# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7886 | 0 | 0.9943 | Resistance of anammox granular sludge to copper nanoparticles and oxytetracycline and restoration of performance. Nanoparticles and antibiotics, the two most frequently detected emerging pollutants from different wastewater sources, are eventually discharged into wastewater treatment plants. In this study, the widely used materials CuNPs and oxytetracycline (OTC) were selected as target pollutants to investigate their joint effects on anaerobic ammonium oxidation (anammox). The results indicated that the environmental concentration slightly inhibited the performance of the reactors, while the performance rapidly deteriorated within a week under high-level combined shocks (5.0 mg L(-1) CuNPs and 2.0 mg L(-1) OTC). After the second shock (2.5 mg L(-1) CuNPs and 2.0 mg L(-1) OTC), the resistance of anammox bacteria was enhanced, with an elevated relative abundance of Candidatus Kuenenia and absolute abundance of hzsA, nirS, and hdh. Moreover, the extracellular polymeric substance (EPS) content and specific anammox activity (SAA) showed corresponding changes. Improved sludge resistance was observed with increasing CuNP and OTC doses, which accelerated the recovery of performance. | 2020 | 32244076 |
| 8132 | 1 | 0.9942 | Autoclave treatment of pig manure does not reduce the risk of transmission and transfer of tetracycline resistance genes in soil: successive determinations with soil column experiments. The increasing use of antibiotics, especially tetracycline, in livestock feed adversely affects animal health and ecological integrity. Therefore, approaches to decrease this risk are urgently needed. High temperatures facilitate antibiotic degradation; whether this reduces transmission risk and transfer of tetracycline-resistant bacteria (TRBs) and tetracycline resistance genes (TRGs) in soil remains unknown. Successive experiments with soil columns evaluated the effects of autoclaving pig manure (APM) on soil TRB populations and TRGs over time at different soil depths. The data showed sharp increases in TRB populations and TRGs in each subsoil layer of PM (non-APM) and APM treatments within 30 days, indicating that TRBs and TRGs transferred rapidly. The level of TRBs in the upper soil layers was approximately 15-fold higher than in subsoils. TRBs were not dependent on PM and APM levels, especially in the late phase. Nevertheless, higher levels of APM led to rapid expansion of TRBs as compared to PM. Moreover, temporal changes in TRB frequencies in total culturable bacteria (TCBs) were similar to TRBs, indicating that the impact of PM or APM on TRBs was more obvious than for TCBs. TRBs were hypothesized to depend on the numbers of TRGs and indigenous recipient bacteria. In the plough layer, five TRGs (tetB, tetG, tetM, tetW, and tetB/P) existed in each treatment within 150 days. Selective pressure of TC may not be a necessary condition for the transfer and persistence of TRGs in soil. High temperatures might reduce TRBs in PM, which had minimal impact on the transmission and transfer of TRGs in soil. Identifying alternatives to decrease TRG transmission remains a major challenge. | 2016 | 26517996 |
| 8541 | 2 | 0.9941 | Insights into the response of anammox process to oxytetracycline: Impacts of static magnetic field. The long-term effects of oxytetracycline (OTC) with a high concentration on the anaerobic ammonium oxidation (Anammox) process were evaluated, and the role of static magnetic field (SMF) was further explored. The stress of OTC at 50 mg/L had little effect on the nitrogen removal of anammox process at the first 16 days. With the continuous addition of OTC and the increase of nitrogen loading, the OTC inhibited the nitrogen removal and anammox activity severely. During the 32 days of recovery period without OTC addition, the nitrogen removal was further deteriorated, indicating the inhibition of OTC on anammox activity was irreversible and persistent. The application of SMF alleviated the inhibition of OTC on anammox to some extent, and the specific anammox activity was enhanced by 47.1% compared to the system without SMF during the OTC stress stage. Antibiotic efflux was the major resistance mechanism in the anammox process, and tetA, tetG and rpsJ were the main functional antibiotic resistance genes. The addition of OTC weakened the metabolic interactions between the anammox bacteria and the symbiotic bacteria involved in the metabolism of cofactors and secondary metabolites, leading to the poor anammox activity. The adaptability of microbes to the OTC stress was improved by the application of SMF, which can enhance the metabolic pathways related to bacterial growth and resistance to environmental stress. | 2023 | 37586490 |
