DRAWN - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
664900.9907 The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action.200232687288
745010.9905Impact of corrosion inhibitors on antibiotic resistance, metal resistance, and microbial communities in drinking water. Corrosion inhibitors, including zinc orthophosphate, sodium orthophosphate, and sodium silicate, are commonly used to prevent the corrosion of drinking water infrastructure. Metals such as zinc are known stressors for antibiotic resistance selection, and phosphates can increase microbial growth in drinking water distribution systems (DWDS). Yet, the influence of corrosion inhibitor type on antimicrobial resistance in DWDS is unknown. Here, we show that sodium silicates can decrease antibiotic resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), while zinc orthophosphate increases ARB and ARGs in source water microbial communities. Based on controlled bench-scale studies, zinc orthophosphate addition significantly increased the abundance of ARB resistant to ciprofloxacin, sulfonamides, trimethoprim, and vancomycin, as well as the genes sul1, qacEΔ1, an indication of resistance to quaternary ammonium compounds, and the integron-integrase gene intI1. In contrast, sodium silicate dosage at 10 mg/L resulted in decreased bacterial growth and antibiotic resistance selection compared to the other corrosion inhibitor additions. Source water collected from the drinking water treatment plant intake pipe resulted in less significant changes in ARB and ARG abundance due to corrosion inhibitor addition compared to source water collected from the pier at the recreational beach. In tandem with the antibiotic resistance shifts, significant microbial community composition changes also occurred. Overall, the corrosion inhibitor sodium silicate resulted in the least selection for antibiotic resistance, which suggests it is the preferred corrosion inhibitor option for minimizing antibiotic resistance proliferation in DWDS. However, the selection of an appropriate corrosion inhibitor must also be appropriate for the water chemistry of the system (e.g., pH, alkalinity) to minimize metal leaching first and foremost and to adhere to the lead and copper rule. IMPORTANCE Antibiotic resistance is a growing public health concern across the globe and was recently labeled the silent pandemic. Scientists aim to identify the source of antibiotic resistance and control points to mitigate the spread of antibiotic resistance. Drinking water is a direct exposure route to humans and contains antibiotic-resistant bacteria and associated resistance genes. Corrosion inhibitors are added to prevent metallic pipes in distribution systems from corroding, and the type of corrosion inhibitor selected could also have implications on antibiotic resistance. Indeed, we found that sodium silicate can minimize selection of antibiotic resistance while phosphate-based corrosion inhibitors can promote antibiotic resistance. These findings indicate that sodium silicate is a preferred corrosion inhibitor choice for mitigation of antibiotic resistance.202337681947
665020.9904 Antibiotic resistance is never going to go away. No matter how many drugs we throw at it, no matter how much money and resources are sacrificed to wage a war on resistance, it will always prevail. Humans are forced to coexist with the fact of antibiotic resistance. Public health officials, clinicians, and scientists must find effective ways to cope with antibiotic resistant bacteria harmful to humans and animals and to control the development of new types of resistance. The American Academy of Microbiology convened a colloquium October 12–14, 2008, to discuss antibiotic resistance and the factors that influence the development and spread of resistance. Participants, whose areas of expertise included medicine, microbiology, and public health, made specific recommendations for needed research, policy development, a surveillance network, and treatment guidelines. Antibiotic resistance issues specific to the developing world were discussed and recommendations for improvements were made. Each antibiotic is injurious only to a certain segment of the microbial world, so for a given antibacterial there are some species of bacteria that are susceptible and others not. Bacterial species insusceptible to a particular drug are “naturally resistant.” Species that were once sensitive but eventually became resistant to it are said to have “acquired resistance.” It is important to note that “acquired resistance” affects a subset of strains in the entire species; that is why the prevalence of “acquired resistance” in a species is different according to location. Antibiotic resistance, the acquired ability of a pathogen to withstand an antibiotic that kills off its sensitive counterparts, originally arises from random mutations in existing genes or from intact genes that already serve a similar purpose. Exposure to antibiotics and other antimicrobial products, whether in the human body, in animals, or the environment, applies selective pressure that encourages resistance to emerge favoring both “naturally resistant” strains and strains which have “acquired resistance.” Horizontal gene transfer, in which genetic information is passed between microbes, allows resistance determinants to spread within harmless environmental or commensal microorganisms and pathogens, thus creating a reservoir of resistance. Resistance is also spread by the replication of microbes that carry resistance genes, a