobial susceptibility test by the disk diffusion method. The polymerase chain reaction was used to identify the antimicrobial-resistant genes (blaZ, mecA, aacA-aphD, msrA, tetK, gyrA, grlA, and dfrG) in isolates of MRSA with a cefoxitin-resistant phenotype. RESULTS: From 218 specimens, 185 S. aureus were isolated, with the majority of these being found in the oral cavity (29.73%) and ventral thoracic area (22.7%), respectively. Forty-seven (25.41%) MRSAs were found in S. aureus isolates, with the majority of these being found in the perineum (16, 34.04%) and ventral thoracic area (13, 27.66%) specimens. Among MRSAs, 29 (61.7%) isolates were multidrug-resistant (MDR) strains. Most of MRSA isolates were resistant to penicillin (100%), followed by ceftriaxone (44.68%) and azithromycin (44.68%). In addition, these bacteria contained the most drug-resistance genes, blaZ (47.83%), followed by gyrA (36.17%) and tetK (23.4%). CONCLUSION: This study revealed that MRSA could be found even in healthy rabbits. Some MRSAs strains were MDR-MRSA, which means that when an infection occurs, the available antibiotics were not effective in treating it. To prevent the spread of MDR-MRSA from pets to owners, it may be helpful to educate owners about effective prevention and hygiene measures.202236590129
148080.9413Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis.202438456690
82890.9412Screening for Resistant Bacteria, Antimicrobial Resistance Genes, Sexually Transmitted Infections and Schistosoma spp. in Tissue Samples from Predominantly Vaginally Delivered Placentae in Ivory Coast and Ghana. Medical complications during pregnancy have been frequently reported from Western Africa with a particular importance of infectious complications. Placental tissue can either become the target of infectious agents itself, such as, e.g., in the case of urogenital schistosomiasis, or be subjected to contamination with colonizing or infection-associated microorganisms of the cervix or the vagina during vaginal delivery. In the retrospective cross-sectional assessment presented here, the quantitative dimension of infection or colonization with selected resistant or pathogenic bacteria and parasites was regionally assessed. To do so, 274 collected placental tissues from Ivory Coastal and Ghanaian women were subjected to selective growth of resistant bacteria, as well as to molecular screening for beta-lactamase genes, Schistosoma spp. and selected bacterial causative agents of sexually transmitted infections (STI). Panton-Valentine-negative methicillin-resistant Staphylococcus aureus (MRSA) was grown from 1.8% of the tissue samples, comprising the spa types t008 and t688, as well as the newly detected ones, t12101 (n = 2) and t12102. While the culture-based recovery of resistant Enterobacterales and nonfermentative rod-shaped Gram-negative bacteria failed, molecular assessments confirmed beta-lactamase genes in 31.0% of the samples with multiple detections of up to four resistance genes per sample and bla(CTX-M), bla(IMP), bla(GES), bla(VIM), bla(OXA-58)-like, bla(NDM), bla(OXA-23)-like, bla(OXA-48)-like and bla(KPC) occurring in descending order of frequency. The beta-lactamase genes bla(OXA-40/24)-like, bla(NMC_A/IMI), bla(BIC), bla(SME), bla(GIM) and bla(DIM) were not detected. DNA of the urogenital schistosomiasis-associated Schistosoma haematobium complex was recorded in 18.6% of the samples, but only a single positive signal for S. mansoni with a high cycle-threshold value in real-time PCR was found. Of note, higher rates of schistosomiasis were observed in Ghana (54.9% vs. 10.3% in Ivory Coast) and Cesarean section was much more frequent in schistosomiasis patients (61.9% vs. 14.8% in women without Schistosoma spp. DNA in the placenta). Nucleic acid sequences of nonlymphogranuloma-venereum-associated Chlamydia trachomatis and of Neisseria gonorrhoeae were recorded in 1.1% and 1.9% of the samples, respectively, while molecular attempts to diagnose Treponema pallidum and Mycoplasma genitalium did not lead to positive results. Molecular detection of Schistosoma spp. or STI-associated pathogens was only exceptionally associated with multiple resistance gene detections in the same sample, suggesting epidemiological distinctness. In conclusion, the assessment confirmed considerable prevalence of urogenital schistosomiasis and resistant bacterial colonization, as well as a regionally expected abundance of STI-associated pathogens. Continuous screening offers seem advisable to minimize the risks for the pregnant women and their newborns.202337623959