| 7935 | 3 | 0.9939 | Removal of antibiotic resistance genes by Cl(2)-UV process: Direct UV damage outweighs free radicals in effectiveness. Antibiotic resistance genes (ARGs) pose significant environmental health problems and have become a major global concern. This study investigated the efficacy and mechanism of the Cl(2)-UV process (chlorine followed by UV irradiation) for removing ARGs in various forms. The Cl(2)-UV process caused irreversible damage to nearly all ARB at typical disinfectant dosages. In solutions containing only extracellular ARGs (eARGs), the Cl₂-UV process achieved over 99.0 % degradation of eARGs. When both eARGs and intracellular ARGs (iARGs) were present, the process reached a 97.2 % removal rate for iARGs. While the abundance of eARGs initially increased due to the release of iARGs from lysed cells during pre-chlorination, subsequent UV irradiation rapidly degraded the released eARGs, restoring their abundance to near-initial levels by the end of the Cl₂-UV process. Analysis of the roles in degrading eARGs and iARGs during the Cl(2)-UV process revealed that UV, rather than free radicals, was the dominant factor causing ARG damage. Pre-chlorination enhanced direct UV damage to eARGs and iARGs by altering plasmid conformation and promoting efficient damage to high UV-absorbing cellular components. Furthermore, no further natural transformation of residual ARGs occurred following the Cl(2)-UV treatment. This study demonstrated strong evidence for the effectiveness of the Cl(2)-UV process in controlling antibiotic resistance. | 2025 | 40048777 |
| 7872 | 4 | 0.9939 | Quaternary ammonium compounds promoted anoxic sludge granulation and altered propagation risk of intracellular and extracellular antibiotic resistance genes. Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of α-Helix/(β-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention. | 2023 | 36444811 |
| 7914 | 5 | 0.9939 | Response of partial nitrification sludge to the single and combined stress of CuO nanoparticles and sulfamethoxazole antibiotic on microbial activity, community and resistance genes. Considering the inevitable release of antibiotics and nanoparticles (NPs) into the nitrogen containing wastewater, the combined impact of CuO NPs and sulfamethoxazole (SMX) antibiotic on partial nitrification (PN) process was investigated in four identical reactors. Results showed that the bioactivity of the aerobic ammonia-oxidizing bacteria (AOB) decreased by half after they were exposed to the combination of CuO NPs and SMX for short-term; however, there was no obvious variation in the bioactivity of AOB when they were exposed to either CuO NPs or SMX. During long-term exposure, the ammonia removal efficiency (ARE) of CuO NPs improved whereas that of SMX decreased, while the combination of CuO NPs and SMX significantly decreased ARE from 62.9% (in control) to 38.2% and had an unsatisfactory self-recovery performance. The combination of CuO NPs and SMX significantly changed the composition of microbial community, decreased the abundance of AOB, and significantly suppressed PN process. Reegarding the resistance genes, the CuO NPs-SMX combination did not improve the expression of copA, cusA, sul1 and sul2; however, it significantly induced the expression of sul3 and sulA. | 2020 | 32050397 |
| 7884 | 6 | 0.9938 | Underlying the inhibition mechanisms of sulfate and lincomycin on long-term anaerobic digestion: Microbial response and antibiotic resistance genes distribution. This study evaluated the resilience of a long-term anaerobic treatment system exposed to sulfate, lincomycin (LCM) and their combined stress. LCM was found to impede anaerobic propionate degradation, while sulfate for restraining methanogenic acetate utilization. The combined stress, with influent LCM of 200 mg/L and sulfate of 1404 mg/L, revealed severer inhibition on anaerobic digestion than individual inhibition, leading to 73.9 % and 38.5 % decrease in methane production and sulfate removal, respectively. Suppression on propionate-oxidizing bacteria like unclassified_f__Anaerolineae and unclassified_f__Syntrophaceae further demonstrated LCM's inhibitory effect on propionate degradation. Besides, the down-regulation of genes encoding dissimilatory sulfate reduction enzymes caused by LCM triggered great inhibition on sulfate reduction. A notable increase in ARGs was detected under sulfate-stressed condition, owing to its obvious enrichment of tetracycline-resistant genes. Genera including unclassified_f__Syntrophaceae, unclassified_f__Geobacteraceae and unclassified_f__Anaerolineaceae were identified as dominant host of ARGs and enriched by sulfate addition. Overall, these results could provide the theoretical basis for further enhancement on anaerobic digestion of pharmaceutical wastewater containing sulfate and lincomycin. | 2024 | 38185146 |
