DRASTICALLY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
907700.9909The PLSDB 2025 update: enhanced annotations and improved functionality for comprehensive plasmid research. Plasmids are extrachromosomal DNA molecules in bacteria and archaea, playing critical roles in horizontal gene transfer, antibiotic resistance, and pathogenicity. Since its first release in 2018, our database on plasmids, PLSDB, has significantly grown and enhanced its content and scope. From 34 513 records contained in the 2021 version, PLSDB now hosts 72 360 entries. Designed to provide life scientists with convenient access to extensive plasmid data and to support computer scientists by offering curated datasets for artificial intelligence (AI) development, this latest update brings more comprehensive and accurate information for plasmid research, with interactive visualization options. We enriched PLSDB by refining the identification and classification of plasmid host ecosystems and host diseases. Additionally, we incorporated annotations for new functional structures, including protein-coding genes and biosynthetic gene clusters. Further, we enhanced existing annotations, such as antimicrobial resistance genes and mobility typing. To accommodate these improvements and to host the increase plasmid sets, the webserver architecture and underlying data structures of PLSDB have been re-reconstructed, resulting in decreased response times and enhanced visualization of features while ensuring that users have access to a more efficient and user-friendly interface. The latest release of PLSDB is freely accessible at https://www.ccb.uni-saarland.de/plsdb2025.202539565221
907610.9902ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/.202133495705
960020.9898Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation. Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. IMPORTANCE: Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological entities and kill vast numbers of bacteria in natural environments. Many of these bacteria carry plasmids, extrachromosomal DNA elements that frequently encode antibiotic resistance. However, it is largely unknown whether plasmids are destroyed during phage infection or released intact upon phage lysis, whereupon their encoded resistance could be acquired and manifested by other bacteria (transformation). Because phages are being developed to combat antibiotic-resistant bacteria and because transformation is a principal form of horizontal gene transfer, this question has important implications for biomedicine and microbial evolution alike. Here we report the isolation and characterization of two novel Escherichia coli phages, dubbed "superspreaders," that promote extensive plasmid transformation and efficiently disperse antibiotic resistance genes. Our work suggests that phage superspreaders are not suitable for use in medicine but may help drive bacterial evolution in natural environments.201728096488
981830.9897ISCR elements: novel gene-capturing systems of the 21st century? "Common regions" (CRs), such as Orf513, are being increasingly linked to mega-antibiotic-resistant regions. While their overall nucleotide sequences show little identity to other mobile elements, amino acid alignments indicate that they possess the key motifs of IS91-like elements, which have been linked to the mobility ent plasmids in pathogenic Escherichia coli. Further inspection reveals that they possess an IS91-like origin of replication and termination sites (terIS), and therefore CRs probably transpose via a rolling-circle replication mechanism. Accordingly, in this review we have renamed CRs as ISCRs to give a more accurate reflection of their functional properties. The genetic context surrounding ISCRs indicates that they can procure 5' sequences via misreading of the cognate terIS, i.e., "unchecked transposition." Clinically, the most worrying aspect of ISCRs is that they are increasingly being linked with more potent examples of resistance, i.e., metallo-beta-lactamases in Pseudomonas aeruginosa and co-trimoxazole resistance in Stenotrophomonas maltophilia. Furthermore, if ISCR elements do move via "unchecked RC transposition," as has been speculated for ISCR1, then this mechanism provides antibiotic resistance genes with a highly mobile genetic vehicle that could greatly exceed the effects of previously reported mobile genetic mechanisms. It has been hypothesized that bacteria will surprise us by extending their "genetic construction kit" to procure and evince additional DNA and, therefore, antibiotic resistance genes. It appears that ISCR elements have now firmly established themselves within that regimen.200616760305