process that produces genetically identical (or clonal) progeny. Rapid diagnostic methods and surveillance are some of the most valuable tools in preventing the spread of resistance. Access to more rapid diagnostic tests that could determine the causative agent and antibiotic susceptibility of infections would inform better decision making with respect to antibiotic use, help slow the selection of resistant strains in clinical settings, and enable better disease surveillance. A rigorous surveillance network to track the evolution and spread of resistance is also needed and would probably result in significant savings in healthcare. Developing countries face unique challenges when it comes to antibiotic resistance; chief among them may be the wide availability of antibiotics without a prescription and also counterfeit products of dubious quality. Lack of adequate hygiene, poor water quality, and failure to manage human waste also top the list. Recommendations for addressing the problems of widespread resistance in the developing world include: proposals for training and infrastructure capacity building; surveillance programs; greater access to susceptibility testing; government controls on import, manufacture and use; development and use of vaccines; and incentives for pharmaceutical companies to supply drugs to these countries. Controlling antibiotic resistant bacteria and subsequent infections more efficiently necessitates the prudent and responsible use of antibiotics. It is mandatory to prevent the needless use of antibiotics (e.g., viral infections; unnecessary prolonged treatment) and to improve the rapid prescription of appropriate antibiotics to a patient. Delayed or inadequate prescriptions reduce the efficacy of treatment and favor the spread of the infection. Prudent use also applies to veterinary medicine. For example, antibiotics used as “growth promoters” have been banned in Europe and are subject to review in some other countries. There are proven techniques for limiting the spread of resistance, including hand hygiene, but more rapid screening techniques are needed in order to effectively track and prevent spread in clinical settings. The spread of antibiotic resistance on farms and in veterinary hospitals may also be significant and should not be neglected. Research is needed to pursue alternative approaches, including vaccines, antisense therapy, public health initiatives, and others. The important messages about antibiotic resistance are not getting across from scientists and infectious diseases specialists to prescribers, stakeholders, including the public, healthcare providers, and public officials. Innovative and effective communication initiatives are needed, as are carefully tailored messages for each of the stakeholder groups.200932644325
396830.9903Thinking outside the (pill) box: Does toxic metal exposure thwart antibiotic stewardship best practices? Multi-antibiotic resistant (MAR) bacteria cost billions in medical care and tens of thousands of lives annually but perennial calls to limit agricultural and other misuse of antibiotics and to fund antibiotic discovery have not slowed this MAR deluge. Since mobile genetic elements (MGEs) stitch single antibiotic resistance genes into clinically significant MAR arrays, it is high time to focus on how MGEs generate MAR and how disabling them could ameliorate the MAR problem. However, to consider only antibiotics as the drivers of MAR is to miss the significant impact of exposure to non-antibiotic toxic chemicals, specifically metals, on the persistence and spread of MAR. Toxic metals were among the earliest discovered targets of plasmid-encoded resistance genes. Recent genomic epidemiology clearly demonstrated the co-prevalence of metal resistances and antibiotic multi-resistance, uniquely in humans and domestic animals. Metal resistances exploit the same, ancient "transportation infrastructure" of plasmids, transposons, and integrons that spread the antibiotic resistance genes and will continue to do so even if all antibiotic misuse were stopped today and new antibiotics were flowing from the pipeline monthly. In a key experiment with primates, continuous oral exposure to mercury (Hg) released from widely used dental amalgam fillings co-selected for MAR bacteria in the oral and fecal commensal microbiomes and, most importantly, when amalgams were replaced with non-metal fillings, MAR bacteria declined dramatically. Could that also be happening on the larger public health scale as use of amalgam restorations is curtailed or banned in many countries? This commentary covers salient past and recent findings of key metal-antibiotic resistance associations and proposes that the shift from phenotyping to genotyping in surveillance of resistance loci will allow a test of whether declining exposure to this leading source of Hg is accompanied by a decline in MAR compared to countries where amalgam is still used. If this hypothesis is correct, the limited success of antibiotic stewardship practices may be because MAR is also being driven by continuous, daily exposure to Hg, a non-antibiotic toxicant widely used in humans.201830193909