| 7885 | 7 | 0.9938 | Susceptibility, resistance and resilience of anammox biomass to nanoscale copper stress. The increasing use of engineered nanoparticles (NPs) poses an emerging challenge to biological wastewater treatment. The long-term impact of CuNPs on anaerobic ammonium oxidation (anammox) process was firstly investigated in this study. The nitrogen removal capacity of anammox reactor was nearly deprived within 30days under the stress of 5.0mgL(-1) CuNPs and the relative abundance of anammox bacteria (Ca. Kuenenia) was decreased from 29.59% to 17.53%. Meanwhile, copper resistance genes associated with the Cus, Cop and Pco systems were enriched to eliminate excess intracellular copper. After the withdrawal of CuNPs from the influent, the nitrogen removal capacity of anammox biomass recovered completely within 70days. Overall, anammox biomass showed susceptibility, resistance and resilience to the stress of CuNPs. Therefore, the potential impacts of ENPs on anammox-based processes should be of great concern. | 2017 | 28550773 |
| 7910 | 8 | 0.9937 | Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management. | 2025 | 40199074 |
| 7908 | 9 | 0.9937 | DNA-based stable isotope probing deciphered the active denitrifying bacteria and triclosan-degrading bacteria participating in granule-based partial denitrification process under triclosan pressure. Granule-based partial denitrification (PD) is a technology that can supply stable nitrite for applying anaerobic ammonia oxidation in wastewater treatment, and triclosan (TCS) is a frequently detected antibacterial agent in wastewater treatment plants, therefore it is possible that TCS could enter into wastewater that is treated using PD technology. However, the active microorganisms responsible for PD and TCS removing in granule-based PD system have not been clearly identified and it is currently not clear how TCS affects the PD process. In this study, the impacts of TCS on PD performance, PD microbial community, antibiotic resistance genes (ARGs), active PD bacteria and TCS-degrading bacteria in a granule-based PD system were investigated. 3 mg/L TCS had adverse influence on PD process, but PD system could recover gradually after inhibiting of 10 days. After a period of domestication, PD granular sludge could achieve 10.66% of TCS degradation efficiency and 43.62% of TCS adsorption efficiency. Microbes might increase their resistance to TCS by increasing the secretion of extracellular polymeric substances, and the secretion of protein might play a more pivotal role than the secretion of polysaccharides in resisting TCS. The short-term shock of TCS might cause the propagation of acrA-03, while the long-term operation of TCS could propagate fabK and intI1. DNA stable isotope probing assay indicated that Thauera was active PD bacteria and TCS-degrading bacteria in the granule-based PD system, and it could contribute to nitrite accumulation and TCS degradation, simultaneously. | 2022 | 34979468 |
| 7854 | 10 | 0.9937 | Removal of antibiotic resistant bacteria and plasmid-encoded antibiotic resistance genes in water by ozonation and electro-peroxone process. The electro-peroxone (EP) process is an electricity-based oxidation process enabled by electrochemically generating hydrogen peroxide (H(2)O(2)) from cathodic oxygen (O(2)) reduction during ozonation. In this study, the removal of antibiotic resistant bacteria (ARB) and plasmid-encoded antibiotic resistance genes (ARGs) during groundwater treatment by ozonation alone and the EP process was compared. Owing to the H(2)O(2)-promoted ozone (O(3)) conversion to hydroxyl radicals (•OH), higher •OH exposures, but lower O(3) exposures were obtained during the EP process than ozonation alone. This opposite change of O(3) and •OH exposures decreases the efficiency of ARB inactivation and ARG degradation moderately during the EP process compared with ozonation alone. These results suggest that regarding ARB inactivation and ARG degradation, the reduction of O(3) exposures may not be fully counterbalanced by the rise of •OH exposures when changing ozonation to the EP process. However, due to the rise of •OH exposure, plasmid DNA was more effectively cleaved to shorter fragments during the EP process than ozonation alone, which may decrease the risks of natural transformation of ARGs. These findings highlight that the influence of the EP process on ARB and ARG inactivation needs to be considered when implementing this process in water treatment. | 2023 | 36738938 |