839440.9896Expanding Diversity of Firmicutes Single-Strand Annealing Proteins: A Putative Role of Bacteriophage-Host Arms Race. Bacteriophage-encoded single strand annealing proteins (SSAPs) are recombinases which can substitute the classical, bacterial RecA and manage the DNA metabolism at different steps of phage propagation. SSAPs have been shown to efficiently promote recombination between short and rather divergent DNA sequences and were exploited for in vivo genetic engineering mainly in Gram-negative bacteria. In opposition to the conserved and almost universal bacterial RecA protein, SSAPs display great sequence diversity. The importance for SSAPs in phage biology and phage-bacteria evolution is underlined by their role as key players in events of horizontal gene transfer (HGT). All of the above provoke a constant interest for the identification and study of new phage recombinase proteins in vivo, in vitro as well as in silico. Despite this, a huge body of putative ssap genes escapes conventional classification, as they are not properly annotated. In this work, we performed a wide-scale identification, classification and analysis of SSAPs encoded by the Firmicutes bacteria and their phages. By using sequence similarity network and gene context analyses, we created a new high quality dataset of phage-related SSAPs, substantially increasing the number of annotated SSAPs. We classified the identified SSAPs into seven distinct families, namely RecA, Gp2.5, RecT/Redβ, Erf, Rad52/22, Sak3, and Sak4, organized into three superfamilies. Analysis of the relationships between the revealed protein clusters led us to recognize Sak3-like proteins as a new distinct SSAP family. Our analysis showed an irregular phylogenetic distribution of ssap genes among different bacterial phyla and specific phages, which can be explained by the high rates of ssap HGT. We propose that the evolution of phage recombinases could be tightly linked to the dissemination of bacterial phage-resistance mechanisms (e.g., abortive infection and CRISPR/Cas systems) targeting ssap genes and be a part of the constant phage-bacteria arms race.202133959107
855750.9896Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.202540203758
826260.9895Advances in CRISPR-Cas systems for human bacterial disease. Prokaryotic adaptive immune systems called CRISPR-Cas systems have transformed genome editing by allowing for precise genetic alterations through targeted DNA cleavage. This system comprises CRISPR-associated genes and repeat-spacer arrays, which generate RNA molecules that guide the cleavage of invading genetic material. CRISPR-Cas is classified into Class 1 (multi-subunit effectors) and Class 2 (single multi-domain effectors). Its applications span combating antimicrobial resistance (AMR), targeting antibiotic resistance genes (ARGs), resensitizing bacteria to antibiotics, and preventing horizontal gene transfer (HGT). CRISPR-Cas3, for example, effectively degrades plasmids carrying resistance genes, providing a precise method to disarm bacteria. In the context of ESKAPE pathogens, CRISPR technology can resensitize bacteria to antibiotics by targeting specific resistance genes. Furthermore, in tuberculosis (TB) research, CRISPR-based tools enhance diagnostic accuracy and facilitate precise genetic modifications for studying Mycobacterium tuberculosis. CRISPR-based diagnostics, leveraging Cas endonucleases' collateral cleavage activity, offer highly sensitive pathogen detection. These advancements underscore CRISPR's transformative potential in addressing AMR and enhancing infectious disease management.202439266183
650770.9895What Are the Drivers Triggering Antimicrobial Resistance Emergence and Spread? Outlook from a One Health Perspective. Antimicrobial resistance (AMR) has emerged as a critical global public health threat, exacerbating healthcare burdens and imposing substantial economic costs. Currently, AMR contributes to nearly five million deaths annually worldwide, surpassing mortality rates of any single infectious disease. The economic burden associated with AMR-related disease management is estimated at approximately $730 billion per year. This review synthesizes current research on the mechanisms and multifaceted drivers of AMR development and dissemination through the lens of the One Health framework, which integrates human, animal, and environmental health perspectives. Intrinsic factors, including antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs), enable bacteria to evolve adaptive resistance mechanisms such as enzymatic inactivation, efflux pumps, and biofilm formation. Extrinsic drivers span environmental stressors (e.g., antimicrobials, heavy metals, disinfectants), socioeconomic practices, healthcare policies, and climate change, collectively accelerating AMR proliferation. Horizontal gene transfer and ecological pressures further facilitate the spread of antimicrobial-resistant bacteria across ecosystems. The cascading impacts of AMR threaten human health and agricultural productivity, elevate foodborne infection risks, and impose substantial economic burdens, particularly in low- and middle-income countries. To address this complex issue, the review advocates for interdisciplinary collaboration, robust policy implementation (e.g., antimicrobial stewardship), and innovative technologies (e.g., genomic surveillance, predictive modeling) under the One Health paradigm. Such integrated strategies are essential to mitigate AMR transmission, safeguard global health, and ensure sustainable development.202540558133
