# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 515 | 0 | 0.8556 | The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:73167321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria. | 1998 | 9573189 |
| 801 | 1 | 0.8144 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |
| 541 | 2 | 0.8097 | A Teleost Bactericidal Permeability-Increasing Protein Kills Gram-Negative Bacteria, Modulates Innate Immune Response, and Enhances Resistance against Bacterial and Viral Infection. Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense. | 2016 | 27105425 |
| 47 | 3 | 0.8076 | LTP3 contributes to disease susceptibility in Arabidopsis by enhancing abscisic acid (ABA) biosynthesis. Several plant lipid transfer proteins (LTPs) act positively in plant disease resistance. Here, we show that LTP3 (At5g59320), a pathogen and abscisic acid (ABA)-induced gene, negatively regulates plant immunity in Arabidopsis. The overexpression of LTP3 (LTP3-OX) led to an enhanced susceptibility to virulent bacteria and compromised resistance to avirulent bacteria. On infection of LTP3-OX plants with Pseudomonas syringae pv. tomato, genes involved in ABA biosynthesis, NCED3 and AAO3, were highly induced, whereas salicylic acid (SA)-related genes, ICS1 and PR1, were down-regulated. Accordingly, in LTP3-OX plants, we observed increased ABA levels and decreased SA levels relative to the wild-type. We also showed that the LTP3 overexpression-mediated enhanced susceptibility was partially dependent on AAO3. Interestingly, loss of function of LTP3 (ltp3-1) did not affect ABA pathways, but resulted in PR1 gene induction and elevated SA levels, suggesting that LTP3 can negatively regulate SA in an ABA-independent manner. However, a double mutant consisting of ltp3-1 and silent LTP4 (ltp3/ltp4) showed reduced susceptibility to Pseudomonas and down-regulation of ABA biosynthesis genes, suggesting that LTP3 acts in a redundant manner with its closest homologue LTP4 by modulating the ABA pathway. Taken together, our data show that LTP3 is a novel negative regulator of plant immunity which acts through the manipulation of the ABA-SA balance. | 2016 | 26123657 |
| 804 | 4 | 0.8073 | Cloning, mutagenesis, and characterization of the microalga Parietochloris incisa acetohydroxyacid synthase, and its possible use as an endogenous selection marker. Parietochloris incisa is an oleaginous fresh water green microalga that accumulates an unusually high content of the valuable long-chain polyunsaturated fatty acid (LC-PUFA) arachidonic acid within triacylglycerols in cytoplasmic lipid bodies. Here, we describe cloning and mutagenesis of the P. incisa acetohydroxyacid synthase (PiAHAS) gene for use as an herbicide resistance selection marker for transformation. Use of an endogenous gene circumvents the risks and regulatory difficulties of cultivating antibiotic-resistant organisms. AHAS is present in plants and microorganisms where it catalyzes the first essential step in the synthesis of branched-chain amino acids. It is the target enzyme of the herbicide sulfometuron methyl (SMM), which effectively inhibits growth of bacteria and plants. Several point mutations of AHAS are known to confer herbicide resistance. We cloned the cDNA that encodes PiAHAS and introduced a W605S point mutation (PimAHAS). Catalytic activity and herbicide resistance of the wild-type and mutant proteins were characterized in the AHAS-deficient E. coli, BUM1 strain. Cloned PiAHAS wild-type and mutant genes complemented AHAS-deficient bacterial growth. Furthermore, bacteria expressing the mutant PiAHAS exhibited high resistance to SMM. Purified PiAHAS wild-type and mutant proteins were assayed for enzymatic activity and herbicide resistance. The W605S mutation was shown to cause a twofold decrease in enzymatic activity and in affinity for the Pyruvate substrate. However, the mutant exhibited 7 orders of magnitude higher resistance to the SMM herbicide than that of the wild type. | 2012 | 22488216 |
| 532 | 5 | 0.8063 | Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain. | 1999 | 10514571 |
| 810 | 6 | 0.8051 | Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome. | 2021 | 34537868 |
| 332 | 7 | 0.8048 | Analysis and Reconstitution of the Menaquinone Biosynthesis Pathway in Lactiplantibacillus plantarum and Lentilactibacillus buchneri. In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD(600) increase from 3.0 to 5.0 upon induction. | 2021 | 34361912 |
| 526 | 8 | 0.8043 | Role of rhomboid proteases in bacteria. The first member of the rhomboid family of intramembrane serine proteases in bacteria was discovered almost 20years ago. It is now known that rhomboid proteins are widely distributed in bacteria, with some bacteria containing multiple rhomboids. At the present time, only a single rhomboid-dependent function in bacteria has been identified, which is the cleavage of TatA in Providencia stuartii. Mutational analysis has shown that loss of the GlpG rhomboid in Escherichia coli alters cefotaxime resistance, loss of the YqgP (GluP) rhomboid in Bacillus subtilis alters cell division and glucose uptake, and loss of the MSMEG_5036 and MSMEG_4904 genes in Mycobacterium smegmatis results in altered colony morphology, biofilm formation and antibiotic susceptibilities. However, the cellular substrates for these proteins have not been identified. In addition, analysis of the rhombosortases, together with their possible Gly-Gly CTERM substrates, may shed new light on the role of these proteases in bacteria. This article is part of a Special Issue entitled: Intramembrane Proteases. | 2013 | 23518036 |