650640.9902Mitigating antimicrobial resistance through effective hospital wastewater management in low- and middle-income countries. Hospital wastewater (HWW) is a significant environmental and public health threat, containing high levels of pollutants such as antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), antibiotics, disinfectants, and heavy metals. This threat is of particular concern in low- and middle-income countries (LMICs), where untreated effluents are often used for irrigating vegetables crops, leading to direct and indirect human exposure. Despite being a potential hotspot for the spread of antimicrobial resistance (AMR), existing HWW treatment systems in LMICs primarily target conventional pollutants and lack effective standards for monitoring the removal of ARB and ARGs. Consequently, untreated or inadequately treated HWW continues to disseminate ARB and ARGs, exacerbating the risk of AMR proliferation. Addressing this requires targeted interventions, including cost-effective treatment solutions, robust AMR monitoring protocols, and policy-driven strategies tailored to LMICs. This perspective calls for a paradigm shift in HWW management in LMIC, emphasizing the broader implementation of onsite treatment systems, which are currently rare. Key recommendations include developing affordable and contextually adaptable technologies for eliminating ARB and ARGs and enforcing local regulations for AMR monitoring and control in wastewater. Addressing these challenges is essential for protecting public health, preventing the environmental spread of resistance, and contributing to a global effort to preserve the efficacy of antibiotics. Recommendations include integrating scalable onsite technologies, leveraging local knowledge, and implementing comprehensive AMR-focused regulatory frameworks.202439944563
766150.9902Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.202336951567
668960.9901Wastewater-Based Epidemiology as a Complementary Tool for Antimicrobial Resistance Surveillance: Overcoming Barriers to Integration. This commentary highlights the potential of wastewater-based epidemiology (WBE) as a complementary tool for antimicrobial resistance (AMR) surveillance. WBE can support the early detection of resistance trends at the population level, including in underserved communities. However, several challenges remain, including technical variability, complexities in data interpretation, and regulatory gaps. An additional limitation is the uncertainty surrounding the origin of resistant bacteria and their genes in wastewater, which may derive not only from human sources but also from industrial, agricultural, or infrastructural contributors. Therefore, effective integration of WBE into public health systems will require standardized methods, sustained investment, and cross-sector collaboration. This could be achieved through joint monitoring initiatives that combine hospital wastewater data with agricultural and municipal surveillance to inform antibiotic stewardship policies. Overcoming these barriers could position WBE as an innovative tool for AMR monitoring, enhancing early warning systems and supporting more responsive, equitable, and preventive public health strategies.202540522150
647470.9901Impact of treated wastewater irrigation on antibiotic resistance in the soil microbiome. The reuse of treated wastewater (TWW) for irrigation is a practical solution for overcoming water scarcity, especially in arid and semiarid regions of the world. However, there are several potential environmental and health-related risks associated with this practice. One such risk stems from the fact that TWW irrigation may increase antibiotic resistance (AR) levels in soil bacteria, potentially contributing to the global propagation of clinical AR. Wastewater treatment plant (WWTP) effluents have been recognized as significant environmental AR reservoirs due to selective pressure generated by antibiotics and other compounds that are frequently detected in effluents. This review summarizes a myriad of recent studies that have assessed the impact of anthropogenic practices on AR in environmental bacterial communities, with specific emphasis on elucidating the potential effects of TWW irrigation on AR in the soil microbiome. Based on the current state of the art, we conclude that contradictory to freshwater environments where WWTP effluent influx tends to expand antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes levels, TWW irrigation does not seem to impact AR levels in the soil microbiome. Although this conclusion is a cause for cautious optimism regarding the future implementation of TWW irrigation, we conclude that further studies aimed at assessing the scope of horizontal gene transfer between effluent-associated ARB and soil bacteria need to be further conducted before ruling out the possible contribution of TWW irrigation to antibiotic-resistant reservoirs in irrigated soils.201323378260
647280.9901Balancing water sustainability and public health goals in the face of growing concerns about antibiotic resistance. Global initiatives are underway to advance the sustainability of urban water infrastructure through measures such as water reuse. However, there are growing concerns that wastewater effluents are enriched in antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes, and thus could serve as a contributing factor to growing rates of antibiotic resistance in human infections. Evidence for the role of the water environment as a source and pathway for the spread of antimicrobial resistance is examined and key knowledge gaps are identified with respect to implications for sustainable water systems. Efforts on the part of engineers along with investment in research in epidemiology, risk assessment, water treatment and water delivery could advance current and future sustainable water strategies and help avoid unintended consequences.201424279909