| 7912 | 11 | 0.9936 | Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression. The effectiveness of hypochlorites (NaClO and Ca(ClO)(2)) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)(2) exhibited distinct effects on ARGs fates. Ca(ClO)(2) was effective in removing all investigated ARGs, and the efficiency was highly dose-dependent. Unexpectedly, the NaClO treatment attenuated ARGs with lower efficiency and even caused the propagation of certain ARGs (i.e., aadA1 and tetQ) at higher doses. The extracellular polymeric substances dissolution and membrane integrity suggested that unstable NaClO had acute effects on bacteria initially, while it was ineffective to further attenuate ARGs released from hosts due to the rapid consumption of oxidative ClO(-). Without lasting and strong oxidative stress, the microbial activities of tolerant ARGs hosts will partially recover and then contribute to the ARGs dissemination across genera. In contrast, solid-state Ca(ClO)(2) was slowly released and exhibited prolonged effects on bacteria by disrupting cell membranes and removing the susceptible ARGs released from hosts. Furthermore, bacterial taxa-ARG network analysis indicated that Ca(ClO)(2) reduced the abundance of potential hosts, and the metabolic pathway and gene expression related to ARGs propagation were significantly downregulated by Ca(ClO)(2), which contributed to efficient ARGs attenuation. | 2021 | 33265039 |
| 7985 | 12 | 0.9936 | Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. Climate change is expected to increase the frequency of severe drought events followed by heavy rainfall, which will influence growth and activity of soil microorganisms, through osmotic stress and changes in nutrient concentration. There is evidence of rapid recovery of processes and adaptation of communities in soils regularly experiencing drying/rewetting and lower resistance and resilience in nonadapted soils. A microcosm-based study of ammonia-oxidising archaea (AOA) and bacteria (AOB), employing a grassland soil that rarely experiences drought, was used to test this hypothesis and also whether AOB were more resistant and resilient, through greater tolerance of high ammonia concentrations produced during drought and rewetting. Treated soils were dried, incubated for 3 weeks, rewetted, incubated for a further 3 weeks and compared to untreated soils, maintained at a constant moisture content. Nitrate accumulation and AOA and AOB abundance (abundance of respective amoA genes) and community composition (DGGE analysis of AOA amoA and AOB 16S rRNA genes) were poorly adapted to drying-rewetting. AOA abundance and community composition were less resistant than AOB during drought and less resilient after rewetting, at times when ammonium concentration was higher. Data provide evidence for poor adaptation of microbial communities and processes to drying-rewetting in soils with no history of drought and indicate niche differentiation of AOA and AOB associated with high ammonia concentration. | 2014 | 25070168 |
| 7920 | 13 | 0.9936 | Enhanced removal of antibiotics and decreased antibiotic resistance genes in the photo-sequencing batch reactor during the aquaculture wastewater treatment. The performance of photo-sequencing batch reactor (PSBR) in removing multiple antibiotics and nutrients from aquaculture wastewater as well as the antibiotic resistance genes (ARGs) proliferation were firstly investigated during the long-term experiments. The operational conditions (i.e. light intensity, light time, aeration and solid retention time) were optimised to realise the simultaneous removal of antibiotics and nutrients. It was found that, compared with traditional SBR, PSBR has similar nutrient removal rate and a 30% higher antibiotics removal rate due to the corporation of microalgae (Chlorella) and bacteria, and