| 9998 | 9 | 0.8042 | mSphere of Influence: Uncovering New Ways To Control Multidrug Resistance by Dissecting Essential Cell Processes. Ana L. Flores-Mireles works in the fields of microbial pathogenesis and development of new therapeutics. In this mSphere of Influence article, she reflects on how the papers "Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously" by H. Cho et al. (Nat Microbiol 1:16172, 2016, https://doi.org/10.1038/nmicrobiol.2016.172) and "A comprehensive, CRISPR-based functional analysis of essential genes in bacteria" by J. M. Peters et al. (Cell 165:1493-1506, 2016, https://doi.org/10.1016/j.cell.2016.05.003) made an impact on her approach to dissecting essential processes to understand microbial pathogenesis in catheter-associated urinary tract infections and generate an effective treatment with reduced likelihood of developing resistance. | 2019 | 31554727 |
| 50 | 10 | 0.8039 | OsNPR1 Enhances Rice Resistance to Xanthomonas oryzae pv. oryzae by Upregulating Rice Defense Genes and Repressing Bacteria Virulence Genes. The bacteria pathogen Xanthomonas oryzae pv. oryzae (Xoo) infects rice and causes the severe disease of rice bacteria blight. As the central regulator of the salic acid (SA) signaling pathway, NPR1 is responsible for sensing SA and inducing the expression of pathogen-related (PR) genes in plants. Overexpression of OsNPR1 significantly increases rice resistance to Xoo. Although some downstream rice genes were found to be regulated by OsNPR1, how OsNPR1 affects the interaction of rice-Xoo and alters Xoo gene expression remains unknown. In this study, we challenged the wild-type and OsNPR1-OE rice materials with Xoo and performed dual RNA-seq analyses for the rice and Xoo genomes simultaneously. In Xoo-infected OsNPR1-OE plants, rice genes involved in cell wall biosynthesis and SA signaling pathways, as well as PR genes and nucleotide-binding site-leucine-rich repeat (NBS-LRR) genes, were significantly upregulated compared to rice variety TP309. On the other hand, Xoo genes involved in energy metabolism, oxidative phosphorylation, biosynthesis of primary and secondary metabolism, and transportation were repressed. Many virulence genes of Xoo, including genes encoding components of type III and other secretion systems, were downregulated by OsNPR1 overexpression. Our results suggest that OsNPR1 enhances rice resistance to Xoo by bidirectionally regulating gene expression in rice and Xoo. | 2023 | 37240026 |
| 516 | 11 | 0.8038 | Role of Iron-Containing Alcohol Dehydrogenases in Acinetobacter baumannii ATCC 19606 Stress Resistance and Virulence. Most bacteria possess alcohol dehydrogenase (ADH) genes (Adh genes) to mitigate alcohol toxicity, but these genes have functions beyond alcohol degradation. Previous research has shown that ADH can modulate quorum sensing in Acinetobacter baumannii, a rising opportunistic pathogen. However, the number and nature of Adh genes in A. baumannii have not yet been fully characterized. We identified seven alcohol dehydrogenases (NAD(+)-ADHs) from A. baumannii ATCC 19606, and examined the roles of three iron-containing ADHs, ADH3, ADH4, and ADH6. Marker-less mutation was used to generate Adh3, Adh4, and Adh6 single, double, and triple mutants. Disrupted Adh4 mutants failed to grow in ethanol-, 1-butanol-, or 1-propanol-containing mediums, and recombinant ADH4 exhibited strongest activity against ethanol. Stress resistance assays with inorganic and organic hydroperoxides showed that Adh3 and Adh6 were key to oxidative stress resistance. Virulence assays performed on the Galleria mellonella model organism revealed that Adh4 mutants had comparable virulence to wild-type, while Adh3 and Adh6 mutants had reduced virulence. The results suggest that ADH4 is primarily involved in alcohol metabolism, while ADH3 and ADH6 are key to stress resistance and virulence. Further investigation into the roles of other ADHs in A. baumannii is warranted. | 2021 | 34576087 |