668690.9901The Impact of Wastewater on Antimicrobial Resistance: A Scoping Review of Transmission Pathways and Contributing Factors. BACKGROUND/OBJECTIVES: Antimicrobial resistance (AMR) is a global issue driven by the overuse of antibiotics in healthcare, agriculture, and veterinary settings. Wastewater and treatment plants (WWTPs) act as reservoirs for antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs). The One Health approach emphasizes the interconnectedness of human, animal, and environmental health in addressing AMR. This scoping review analyzes wastewater's role in the AMR spread, identifies influencing factors, and highlights research gaps to guide interventions. METHODS: This scoping review followed the PRISMA-ScR guidelines. A comprehensive literature search was conducted across the PubMed and Web of Science databases for articles published up to June 2024, supplemented by manual reference checks. The review focused on wastewater as a source of AMR, including hospital effluents, industrial and urban sewage, and agricultural runoff. Screening and selection were independently performed by two reviewers, with conflicts resolved by a third. RESULTS: Of 3367 studies identified, 70 met the inclusion criteria. The findings indicated that antibiotic residues, heavy metals, and microbial interactions in wastewater are key drivers of AMR development. Although WWTPs aim to reduce contaminants, they often create conditions conducive to horizontal gene transfer, amplifying resistance. Promising interventions, such as advanced treatment methods and regulatory measures, exist but require further research and implementation. CONCLUSIONS: Wastewater plays a pivotal role in AMR dissemination. Targeted interventions in wastewater management are essential to mitigate AMR risks. Future studies should prioritize understanding AMR dynamics in wastewater ecosystems and evaluating scalable mitigation strategies to support global health efforts.202540001375
7691100.9901Antimicrobial Chemicals Associate with Microbial Function and Antibiotic Resistance Indoors. Humans purposefully and inadvertently introduce antimicrobial chemicals into buildings, resulting in widespread compounds, including triclosan, triclocarban, and parabens, in indoor dust. Meanwhile, drug-resistant infections continue to increase, raising concerns that buildings function as reservoirs of, or even select for, resistant microorganisms. Support for these hypotheses is limited largely since data describing relationships between antimicrobials and indoor microbial communities are scant. We combined liquid chromatography-isotope dilution tandem mass spectrometry with metagenomic shotgun sequencing of dust collected from athletic facilities to characterize relationships between indoor antimicrobial chemicals and microbial communities. Elevated levels of triclosan and triclocarban, but not parabens, were associated with distinct indoor microbiomes. Dust of high triclosan content contained increased Gram-positive species with diverse drug resistance capabilities, whose pangenomes were enriched for genes encoding osmotic stress responses, efflux pump regulation, lipid metabolism, and material transport across cell membranes; such triclosan-associated functional shifts have been documented in laboratory cultures but not yet from buildings. Antibiotic-resistant bacterial isolates were cultured from all but one facility, and resistance often increased in buildings with very high triclosan levels, suggesting links between human encounters with viable drug-resistant bacteria and local biocide conditions. This characterization uncovers complex relationships between antimicrobials and indoor microbiomes: some chemicals elicit effects, whereas others may not, and no single functional or resistance factor explained chemical-microbe associations. These results suggest that anthropogenic chemicals impact microbial systems in or around buildings and their occupants, highlighting an emergent need to identify the most important indoor, outdoor, and host-associated sources of antimicrobial chemical-resistome interactions. IMPORTANCE The ubiquitous use of antimicrobial chemicals may have undesired consequences, particularly on microbes in buildings. This study shows that the taxonomy and function of microbes in indoor dust are strongly associated with antimicrobial chemicals-more so than any other feature of the buildings. Moreover, we identified links between antimicrobial chemical concentrations in dust and culturable bacteria that are cross-resistant to three clinically relevant antibiotics. These findings suggest that humans may be influencing the microbial species and genes that are found indoors through the addition and removal of particular antimicrobial chemicals.201830574558