1413100.9412Occurrence of Carbapenemases, Extended-Spectrum Beta-Lactamases and AmpCs among Beta-Lactamase-Producing Gram-Negative Bacteria from Clinical Sources in Accra, Ghana. Beta-lactamase (β-lactamase)-producing Gram-negative bacteria (GNB) are of public health concern due to their resistance to routine antimicrobials. We investigated the antimicrobial resistance and occurrence of carbapenemases, extended-spectrum β-lactamases (ESBLs) and AmpCs among GNB from clinical sources. GNB were identified using matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDITOF-MS). Antimicrobial susceptibility testing was performed via Kirby-Bauer disk diffusion and a microscan autoSCAN system. β-lactamase genes were determined via multiplex polymerase chain reactions. Of the 181 archived GNB analyzed, Escherichia coli and Klebsiella pneumoniae constituted 46% (n = 83) and 17% (n = 30), respectively. Resistance to ampicillin (51%), third-generation cephalosporins (21%), and ertapenem (21%) was observed among the isolates, with 44% being multi-drug resistant (MDR). β-lactamase genes such as AmpCs ((bla(FOX-M) (64%) and bla(DHA-M) and bla(EDC-M) (27%)), ESBLs ((bla(CTX-M) (81%), other β-lactamase genes bla(TEM) (73%) and bla(SHV) (27%)) and carbapenemase ((bla(OXA-)(48) (60%) and bla(NDM) and bla(KPC) (40%)) were also detected. One K. pneumoniae co-harbored AmpC (bla(FOX-M) and bla(EBC-M)) and carbapenemase (bla(KPC) and bla(OXA-)(48)) genes. bla(OXA-)(48) gene was detected in one carbapenem-resistant Acinetobacter baumannii. Overall, isolates were resistant to a wide range of antimicrobials including last-line treatment options. This underpins the need for continuous surveillance for effective management of infections caused by these pathogens in our settings.202337370334
1410110.9411A high prevalence of multi-drug resistant Gram-negative bacilli in a Nepali tertiary care hospital and associated widespread distribution of Extended-Spectrum Beta-Lactamase (ESBL) and carbapenemase-encoding genes. BACKGROUND: Multi-drug resistance (MDR) and extensive-drug resistance (XDR) associated with extended-spectrum beta-lactamases (ESBLs) and carbapenemases in Gram-negative bacteria are global public health concerns. Data on circulating antimicrobial resistance (AMR) genes in Gram-negative bacteria and their correlation with MDR and ESBL phenotypes from Nepal is scarce. METHODS: A retrospective study was performed investigating the distribution of ESBL and carbapenemase genes and their potential association with ESBL and MDR phenotypes in E. coli, Klebsiella spp., Enterobacter spp. and Acinetobacter spp. isolated in a major tertiary hospital in Kathmandu, Nepal, between 2012 and 2018. RESULTS: During this period, the hospital isolated 719 E. coli, 532 Klebsiella spp., 520 Enterobacter spp. and 382 Acinetobacter spp.; 1955/2153 (90.1%) of isolates were MDR and half (1080/2153) were ESBL producers. Upon PCR amplification, bla(TEM) (1281/1771; 72%), bla(CTXM-1) (930/1771; 53%) and bla(CTXM-8) (419/1771; 24%) were the most prevalent ESBL genes in the enteric bacilli. Bla(OXA) and bla(OXA-51) were the most common bla(OXA) family genes in the enteric bacilli (918/1771; 25%) and Acinetobacter spp. (218/382; 57%) respectively. Sixteen percent (342/2153) of all isolates and 20% (357/1771) of enteric bacilli harboured bla(NDM-1) and bla(KPC) carbapenemase genes respectively. Of enteric bacilli, Enterobacter spp. was the most frequently positive for bla(KPC) gene (201/337; 60%). The presence of each bla(CTX-M) and bla(OXA) were significantly associated with non-susceptibility to third generation cephalosporins (OR 14.7, p < 0.001 and OR 2.3, p < 0.05, respectively).The presence of each bla(TEM), bla(CTXM) and bla(OXA) family genes were significantly associated with ESBL positivity (OR 2.96, p < 0.001; OR 14.2, p < 0.001 and OR 1.3, p < 0.05 respectively) and being MDR (OR 1.96, p < 0.001; OR 5.9, p < 0.001 and OR 2.3, p < 0.001 respectively). CONCLUSIONS: This study documents an alarming level of AMR with high prevalence of MDR ESBL- and carbapenemase-positive ESKAPE microorganisms in our clinical setting. These data suggest a scenario where the clinical management of infected patients is increasingly difficult and requires the use of last-resort antimicrobials, which in turn is likely to intensify the magnitude of global AMR crisis.202033087115