| 42 | 12 | 0.8038 | Suppression of the rice fatty-acid desaturase gene OsSSI2 enhances resistance to blast and leaf blight diseases in rice. Fatty acids and their derivatives play important signaling roles in plant defense responses. It has been shown that suppressing a gene for stearoyl acyl carrier protein fatty-acid desaturase (SACPD) enhances the resistance of Arabidopsis (SSI2) and soybean to multiple pathogens. In this study, we present functional analyses of a rice homolog of SSI2 (OsSSI2) in disease resistance of rice plants. A transposon insertion mutation (Osssi2-Tos17) and RNAi-mediated knockdown of OsSSI2 (OsSSI2-kd) reduced the oleic acid (18:1) level and increased that of stearic acid (18:0), indicating that OsSSI2 is responsible for fatty-acid desaturase activity. These plants displayed spontaneous lesion formation in leaf blades, retarded growth, slight increase in endogenous free salicylic acid (SA) levels, and SA/benzothiadiazole (BTH)-specific inducible genes, including WRKY45, a key regulator of SA/BTH-induced resistance, in rice. Moreover, the OsSSI2-kd plants showed markedly enhanced resistance to the blast fungus Magnaporthe grisea and leaf-blight bacteria Xanthomonas oryzae pv. oryzae. These results suggest that OsSSI2 is involved in the negative regulation of defense responses in rice, as are its Arabidopsis and soybean counterparts. Microarray analyses identified 406 genes that were differentially expressed (>or=2-fold) in OsSSI2-kd rice plants compared with wild-type rice and, of these, approximately 39% were BTH responsive. Taken together, our results suggest that induction of SA-responsive genes, including WRKY45, is likely responsible for enhanced disease resistance in OsSSI2-kd rice plants. | 2009 | 19522564 |
| 103 | 13 | 0.8038 | IL-1 receptor regulates S100A8/A9-dependent keratinocyte resistance to bacterial invasion. Previously, we reported that epithelial cells respond to exogenous interleukin (IL)-1α by increasing expression of several genes involved in the host response to microbes, including the antimicrobial protein complex calprotectin (S100A8/A9). Given that S100A8/A9 protects epithelial cells against invading bacteria, we studied whether IL-1α augments S100A8/A9-dependent resistance to bacterial invasion of oral keratinocytes. When inoculated with Listeria monocytogenes, human buccal epithelial (TR146) cells expressed and released IL-1α. Subsequently, IL-1α-containing media from Listeria-infected cells increased S100A8/A9 gene expression in naïve TR146 cells an IL-1 receptor (IL-1R)-dependent manner. Incubation with exogenous IL-1α decreased Listeria invasion into TR146 cells, whereas invasion increased with IL-1R antagonist. Conversely, when S100A8/A9 genes were knocked down using short hairpin RNA (shRNA), TR146 cells responded to exogenous IL-1α with increased intracellular bacteria. These data strongly suggest that infected epithelial cells release IL-1α to signal neighboring keratinocytes in a paracrine manner, promoting S100A8/A9-dependent resistance to invasive L. monocytogenes. | 2012 | 22031183 |
| 564 | 14 | 0.8034 | Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system. | 2014 | 24145139 |
| 311 | 15 | 0.8030 | Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection. Pseudomonas fluorescens Ps_77 is a blue-pigmenting strain able to cause food product discoloration, causing relevant economic losses especially in the dairy industry. Unlike non-pigmenting P. fluorescens, blue pigmenting strains previously were shown to carry a genomic region that includes homologs of trpABCDF genes, pointing at a possible role of the tryptophan biosynthetic pathway in production of the pigment. Here, we employ random mutagenesis to first identify the genes involved in blue-pigment production in P. fluorescens Ps_77 and second to investigate the biological function of the blue pigment. Genetic analyses based on the mapping of the random insertions allowed the identification of eight genes involved in pigment production, including the second copy of trpB (trpB_1) gene. Phenotypic characterization of Ps_77 white mutants demonstrated that the blue pigment increases oxidative-stress resistance. Indeed, while Ps_77 was growing at a normal rate in presence of 5 mM of H(2)O(2), white mutants were completely inhibited. The antioxidative protection is not available for non-producing bacteria in co-culture with Ps_77. | 2019 | 31027811 |
| 625 | 16 | 0.8030 | Identification of hopanoid biosynthesis genes involved in polymyxin resistance in Burkholderia multivorans. A major challenge to clinical therapy of Burkholderia cepacia complex (Bcc) pulmonary infections is their innate resistance to a broad range of antimicrobials, including polycationic agents such as aminoglycosides, polymyxins, and cationic peptides. To identify genetic loci associated with this phenotype, a transposon mutant library was constructed in B. multivorans ATCC 17616 and screened for increased susceptibility to polymyxin B. Compared to the parent strain, mutant 26D7 exhibited 8- and 16-fold increases in susceptibility to polymyxin B and colistin, respectively. Genetic analysis of mutant 26D7 indicated that the transposon inserted into open reading frame (ORF) Bmul_2133, part of a putative hopanoid biosynthesis gene cluster. A strain with a mutation in another ORF in this cluster, Bmul_2134, was constructed and named RMI19. Mutant RMI19 also had increased polymyxin susceptibility. Hopanoids are analogues of eukaryotic sterols involved in membrane stability and barrier function. Strains with mutations in Bmul_2133 and Bmul_2134 showed increased permeability to 1-N-phenylnaphthylamine in the presence of increasing concentrations of polymyxin, suggesting that the putative hopanoid biosynthesis genes are involved in stabilizing outer membrane permeability, contributing to polymyxin resistance. Results from a dansyl-polymyxin binding assay demonstrated that polymyxin B does not bind well to the parent or mutant strains, suggesting that Bmul_2133 and Bmul_2134 contribute to polymyxin B resistance by a mechanism that is independent of lipopolysaccharide (LPS) binding. Through this work, we propose a role for hopanoid biosynthesis as part of the multiple antimicrobial resistance phenotype in Bcc bacteria. | 2012 | 22006009 |