6648110.9900Multi-Drug Resistant Coliform: Water Sanitary Standards and Health Hazards. Water constitutes and sustains life; however, its pollution afflicts its necessity, further worsening its scarcity. Coliform is one of the largest groups of bacteria evident in fecally polluted water, a major public health concern. Coliform thrive as commensals in the gut of warm-blooded animals, and are indefinitely passed through their feces into the environment. They are also called as model organisms as their presence is indicative of the prevalence of other potential pathogens, thus coliform are and unanimously employed as adept indicators of fecal pollution. As only a limited accessible source of fresh water is available on the planet, its contamination severely affects its usability. Coliform densities vary geographically and seasonally which leads to the lack of universally uniform regulatory guidelines regarding water potability often leads to ineffective detection of these model organisms and the misinterpretation of water quality status. Remedial measures such as disinfection, reducing the nutrient concentration or re-population doesn't hold context in huge lotic ecosystems such as freshwater rivers. There is also an escalating concern regarding the prevalence of multi-drug resistance in coliforms which renders antibiotic therapy incompetent. Antimicrobials are increasingly used in household, clinical, veterinary, animal husbandry and agricultural settings. Sub-optimal concentrations of these antimicrobials are unintentionally but regularly dispensed into the environment through seepages, sewages or runoffs from clinical or agricultural settings substantially adding to the ever-increasing pool of antibiotic resistance genes. When present below their minimum inhibitory concentration (MIC), these antimicrobials trigger the transfer of antibiotic-resistant genes that the coliform readily assimilate and further propagate to pathogens, the severity of which is evidenced by the high Multiple Antibiotic Resistance (MAR) index shown by the bacterial isolates procured from the environmental. This review attempts to assiduously anthologize the use of coliforms as water quality standards, their existent methods of detection and the issue of arising multi-drug resistance in them.201829946253
3973120.9900Assessing the impact of sewage and wastewater on antimicrobial resistance in nearshore Antarctic biofilms and sediments. BACKGROUND: Despite being recognised as a global problem, our understanding of human-mediated antimicrobial resistance (AMR) spread to remote regions of the world is limited. Antarctica, often referred to as "the last great wilderness", is experiencing increasing levels of human visitation through tourism and expansion of national scientific operations. Therefore, it is critical to assess the impact that these itinerant visitors have on the natural environment. This includes monitoring human-mediated AMR, particularly around population concentrations such as visitor sites and Antarctic research stations. This study takes a sequencing discovery-led approach to investigate levels and extent of AMR around the Rothera Research Station (operated by the UK) on the Antarctic Peninsula. RESULTS: Amplicon sequencing of biofilms and sediments from the vicinity of Rothera Research Station revealed highly variable and diverse microbial communities. Analysis of AMR genes generated from long-reads Nanopore MinION sequencing showed similar site variability in both drug class and resistance mechanism. Thus, no site sampled was more or less diverse than the other, either in the biofilm or sediment samples. Levels of enteric bacteria in biofilm and sediment samples were low at all sites, even in biofilm samples taken from the station sewage treatment plant (STP). It would appear that incorporation of released enteric bacteria in wastewater into more established biofilms or associations with sediment was poor. This was likely due to the inactivation and vulnerability of these bacteria to the extreme environmental conditions in Antarctica. CONCLUSIONS: Our results suggest minimal effect of a strong feeder source (i.e. sewage effluent) on biofilm and sediment microbial community composition, with each site developing its unique niche community. The factors producing these niche communities need elucidation, alongside studies evaluating Antarctic microbial physiologies. Our data from cultivated bacteria show that they are highly resilient to different environmental conditions and are likely to thrive in a warmer world. Our data show that AMR in the Antarctic marine environment is far more complex than previously thought. Thus, more work is required to understand the true extent of the Antarctic microbiota biodiversity, their associated resistomes and the impact that human activities have on the Antarctic environment.202539833981
6576130.9900Wastewater-based AMR surveillance associated with tourism on a Caribbean island (Guadeloupe). OBJECTIVES: Antimicrobial resistance (AMR) is a major public health concern worldwide. International travel is a risk factor for acquiring antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs). Therefore, understanding the transmission of ARB and ARGs is instrumental in tackling AMR. This longitudinal study aimed to assess the benefit of wastewater monitoring in Guadeloupe to evaluate the role of tourism in the spread of AMR. METHODS: A wastewater-based surveillance (WBS) study was conducted to monitor AMR in Guadeloupe in 2022 during dry and wet seasons. We characterized the resistome, microbiome and exposome of water samples collected in wastewater treatment facilities of two cities with different levels of tourism activities, in the content of aircraft toilets, and the pumping station receiving effluents from hotels. RESULTS: The results show that the WBS approach facilitates the differentiation of various untreated effluents concerning exposome, microbiome, and resistome, offering insights into AMR dissemination. Additionally, the findings reveal that microbiome and exposome are comparable across sites and seasons, while resistome characterisation at specific locations may be pertinent for health surveillance. The microbiome of aircraft was predominantly composed of anaerobic bacteria from human intestinal microbiota, whereas the other locations exhibited a blend of human and environmental bacteria. Notably, individuals arriving by air have not introduced clinically significant resistance genes. Exposome compounds have been shown to influence the resistome's variance. CONCLUSIONS: Clear differences were seen between the aircraft and the local sampling sites, indicating that the contribution of tourism to the observed resistance in Guadeloupe is not significant.202540154781