512680.9895Blanket antimicrobial resistance gene database with structural information, BOARDS, provides insights on historical landscape of resistance prevalence and effects of mutations in enzyme structure. Antimicrobial resistance (AMR) in pathogenic bacteria poses a significant threat to public health, yet there is still a need for development in the tools to deeply understand AMR genes based on genetic or structural information. In this study, we present an interactive web database named Blanket Overarching Antimicrobial-Resistance gene Database with Structural information (BOARDS, sbml.unist.ac.kr), a database that comprehensively includes 3,943 reported AMR gene information for 1,997 extended spectrum beta-lactamase (ESBL) and 1,946 other genes as well as a total of 27,395 predicted protein structures. These structures, which include both wild-type AMR genes and their mutants, were derived from 80,094 publicly available whole-genome sequences. In addition, we developed the rapid analysis and detection tool of antimicrobial-resistance (RADAR), a one-stop analysis pipeline to detect AMR genes across whole-genome sequencing (WGSs). By integrating BOARDS and RADAR, the AMR prevalence landscape for eight multi-drug resistant pathogens was reconstructed, leading to unexpected findings such as the pre-existence of the MCR genes before their official reports. Enzymatic structure prediction-based analysis revealed that the occurrence of mutations found in some ESBL genes was found to be closely related to the binding affinities with their antibiotic substrates. Overall, BOARDS can play a significant role in performing in-depth analysis on AMR.IMPORTANCEWhile the increasing antibiotic resistance (AMR) in pathogen has been a burden on public health, effective tools for deep understanding of AMR based on genetic or structural information remain limited. In this study, a blanket overarching antimicrobial-resistance gene database with structure information (BOARDS)-a web-based database that comprehensively collected AMR gene data with predictive protein structural information was constructed. Additionally, we report the development of a RADAR pipeline that can analyze whole-genome sequences as well. BOARDS, which includes sequence and structural information, has shown the historical landscape and prevalence of the AMR genes and can provide insight into single-nucleotide polymorphism effects on antibiotic degrading enzymes within protein structures.202438085058
866590.9895A Glyphosate-Based Herbicide Cross-Selects for Antibiotic Resistance Genes in Bacterioplankton Communities. Agrochemicals often contaminate freshwater bodies, affecting microbial communities that underlie aquatic food webs. For example, the herbicide glyphosate has the potential to indirectly select for antibiotic-resistant bacteria. Such cross-selection could occur if the same genes (encoding efflux pumps, for example) confer resistance to both glyphosate and antibiotics. To test for cross-resistance in natural aquatic bacterial communities, we added a glyphosate-based herbicide (GBH) to 1,000-liter mesocosms filled with water from a pristine lake. Over 57 days, we tracked changes in bacterial communities with shotgun metagenomic sequencing and annotated metagenome-assembled genomes (MAGs) for the presence of known antibiotic resistance genes (ARGs), plasmids, and resistance mutations in the enzyme targeted by glyphosate (enolpyruvyl-shikimate-3-phosphate synthase; EPSPS). We found that high doses of GBH significantly increased ARG frequency and selected for multidrug efflux pumps in particular. The relative abundance of MAGs after a high dose of GBH was predictable based on the number of ARGs in their genomes (17% of variation explained) and, to a lesser extent, by resistance mutations in EPSPS. Together, these results indicate that GBHs can cross-select for antibiotic resistance in natural freshwater bacteria. IMPORTANCE Glyphosate-based herbicides (GBHs) such as Roundup formulations may have the unintended consequence of selecting for antibiotic resistance genes (ARGs), as demonstrated in previous experiments. However, the effects of GBHs on ARGs remain unknown in natural aquatic communities, which are often contaminated with pesticides from agricultural runoff. Moreover, the resistance provided by ARGs compared to canonical mutations in the glyphosate target enzyme, EPSPS, remains unclear. Here, we performed a freshwater mesocosm experiment showing that a GBH strongly selects for ARGs, particularly multidrug efflux pumps. These selective effects were evident after just a few days, and the ability of bacteria to survive and thrive after GBH stress was predictable by the number of ARGs in their genomes and, to a lesser extent, by mutations in EPSPS. Intensive GBH application may therefore have the unintended consequence of selecting for ARGs in natural freshwater communities.202235266795