| 204 | 17 | 0.8028 | RNA modification enzymes encoded by the gid operon: Implications in biology and virulence of bacteria. Ribonucleic acid (RNA) molecules consist of numerous chemically modified nucleosides that are highly conserved in eukarya, archeae, and bacteria, while others are unique to each domain of life. In bacteria, hundreds of RNA modification enzymes have been identified and implicated in biological pathways associated with many cell processes. The glucose-inhibited division (gid) operon encodes genes for two RNA modification enzymes named GidA and GidB. Studies have shown GidA is essential for the proper biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) of bacterial transfer RNA (tRNA) with GidB responsible for the methylation of the 16S ribosomal RNA (rRNA). Furthermore, deletion of gidA and gidB has shown to alter numerous bacterial properties like virulence, stress response, morphology, growth, antibiotic susceptibility, and others. In this review, we discuss the present knowledge of the RNA modification enzymes GidA and GidB, and their potential role in the biology and virulence of bacteria. | 2015 | 26427881 |
| 126 | 18 | 0.8023 | Single-gene knockout of a novel regulatory element confers ethionine resistance and elevates methionine production in Corynebacterium glutamicum. Despite the availability of genome data and recent advances in methionine regulation in Corynebacterium glutamicum, sulfur metabolism and its underlying molecular mechanisms are still poorly characterized in this organism. Here, we describe the identification of an ORF coding for a putative regulatory protein that controls the expression of genes involved in sulfur reduction dependent on extracellular methionine levels. C. glutamicum was randomly mutagenized by transposon mutagenesis and 7,000 mutants were screened for rapid growth on agar plates containing the methionine antimetabolite D,L-ethionine. In all obtained mutants, the site of insertion was located in the ORF NCgl2640 of unknown function that has several homologues in other bacteria. All mutants exhibited similar ethionine resistance and this phenotype could be transferred to another strain by the defined deletion of the NCgl2640 gene. Moreover, inactivation of NCgl2640 resulted in significantly increased methionine production. Using promoter lacZ-fusions of genes involved in sulfur metabolism, we demonstrated the relief of L-methionine repression in the NCgl2640 mutant for cysteine synthase, o-acetylhomoserine sulfhydrolase (metY) and sulfite reductase. Complementation of the mutant strain with plasmid-borne NCgl2640 restored the wild-type phenotype for metY and sulfite reductase. | 2005 | 15668756 |
| 3062 | 19 | 0.8021 | Characterization of organotin-resistant bacteria from boston harbor sediments. Organotins are widely used in agriculture and industry. They are toxic to a variety of organisms including bacteria, although little is known of their physiology and ecology. Bacteria resistant to six organotins-tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and monophenyltin (MPT)-were isolated from Boston Harbor sediments, Massachusetts, USA. Bacteria resistant to each of the organotins, except DPT, were isolated directly from estuarine sediments. Viability of the organotin-resistant bacteria on serial transfer in the laboratory ranged from 80 to 91%. Each isolate was screened for resistance to the other organotins. All of 250 isolates were resistant to at least two organotins. No DPT-resistant isolates were found on initial isolation on DPT, although there was DPT resistance among the other organotin-resistant bacteria. Eighty percent of TBT-resistant bacteria were TPT-resistant, suggesting that antifouling paints containing TPT will not be a suitable substitute for TBT in paints designed to inhibit microbial biofilms. Debutylation reduced toxicity in some cases while dephenylation did not. Thus, even though trisubstituted organotins are generally believed to be more toxic than di- or monosubstituted organotins, this may not always be the case, and more than one mechanism of resistance may be involved. All the bacteria were resistant to at least six of eight heavy metals tested, suggesting that resistance to heavy metals may be associated with resistance to organotins. | 1998 | 9732471 |