6558140.9900Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. Population growth and water scarcity necessitate alternative agriculture practices, such as reusing wastewater for irrigation. Domestic wastewater has been used for irrigation for centuries in many historically low-income and arid countries and is becoming more widely used by high-income countries to augment water resources in an increasingly dry climate. Wastewater treatment processes are not fully effective in removing all contaminants, such as antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Literature reviews on the impact of wastewater irrigation on antimicrobial resistance (AMR) in the environment have been inconclusive and mostly focused on treated wastewater. We conducted the first systematic review to assess the impact of irrigation with both treated or untreated domestic wastewater on ARB and ARGs in soil and adjacent water bodies. We screened titles/abstracts of 3002 articles, out of which 41 were screened in full text and 26 were included in this review. Of these, thirteen investigated irrigation with untreated wastewater, and nine found a positive association with ARB/ARGs in soil. Out of thirteen studies focused on treated wastewater, six found a positive association with ARB/ARGs while six found mixed/negative associations. Our findings demonstrate that irrigation with untreated wastewater increases AMR in soil and call for precautionary action by field workers, their families, and consumers when untreated wastewater is used to irrigate crops. The effect of irrigation with treated wastewater was more variable among the studies included in our review, highlighting the need to better understand to what extent AMR is disseminated through this practice. Future research should assess factors that modify the effect of wastewater irrigation on AMR in soil, such as the degree and type of wastewater treatment, and the duration and intensity of irrigation, to inform guidelines on the reuse of wastewater for irrigation.202134769568
6507150.9900What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
6473160.9900The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment: The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes - A review. The use of reclaimed wastewater (RWW) for the irrigation of crops may result in the continuous exposure of the agricultural environment to antibiotics, antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). In recent years, certain evidence indicate that antibiotics and resistance genes may become disseminated in agricultural soils as a result of the amendment with manure and biosolids and irrigation with RWW. Antibiotic residues and other contaminants may undergo sorption/desorption and transformation processes (both biotic and abiotic), and have the potential to affect the soil microbiota. Antibiotics found in the soil pore water (bioavailable fraction) as a result of RWW irrigation may be taken up by crop plants, bioaccumulate within plant tissues and subsequently enter the food webs; potentially resulting in detrimental public health implications. It can be also hypothesized that ARGs can spread among soil and plant-associated bacteria, a fact that may have serious human health implications. The majority of studies dealing with these environmental and social challenges related with the use of RWW for irrigation were conducted under laboratory or using, somehow, controlled conditions. This critical review discusses the state of the art on the fate of antibiotics, ARB and ARGs in agricultural environment where RWW is applied for irrigation. The implications associated with the uptake of antibiotics by plants (uptake mechanisms) and the potential risks to public health are highlighted. Additionally, knowledge gaps as well as challenges and opportunities are addressed, with the aim of boosting future research towards an enhanced understanding of the fate and implications of these contaminants of emerging concern in the agricultural environment. These are key issues in a world where the increasing water scarcity and the continuous appeal of circular economy demand answers for a long-term safe use of RWW for irrigation.201728689129
3165170.9899Metagenomic and Recombination Analyses of Antimicrobial Resistance Genes from Recreational Waters of Black Sea Coastal Areas and Other Marine Environments Unveil Extensive Evidence for Their both Intrageneric and Intergeneric Transmission across Genetically Very Diverse Microbial Communities. Microbial communities of marine coastal recreation waters have become large reservoirs of AMR genes (ARGs), contributing to the emergence and transmission of various zoonotic, foodborne and other infections that exhibit resistance to various antibiotics. Thus, it is highly imperative to determine ARGs assemblages as well as mechanisms and trajectories of their transmission across these microbial communities for our better understanding of the evolutionary trends of AMR (AMR). In this study, using metagenomics approaches, we screened for ARGs