8174100.9894Recent Advances in Understanding the Molecular Mechanisms of Multidrug Resistance and Novel Approaches of CRISPR/Cas9-Based Genome-Editing to Combat This Health Emergency. The rapid spread of multidrug resistance (MDR), due to abusive use of antibiotics has led to global health emergency, causing substantial morbidity and mortality. Bacteria attain MDR by different means such as antibiotic modification/degradation, target protection/modification/bypass, and enhanced efflux mechanisms. The classical approaches of counteracting MDR bacteria are expensive and time-consuming, thus, it is highly significant to understand the molecular mechanisms of this resistance to curb the problem from core level. The revolutionary approach of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated sequence 9 (CRISPR/Cas9), considered as a next-generation genome-editing tool presents an innovative opportunity to precisely target and edit bacterial genome to alter their MDR strategy. Different bacteria possessing antibiotic resistance genes such as mecA, ermB, ramR, tetA, mqrB and bla(KPC) that have been targeted by CRISPR/Cas9 to re-sensitize these pathogens against antibiotics, such as methicillin, erythromycin, tigecycline, colistin and carbapenem, respectively. The CRISPR/Cas9 from S. pyogenes is the most widely studied genome-editing tool, consisting of a Cas9 DNA endonuclease associated with tracrRNA and crRNA, which can be systematically coupled as sgRNA. The targeting strategies of CRISPR/Cas9 to bacterial cells is mediated through phage, plasmids, vesicles and nanoparticles. However, the targeting approaches of this genome-editing tool to specific bacteria is a challenging task and still remains at a very preliminary stage due to numerous obstacles awaiting to be solved. This review elaborates some recent updates about the molecular mechanisms of antibiotic resistance and the innovative role of CRISPR/Cas9 system in modulating these resistance mechanisms. Furthermore, the delivery approaches of this genome-editing system in bacterial cells are discussed. In addition, some challenges and future prospects are also described.202438344439
9554110.9894A multi-label learning framework for predicting antibiotic resistance genes via dual-view modeling. The increasing prevalence of antibiotic resistance has become a global health crisis. For the purpose of safety regulation, it is of high importance to identify antibiotic resistance genes (ARGs) in bacteria. Although culture-based methods can identify ARGs relatively more accurately, the identifying process is time-consuming and specialized knowledge is required. With the rapid development of whole genome sequencing technology, researchers attempt to identify ARGs by computing sequence similarity from public databases. However, these computational methods might fail to detect ARGs due to the low sequence identity to known ARGs. Moreover, existing methods cannot effectively address the issue of multidrug resistance prediction for ARGs, which is a great challenge to clinical treatments. To address the challenges, we propose an end-to-end multi-label learning framework for predicting ARGs. More specifically, the task of ARGs prediction is modeled as a problem of multi-label learning, and a deep neural network-based end-to-end framework is proposed, in which a specific loss function is introduced to employ the advantage of multi-label learning for ARGs prediction. In addition, a dual-view modeling mechanism is employed to make full use of the semantic associations among two views of ARGs, i.e. sequence-based information and structure-based information. Extensive experiments are conducted on publicly available data, and experimental results demonstrate the effectiveness of the proposed framework on the task of ARGs prediction.202235272349
9182120.9894Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops. There is significant potential for CRISPR/Cas9 to be used in developing crops that can adapt to biotic stresses such as fungal, bacterial, viral, and pest infections and weeds. The increasing global population and climate change present significant threats to food security by putting stress on plants, making them more vulnerable to diseases and productivity losses caused by pathogens, pests, and weeds. Traditional breeding methods are inadequate for the rapid development of new plant traits needed to counteract this decline in productivity. However, modern advances in genome-editing technologies, particularly CRISPR/Cas9, have transformed crop protection through precise and targeted modifications of plant genomes. This enables the creation of resilient crops with improved resistance to pathogens, pests, and weeds. This review examines various methods by which CRISPR/Cas9 can be utilized for crop protection. These methods include knocking out susceptibility genes, introducing resistance genes, and modulating defense genes. Potential applications of CRISPR/Cas9 in crop protection involve introducing genes that confer resistance to pathogens, disrupting insect genes responsible for survival and reproduction, and engineering crops that are resistant to herbicides. In conclusion, CRISPR/Cas9 holds great promise for advancing crop protection and ensuring food security in the face of environmental challenges and increasing population pressures. The most recent advancements in CRISPR technology for creating resistance to bacteria, fungi, viruses, and pests are covered here. We wrap up by outlining the most pressing issues and technological shortcomings, as well as unanswered questions for further study.202540663257