the absolute abundance of ARGs decreased by 78% in PSBR. Further investigation showed that PSBR had certain advantages in removing quinolones and the corresponding removal rate could reach up to 90%. In terms of the mechanisms, the possible metabolic pathway of antibiotic was analysed and the intermediate metabolites were different from that of the reported studies. The microbial communities were also affected by microalgae and the relative abundance of certain bacteria (such as members of the families Rhodocyclaceae and Burkholderiaceae), which were positively correlated with some ARGs, decreased in PSBR. This study provides an alternative and effective method to aquaculture wastewater treatment, which present high nutrients and antibiotics removal efficiencies and low ARGs transmission. | 2022 | 34006208 |
| 7897 | 14 | 0.9936 | Enhanced removal of antibiotic and antibiotic resistance genes by coupling biofilm electrode reactor and manganese ore substrate up-flow microbial fuel cell constructed wetland system. Manganese ore substrate up-flow microbial fuel cell constructed wetland (UCW-MFC(Mn)) as an innovative wastewater treatment technology for purifying antibiotics and electricity generation with few antibiotic resistance genes (ARGs) generation has attracted attention. However, antibiotic purifying effects should be further enhanced. In this study, a biofilm electrode reactor (BER) that needs direct current driving was powered by a Mn ore anode (UCW-MFC(Mn)) to form a coupled system without requiring direct-current source. Removal efficiencies of sulfadiazine (SDZ), ciprofloxacin (CIP) and the corresponding ARGs in the coupled system were compared with composite (BER was powered by direct-current source) and anaerobic systems (both of BER and UCW-MFC were in open circuit mode). The result showed that higher antibiotic removal efficiency (94% for SDZ and 99.1% for CIP) in the coupled system was achieved than the anaerobic system (88.5% for SDZ and 98.2% for CIP). Moreover, electrical stimulation reduced antibiotic selective pressure and horizontal gene transfer potential in BER, and UCW-MFC further reduced ARG abundances by strengthening the electro-adsorption of ARG hosts determined by Network analysis. Bacterial community diversity continuously decreased in BER while it increased in UCW-MFC, indicating that BER mitigated the toxicity of antibiotic. Degree of modularity, some functional bacteria (antibiotic degrading bacteria, fermentative bacteria and EAB), and P450 enzyme related to antibiotic and xenobiotics biodegradation genes were enriched in electric field existing UCW-MFC, accounting for the higher degradation efficiency. In conclusion, this study provided an effective strategy for removing antibiotics and ARGs in wastewater by operating a BER-UCW-MFC coupled system. | 2023 | 37437616 |
| 8512 | 15 | 0.9935 | Dissolved oxygen facilitates efficiency of chlorine disinfection for antibiotic resistance. Controlling the dissemination of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) is a global concern. While commonly used chlorine disinfectants can damage or even kill ARB, dissolved oxygen (DO) may affect the formation of reactive chlorine species. This leads to the hypothesis that DO may play roles in mediating the effectiveness of chlorine disinfection for antibiotic resistance. To this end, this study investigated the impacts of DO on the efficiency of chlorine disinfection for antibiotic resistance. The results revealed that DO could increase the inactivation efficiency of ARB under chloramine and free chlorine exposure at practically relevant concentrations. Reactive species induced by DO, including H(2)O(2), O(2)(-), and OH, inactivated ARB strains by triggering oxidative stress response and cell membrane damage. In addition, the removal efficiency of extracellular ARGs (i.e. tetA and bla(TEM)) was enhanced with increasing dosage of free chlorine or chloramine under aerobic conditions. DO facilitated the fragmentation of plasmids, contributing to the degradation of extracellular ARGs under exposure to chlorine disinfectants. The findings suggested that DO facilitates disinfection efficiency for antibiotic resistance in water treatment systems. | 2024 | 38750753 |