1720120.9410Elucidation of molecular mechanism for colistin resistance among Gram-negative isolates from tertiary care hospitals. Antimicrobial resistance is a growing concern of global public health. The emergence of colistin-resistance among carbapenem-resistant (CPR) Gram-negative bacteria causing fear of pan-resistance, treatment failure, and high mortality across the globe. AIM: To determine the genotypic colistin-resistance mechanisms among colistin-resistant (CR)Gram-negative clinical isolates along with genomic insight into hypermucoviscous(hv)-CR-Klebsiella pneumoniae. METHODS: Phenotypic colistin-resistance via broth-microdilution method. PCR-based detection of plasmid-mediated colistin resistance genes(mcr-1,2,3). Characterization of selected hvCR-K. pneumoniae via Whole-genome sequencing. RESULTS: Phenotypic colistin-resistance was 28% among CPR-Gram-negative isolates of which 90% of CR-isolates displayed MDR profile with overall low plasmid-mediated colistin resistance (mcr-2 = 9.4%;mcr-3 = 6%). Although K. pneumoniae isolates showed the highest phenotypic colistin-resistance (51%) however, relatively low plasmid-mediated gene-carriage (mcr-2 = 11.5%;mcr-3 = 3.4%) pointed toward other mechanisms of colistin-resistance. mcr-negative CR-K. pneumoniae displaying hv-phenotype were subjected to WGS. In-silico analysis detected 7-novel mutations in lipid-A modification genes includes eptA(I38V; V50L; A135P), opgE(M53L; T486A; G236S), and arnD(S164P) in addition to several non-synonymous mutations in lipid-A modification genes conferring resistance to colistin. Insertion of 6.6-kb region harboring putative-PEA-encoding gene(yjgX) was detected for the first time in K. pneumoniae (hvCRKP4771). In-silico analysis further confirmed the acquisition of not only MDR determinants but several hypervirulent-determinants displaying a convergent phenotype. CONCLUSION: overall high prevalence of phenotypic colistin resistance but low mcr-gene carriage suggested complex chromosomal mediated resistance mechanism especially in K. pneumoniae isolates. The presence of novel mutations in lipid-A modification genes and the acquisition of putative-PEA-encoding gene by hvCR-K. pneumoniae points toward the role of chromosomal determinants conferring resistance to colistin in the absence of mcr-genes.202235058128
1159130.9409Survey on Carbapenem-Resistant Bacteria in Pigs at Slaughter and Comparison with Human Clinical Isolates in Italy. This study is focused on resistance to carbapenems and third-generation cephalosporins in Gram-negative microorganisms isolated from swine, whose transmission to humans via pork consumption cannot be excluded. In addition, the common carriage of carbapenem-resistant (CR) bacteria between humans and pigs was evaluated. Sampling involved 300 faecal samples collected from slaughtered pigs and 300 urine samples collected from 187 hospitalised patients in Parma Province (Italy). In swine, MIC testing confirmed resistance to meropenem for isolates of Pseudomonas aeruginosa and Pseudomonas oryzihabitans and resistance to cefotaxime and ceftazidime for Escherichia coli, Ewingella americana, Enterobacter agglomerans, and Citrobacter freundii. For Acinetobacter lwoffii, Aeromonas hydrofila, Burkolderia cepacia, Corynebacterium indologenes, Flavobacterium odoratum, and Stenotrophomonas maltophilia, no EUCAST MIC breakpoints were available. However, ESBL genes (bla(CTXM-1), bla(CTX-M-2), bla(TEM-1), and bla(SHV)) and AmpC genes (bla(CIT), bla(ACC), and bla(EBC)) were found in 38 and 16 isolates, respectively. P. aeruginosa was the only CR species shared by pigs (4/300 pigs; 1.3%) and patients (2/187; 1.1%). P. aeruginosa ST938 carrying bla(PAO) and bla(OXA396) was detected in one pig as well as an 83-year-old patient. Although no direct epidemiological link was demonstrable, SNP calling and cgMLST showed a genetic relationship of the isolates (86 SNPs and 661 allele difference), thus suggesting possible circulation of CR bacteria between swine and humans.202235740183