9216130.9893Mitigating Antibiotic Resistance: The Utilization of CRISPR Technology in Detection. Antibiotics, celebrated as some of the most significant pharmaceutical breakthroughs in medical history, are capable of eliminating or inhibiting bacterial growth, offering a primary defense against a wide array of bacterial infections. However, the rise in antimicrobial resistance (AMR), driven by the widespread use of antibiotics, has evolved into a widespread and ominous threat to global public health. Thus, the creation of efficient methods for detecting resistance genes and antibiotics is imperative for ensuring food safety and safeguarding human health. The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) systems, initially recognized as an adaptive immune defense mechanism in bacteria and archaea, have unveiled their profound potential in sensor detection, transcending their notable gene-editing applications. CRISPR/Cas technology employs Cas enzymes and guides RNA to selectively target and cleave specific DNA or RNA sequences. This review offers an extensive examination of CRISPR/Cas systems, highlighting their unique attributes and applications in antibiotic detection. It outlines the current utilization and progress of the CRISPR/Cas toolkit for identifying both nucleic acid (resistance genes) and non-nucleic acid (antibiotic micromolecules) targets within the field of antibiotic detection. In addition, it examines the current challenges, such as sensitivity and specificity, and future opportunities, including the development of point-of-care diagnostics, providing strategic insights to facilitate the curbing and oversight of antibiotic-resistance proliferation.202439727898
7809140.9893Mitigating Antibiotic Resistance Genes in Wastewater by Sequential Treatment with Novel Nanomaterials. Wastewater (WW) has been widely recognized as the major sink of a variety of emerging pathogens (EPs), antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which may disseminate and impact wider environments. Improving and maximizing WW treatment efficiency to remove these microbial hazards is fundamentally imperative. Despite a variety of physical, biological and chemical treatment technologies, the efficiency of ARG removal is still far from satisfactory. Within our recently accomplished M-ERA.NET project, novel functionalized nanomaterials, i.e., molecularly imprinted polymer (MIP) films and quaternary ammonium salt (QAS) modified kaolin microparticles, were developed and demonstrated to have significant EP removal effectiveness on both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB) from WW. As a continuation of this project, we took the further step of exploring their ARG mitigation potential. Strikingly, by applying MIP and QAS functionalized kaolin microparticles in tandem, the ARGs prevalent in wastewater treatment plants (WWTPs), e.g., blaCTXM, ermB and qnrS, can be drastically reduced by 2.7, 3.9 and 4.9 log (copies/100 mL), respectively, whereas sul1, tetO and mecA can be eliminated below their detection limits. In terms of class I integron-integrase I (intI1), a mobile genetic element (MGE) for horizontal gene transfer (HGT), 4.3 log (copies/100 mL) reduction was achieved. Overall, the novel nanomaterials exhibit outstanding performance on attenuating ARGs in WW, being superior to their control references. This finding provides additional merit to the application of developed nanomaterials for WW purification towards ARG elimination, in addition to the proven bactericidal effect.202134063382
8171150.9893Advancements in CRISPR-Cas-based strategies for combating antimicrobial resistance. Multidrug resistance (MDR) in bacteria presents a significant global health threat, driven by the widespread dissemination of antibiotic-resistant genes (ARGs). The CRISPR-Cas system, known for its precision and adaptability, holds promise as a tool to combat antimicrobial resistance (AMR). Although previous studies have explored the use of CRISPR-Cas to target bacterial genomes or plasmids harboring resistance genes, the application of CRISPR-Cas-based antimicrobial therapies is still in its early stages. Challenges such as low efficiency and difficulties in delivering CRISPR to bacterial cells remain. This review provides an overview of the CRISPR-Cas system, highlights recent advancements in CRISPR-Cas-based antimicrobials and delivery strategies for combating AMR. The review also discusses potential challenges for the future development of CRISPR-Cas-based antimicrobials. Addressing these challenges would enable CRISPR therapies to become a practical solution for treating AMR infections in the future.202540440869
8167160.9893Metal complexes against multidrug-resistant bacteria: recent advances (2020-present). The increasing prevalence of multidrug-resistant (MDR) bacterial infections worldwide represents a critical challenge to contemporary healthcare, with high mortality rates attributed primarily to biofilm formation and the widespread dissemination of antibiotic resistance genes. Metal complexes have emerged as promising candidates for combating resistant pathogens owing to their distinctive multi-target mechanisms. These compounds demonstrate dual functionality by effectively penetrating bacterial biofilms while simultaneously exerting antimicrobial effects through multiple pathways, including the production of reactive oxygen species (ROS) and interference with essential metal homeostasis. The growing inadequacy of conventional antibiotics against resistant infections necessitates the development of novel metal-based antimicrobial agents with low resistance