| 7911 | 16 | 0.9935 | Biochar induced inhibitory effects on intracellular and extracellular antibiotic resistance genes in anaerobic digestion of swine manure. Distribution of intracellular (iARGs) and extracellular ARGs (eARGs) in manure anaerobic digestion (AD) process coupled with two types of biochar (BC and BP) were investigated. And the effects of biochar on the conjugation transfer of ARGs were explored by deciphering the interaction of biochar with bacterial stress responses, physiological metabolism and antibiotic resistances. Results showed that AD process could effectively remove all the detected eARGs with efficiency of 47.4-98.2%. The modified biochar (BP) with larger specific surface area (SSA) was propitious to decrease the absolute copy number of extracellular resistance genes. AD process could effectively remove iARGs by inhibiting the growth of host bacteria. The results of structural equation models (SEM) indicated that biochar put indirect influences on the fate of ARGs (λ = -0.23, P > 0.05). Analysis on oxidative stress levels, antioxidant capacity, DNA damage-induced response (SOS) response and energy generation process demonstrated that biochar induced the oxidative stress response of microorganisms and enhanced the antioxidant capacity of bacteria. The elevated antioxidant capacity negatively affected SOS response, amplified cell membrane damage and further weakened the energy generation process, resulted in the inhibition of horizontal transfer of ARGs. | 2022 | 35609652 |
| 8526 | 17 | 0.9935 | Size-dependent enhancement on conjugative transfer of antibiotic resistance genes by micro/nanoplastics. Recently micro/nanoplastics (MNPs) have raised intensive concerns due to their possible enhancement effect on the dissemination of antibiotic genes. Unfortunately, data is still lacking to verify the effect. In the study, the influence of polystyrene MNPs on the conjugative gene transfer was studied by using E. coli DH5ɑ with RP4 plasmid as the donor bacteria and E. coli K12 MG1655 as the recipient bacteria. We found that influence of MNPs on gene transfer was size-dependent. Small MNPs (10 nm in radius) caused an increase and then a decrease in gene transfer efficiency with their concentration increasing. Moderate-sized MNPs (50 nm in radius) caused an increase in gene transfer efficiency. Large MNPs (500 nm in radius) had almost no influence on gene transfer. The gene transfer could be further enhanced by optimizing mating time and mating ratio. Scavenging reactive oxygen species (ROS) production did not affect the cell membrane permeability, indicating that the increase in cell membrane permeability was not related to ROS production. The mechanism of the enhanced gene transfer efficiency was attributed to a combined effect of the increased ROS production and the increased cell membrane permeability, which ultimately regulated the expression of corresponding genes. | 2022 | 35278945 |
| 7915 | 18 | 0.9935 | Deciphering antibiotic resistance genes and microbial community of anammox consortia under sulfadiazine and chlortetracycline stress. The responses of anammox consortia to typical antibiotics sulfadiazine (SDZ) and chlortetracycline (CTC) were evaluated on the aspects of general performance, microbial activity, diversity and abundance of antibiotic resistance genes (ARGs), and microbial host of ARGs in anammox system. Results showed the anammox consortia had a stable performance and great resistance to 10 mg/L of SDZ, while 1 mg/L of CTC induced an unrecoverable inhibitory influence on nitrogen removal performance and anammox activity without any special treatment. The absolute abundances of anammox functional genes (nirS, hzsA and hdh) were stimulated by the acclimation to SDZ stress, however, they were much lower than the initial levels under CTC stress. In anammox consortia, ARGs comprised 18 types (94 subtypes) derived from over 20 genera. Strikingly, the anammox bacteria (AnAOB) "Ca. Brocadia" occupied 46.81% of the SDZ resistance genes (sul1 and sul2) and 38.63% of CTC resistance genes (tetX, tetG and rpsJ), and thus were identified as the dominant antibiotic resistance bacteria (ARB). Therefore, harboring the corresponding ARGs by AnAOB could be the primary protective mechanism to interpret the resistance of anammox consortia to antibiotics stress. Meanwhile, co-occurring of ARGs in anammox consortia suggested the synergistic cooperation of different ARGs could be an essential strategy to alleviate the SDZ and CTC stress. The present study proposed a new interpretation of possible mechanism that cause antibiotic resistance of anammox consortia. | 2022 | 35259594 |
| 8117 | 19 | 0.9935 | Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting. | 2020 | 33099099 |