2109140.9409Screening of nursing home residents for colonization with carbapenem-resistant Enterobacteriaceae admitted to acute care hospitals: Incidence and risk factors. BACKGROUND: There are increasing reports of multidrug-resistant gram-negative bacilli in nursing homes and acute care hospitals. METHODS: We performed a point prevalence survey to detect fecal carriage of gram-negative bacteria carrying carbapenem resistance genes or which were otherwise resistant to carbapenem antibiotics among 500 consecutive admissions from local nursing homes to 2 hospitals in Providence, Rhode Island. We performed a case-control study to identify risk factors associated with carriage of carbapenem-resistant Enterobacteriaceae (CRE). RESULTS: There were 404 patients with 500 hospital admissions during which they had rectal swab samples cultured. Fecal carriage of any carbapenem-resistant or carbapenemase- producing gram-negative bacteria was found in 23 (4.6%) of the 500 hospital admissions, including 7 CRE (1.4%), 2 (0.4%) of which were Klebsiella pneumoniae carbapenemase (ie, blaKPC) producing (CPE) Citrobacter freundii, 1 of which was carbapenem susceptible by standard testing methods. Use of a gastrostomy tube was associated with CRE carriage (P = .04). We demonstrated fecal carriage of carbapenem-resistant or carbapenemase-producing gram-negative bacteria in 4.6% of nursing home patients admitted to 2 acute care hospitals, but only 0.4% of such admissions were patients with fecal carriage of CPE. Use of gastrostomy tubes was associated with fecal carriage of gram-negative bacteria with detectable carbapenem resistance. CONCLUSION: CRE fecal carriage is uncommon in our hospital admissions from nursing homes.201626631643
2495150.9408Transmission of Mobile Colistin Resistance (mcr-1) by Duodenoscope. BACKGROUND: Clinicians increasingly utilize polymyxins for treatment of serious infections caused by multidrug-resistant gram-negative bacteria. Emergence of plasmid-mediated, mobile colistin resistance genes creates potential for rapid spread of polymyxin resistance. We investigated the possible transmission of Klebsiella pneumoniae carrying mcr-1 via duodenoscope and report the first documented healthcare transmission of mcr-1-harboring bacteria in the United States. METHODS: A field investigation, including screening targeted high-risk groups, evaluation of the duodenoscope, and genome sequencing of isolated organisms, was conducted. The study site included a tertiary care academic health center in Boston, Massachusetts, and extended to community locations in New England. RESULTS: Two patients had highly related mcr-1-positive K. pneumoniae isolated from clinical cultures; a duodenoscope was the only identified epidemiological link. Screening tests for mcr-1 in 20 healthcare contacts and 2 household contacts were negative. Klebsiella pneumoniae and Escherichia coli were recovered from the duodenoscope; neither carried mcr-1. Evaluation of the duodenoscope identified intrusion of biomaterial under the sealed distal cap; devices were recalled to repair this defect. CONCLUSIONS: We identified transmission of mcr-1 in a United States acute care hospital that likely occurred via duodenoscope despite no identifiable breaches in reprocessing or infection control practices. Duodenoscope design flaws leading to transmission of multidrug-resistant organsisms persist despite recent initiatives to improve device safety. Reliable detection of colistin resistance is currently challenging for clinical laboratories, particularly given the absence of a US Food and Drug Administration-cleared test; improved clinical laboratory capacity for colistin susceptibility testing is needed to prevent the spread of mcr-carrying bacteria in healthcare settings.201930204838
1741160.9407Detection of SGI1/PGI1 Elements and Resistance to Extended-Spectrum Cephalosporins in Proteae of Animal Origin in France. Proteae, and especially Proteus mirabilis, are often the cause of urinary tract infections (UTIs) in humans. They were reported as carriers of extended-spectrum β-lactamase (ESBL) genes, and recently of carbapenemases, mostly carried by the Salmonella genomic island 1 (SGI1) and Proteus genomic island 1 (PGI1). Proteae have also lately become an increasing cause of UTIs in companion animals, but antimicrobial susceptibility data in animals are still scarce. Here, we report the characterization of 468 clinical epidemiologically unrelated Proteae strains from animals collected between 2013 and 2015 in