propensity, high efficacy, and minimal toxicity profiles. The clinical validation of metallodrugs like auranofin provides a crucial foundation for designing next-generation anti-MDR therapeutics. Notably, complexes of gold (Au), silver (Ag), copper (Cu), gallium (Ga), iridium (Ir), and ruthenium (Ru) demonstrate multifaceted mechanisms of action through selective targeting of bacterial resistance mechanisms. These attributes enable them to provide a strategic framework for developing next-generation metal-based antibacterials. This review systematically summarizes the recent advances (2020-present) in the design and application of the complexes of these six metals against MDR bacteria, emphasizing their structural motifs, antimicrobial potency, and mechanistic insights. The presented insights provide novel approaches to combat the intensifying global challenge of antibiotic resistance.202541091096
8170170.9893Exploring molecular mechanisms of drug resistance in bacteria and progressions in CRISPR/Cas9-based genome expurgation solutions. Antibiotic resistance in bacteria is a critical global health challenge, driven by molecular mechanisms such as genetic mutations, efflux pumps, enzymatic degradation of antibiotics, target site modifications, and biofilm formation. Horizontal gene transfer (HGT) further accelerates the spread of resistance genes across bacterial populations. These mechanisms contribute to the emergence of multidrug-resistant (MDR) strains, rendering conventional antibiotics ineffective. Recent advancements in CRISPR/Cas9-based genome editing offer innovative solutions to combat drug resistance. CRISPR/Cas9 enables precise targeting of resistance genes, facilitating their deletion or inactivation, and provides a potential method to eliminate resistance-carrying plasmids. Furthermore, phage-delivered CRISPR systems show promise in selectively killing resistant bacteria while leaving susceptible strains unaffected. Despite challenges such as efficient delivery, off-target effects, and potential bacterial resistance to CRISPR itself, ongoing research and technological innovations hold promise for using CRISPR-based antimicrobials to reverse bacterial drug resistance and develop more effective therapies. These abstract highlights the molecular mechanisms underlying bacterial drug resistance and explores how CRISPR/Cas9 technology could revolutionize treatment strategies against resistant pathogens.202540051841
9765180.9893Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as bla(NDM), mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs.202337235051
8596190.9893Stringent response-mediated ferroptosis-like death resistance underlies Novosphingobium persistence during ciprofloxacin stress. Antibiotics, as emerging hazardous materials in the environment, pose significant risks to ecosystems and contribute to the spread of antibiotic-resistant bacteria. Although extensive knowledge has been accumulated on antibiotic-resistance mechanisms in individual bacteria, less is understood about how the bacterial communities respond to antibiotic exposure under natural environmental conditions, where nutrient supplies are often limited and fluctuating. Here, we report that Novosphingobium dominated in a wetland bacterial community under 1 µg/mL ciprofloxacin (CIP) exposure and persisted during DL-serine hydroxamate-induced starvation, where the stringent response alarmer (p)ppGpp was detected. Metagenome sequencing revealed that genes associated with siderophore transport, cytochrome c, and glutathione S-transferase were significantly enriched in Novosphingobium, linking its dominance under CIP stress to iron homeostasis and oxidative stress responses. Further study on the survival mechanism of Novosphingobium pentaromativorans US6-1 under 8 µg/mL CIP stress demonstrated that stringent response regulated the growth rate and maintained cell viability by suppressing the TCA cycle and oxidative phosphorylation, deterring the entry of CIP and siderophore into cells, reducing intracellular ferrous iron and malondialdehyde, and balancing cellular redox status, thereby protecting cells from ferroptosis-like death. This study is the first to report Novosphingobium's dominance and persistence in a bacterial community during CIP stress in natural environmental conditions and to propose the stringent response-mediated ferroptosis-like death resistance as one of its key survival mechanisms.IMPORTANCEAntibiotics in the environment are increasingly recognized as a new class of pollutants that accelerate the evolutionary selection of antibiotic-resistant bacteria. However, little is known about how this selection occurs under natural conditions, including how specific bacteria taxa and mechanisms respond to particular antibiotics. This study reveals for the first time the selection effect of CIP on Novosphingobium under nutrient-limited conditions, during which stringent response and iron homeostasis play important roles. An innovative linkage between stringent response and ferroptosis-like death resistance is proposed in N. pentaromativorans US6-1, which serves as the CIP resistance mechanism for Novosphingobium. These findings may help inform strategies to combat antimicrobial resistance in the natural environment.202540952106