in recreation waters of the Black Sea coastal areas of the Batumi City (Georgia). Also, a large array of the recombination detection algorithms of the SplitsTree, RDP4, and GARD was applied to elucidate genetic recombination of ARGs and trajectories of their transmission across various marine microbial communities. The metagenomics analyses of sea water samples, obtained from across the above marine sites, could identify putative ARGs encoding for multidrug resistance efflux transporters mainly from the Major Facilitator and Resistance Nodulation Division superfamilies. The data, generated by SplitsTree (fit ≥95.619; bootstrap values ≥ 95; Phi p ≤ 0.0494), RDP4 (p ≤ 0.0490), and GARD, provided strong statistical evidence not only for intrageneric recombination of these ARGs, but also for their intergeneric recombination across fairly large and diverse microbial communities of marine environment. These bacteria included both human pathogenic and nonpathogenic species, exhibiting collectively the genera of Vibrio, Aeromonas, Synechococcus, Citromicrobium, Rhodobacteraceae, Pseudoalteromonas, Altererythrobacter, Erythrobacter, Altererythrobacter, Marivivens, Xuhuaishuia, and Loktanella. The above nonpathogenic bacteria are strongly suggested to contribute to ARGs transmission in marine ecosystems.202234922301
9625180.9899Water chlorination increases the relative abundance of an antibiotic resistance marker in developing sourdough starters. Multiple factors explain the proper development of sourdough starters. Although the role of raw ingredients and geography, among other things, have been widely studied recently, the possible effect of air quality and water chlorination on the overall bacterial communities associated with sourdough remains to be explored. Here, using 16S rRNA amplicon sequencing, we show that clean, filtered-air severely limited the presence of lactic acid bacteria in sourdough starters, suggesting that surrounding air is an important source of microorganisms necessary for the development of sourdough starters. We also show that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, using targeted sequencing, which offers a higher resolution, we found that the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic-resistance genes in spoilage and pathogenic bacteria, increased significantly with the level of water chlorination. Although our results suggest that water chlorination might not impact sourdough starters at a deep phylogenetic level, they indicate that it can favor the spread of genetic elements associated with spoilage bacteria. IMPORTANCE: Proper development of sourdough starters is critical for making tasty and healthy bread. Although many factors contributing to sourdough development have been studied, the effect of water chlorination on the bacterial communities in sourdough has been largely ignored. Researchers used sequencing techniques to investigate this effect and found that water chlorination at levels commonly found in drinking water systems has a limited impact on the overall bacterial communities developing in sourdough starters. However, they discovered that water chlorination could increase the abundance of integron 1, a genetic mechanism responsible for the horizontal exchange of antibiotic resistance genes in spoilage and pathogenic bacteria. This suggests that water chlorination could favor the growth of key spoilage bacteria and compromise the quality and safety of the bread. These findings emphasize the importance of considering water quality when developing sourdough starters for the best possible bread.202439283274
7449190.9899The impact of metal pipe materials, corrosion products, and corrosion inhibitors on antibiotic resistance in drinking water distribution systems. Drinking water distribution systems (DWDS) are unique engineering environments that are important routes for the acquisition and dissemination of antibiotic resistance. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in drinking water pose risks to human and environmental health. Metals are known stressors that can select for antibiotic resistance. The objective of this review was to assess the state of knowledge regarding the impact of metal pipe materials, corrosion products, and corrosion inhibitors on the prevalence of antibiotic resistance in DWDS. ARGs and mobile genetic elements (MGEs) have been detected in full-scale DWDS in concentrations ranging from ~ 10(1) to 10(10) copies/L. Metal pipe materials can select for bacteria harboring ARGs and metal resistance genes (MRGs) through co-selection processes. Corrosion products that develop in metal drinking water pipes (Cu, Fe, and Pb oxides) may also stimulate antibiotic resistance selection during distribution. Different corrosion inhibitor regimes (phosphates, sodium silicates) may also have impacts on microbial communities and the abundance of resistance genes in DWDS. Research is needed to quantify how engineering decisions related to drinking water infrastructure and corrosion inhibitor practices impact the abundance and distribution of ARG, MRGs, and MGEs in potable water systems. KEY POINTS: • Lack of quantitative measurements of antibiotic and metal resistance genes in drinking water distribution systems. • Pipe materials and corrosion products that develop in pipe scales may impact antibiotic resistance. • Corrosion inhibitors with zinc or phosphate could alter antibiotic resistance. • Management decisions should consider antibiotic resistance ramifications. Graphical abstract.202032734389