France. Seventeen P. mirabilis strains (3.6%) were positive for SGI1/PGI1 and 18 Proteae (3.8%) were resistant to extended-spectrum cephalosporins (ESC). The 28 isolates carrying SGI1/PGI1 and/or ESC-resistance genes were isolated from cats, dogs, and horses. ESBL genes were detected in six genetically related P. mirabilis harboring bla(V EB-6) on the SGI1-V variant, but also independently of the SGI1-V, in 3 P. mirabilis strains (bla(VEB-6) and bla(CTX-M-15)) and 1 Providencia rettgeri strain (bla(CTX-M-1)). The AmpC resistance genes bla(CMY -2) and/or bla(DHA-16) were detected in 9 P. mirabilis strains. One strain presented both an ESBL and AmpC gene. Interestingly, the majority of the ESBL/AmpC resistance genes were located on the chromosome. In conclusion, multiple ESC-resistance genetic determinants are circulating in French animals, even though SGI1-V-carrying P. mirabilis seems to be mainly responsible for the spread of the ESBL gene bla(VEB-6) in dogs and horses. These results are of public health relevance and show that companion animals in close contact with humans should be regarded as a potential reservoir of ESC-resistant bacteria as well as a reservoir of ESC-resistance genes that could further disseminate to human pathogens.201728154560
841170.9407blaOXA-48 carrying clonal colistin resistant-carbapenem resistant Klebsiella pneumoniae in neonate intensive care unit, India. Bacteria resistant to colistin, a last resort antibiotic reflect the pre-antibiotic era. In this study, colistin resistance carbapenem-resistant K. pneumoniae (COL(R)- CRKP) strains from neonate's intensive care unit were evaluated. Molecular analysis showed that all the four colistin resistant K. pneumoniae isolates were clonally related with strong biofilm formation ability and harbored bla(SHV-34) and bla(OXA-48) genes. Our result suggested the need of proper surveillance and adequate infection control to limiting the spread of these organisms.201627622347
838180.9407KPC and NDM-1 genes in related Enterobacteriaceae strains and plasmids from Pakistan and the United States. To characterize the genomic context of New Delhi metallo-β-lactamase-1 (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC), we sequenced 78 Enterobacteriaceae isolates from Pakistan and the United States encoding KPC, NDM-1, or no carbapenemase. High similarities of the results indicate rapid spread of carbapenem resistance between strains, including globally disseminated pathogens.201525988236
1442190.9406Superbugs in the supermarket? Assessing the rate of contamination with third-generation cephalosporin-resistant gram-negative bacteria in fresh Australian pork and chicken. BACKGROUND: Antibiotic misuse in food-producing animals is potentially associated with human acquisition of multidrug-resistant (MDR; resistance to ≥ 3 drug classes) bacteria via the food chain. We aimed to determine if MDR Gram-negative (GNB) organisms are present in fresh Australian chicken and pork products. METHODS: We sampled raw, chicken drumsticks (CD) and pork ribs (PR) from 30 local supermarkets/butchers across Melbourne on two occasions. Specimens were sub-cultured onto selective media for third-generation cephalosporin-resistant (3GCR) GNBs, with species identification and antibiotic susceptibility determined for all unique colonies. Isolates were assessed by PCR for SHV, TEM, CTX-M, AmpC and carbapenemase genes (encoding IMP, VIM, KPC, OXA-48, NDM). RESULTS: From 120 specimens (60 CD, 60 PR), 112 (93%) grew a 3GCR-GNB (n = 164 isolates; 86 CD, 78 PR); common species were Acinetobacter baumannii (37%), Pseudomonas aeruginosa (13%) and Serratia fonticola (12%), but only one E. coli isolate. Fifty-nine (36%) had evidence of 3GCR alone, 93/163 (57%) displayed 3GCR plus resistance to one additional antibiotic class, and 9/163 (6%) were 3GCR plus resistance to two additional classes. Of 158 DNA specimens, all were negative for ESBL/carbapenemase genes, except 23 (15%) which were positive for AmpC, with 22/23 considered to be inherently chromosomal, but the sole E. coli isolate contained a plasmid-mediated CMY-2 AmpC. CONCLUSIONS: We found low rates of MDR-GNBs in Australian chicken and pork meat, but potential 3GCR-GNBs are common (93% specimens). Testing programs that only assess for E. coli are likely to severely underestimate the diversity of 3GCR organisms in fresh meat.201829484175