# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8472 | 0 | 0.9867 | Genetic architecture of resistance to plant secondary metabolites in Photorhabdus entomopathogenic bacteria. BACKGROUND: Entomopathogenic nematodes of the genus Heterorhabditis establish a symbiotic association with Photorhabdus bacteria. Together, they colonize and rapidly kill insects, making them important biological control agents against agricultural pests. Improving their biocontrol traits by engineering resistance to plant secondary metabolites (benzoxazinoids) in Photorhabdus symbiotic bacteria through experimental evolution has been shown to increase their lethality towards benzoxazinoid-defended larvae of the western corn rootworm, a serious crop pest of maize, and it is therefore a promising approach to develop more efficient biocontrol agents to manage this pest. To enhance our understanding of the genetic bases of benzoxazinoid resistance in Photorhabdus bacteria, we conducted an experimental evolution experiment with a phylogenetically diverse collection of Photorhabdus strains from different geographic origins. We cultured 27 different strains in medium containing 6-methoxy-2-benzoxazolinone (MBOA), a highly active benzoxazinoid breakdown product, for 35 24 h-cycles to select for benzoxazinoid-resistant strains. Then, we carried out genome-wide sequence comparisons to uncover the genetic alterations associated with benzoxazinoid resistance. Lastly, we evaluated the resistance of the newly isolated resistant Photorhabdus strains to eight additional bioactive compounds, including 2-benzoxazolinone (BOA), nicotine, caffeine, 6-chloroacetyl-2-benzoxazolinone (CABOA), digitoxin, fenitrothion, ampicillin, and kanamycin. RESULTS: We found that benzoxazinoid resistance evolves rapidly in Photorhabdus in a strain-specific manner. Across the different Photorhabdus strains, a total of nineteen nonsynonymous point mutations, two stop codon gains, and one frameshift were associated with higher benzoxazinoid resistance. The different genetic alterations were polygenic and occurred in genes coding for the EnvZ/OmpR two-component regulatory system, the different subunits of the DNA-directed RNA polymerase, and the AcrABZ-TolC multidrug efflux pump. Apart from increasing MBOA resistance, the different mutations were also associated with cross-resistance to 2-benzoxazolinone (BOA), nicotine, caffeine, and 6-chloroacetyl-2-benzoxazolinone (CABOA) and with collateral sensitivity to fenitrothion, ampicillin, and kanamycin. Targeted mutagenesis will provide a deeper mechanistic understanding, including the relative contribution of the different mutation types. CONCLUSIONS: Our study reveals several genomic features that are associated with resistance to xenobiotics in this important group of biological control agents and enhances the availability of molecular tools to develop better biological control agents, which is essential for more sustainable and ecologically friendly agricultural practices. | 2025 | 41168779 |
| 203 | 1 | 0.9865 | Evolution of insect innate immunity through domestication of bacterial toxins. Toxin cargo genes are often horizontally transferred by phages between bacterial species and are known to play an important role in the evolution of bacterial pathogenesis. Here, we show how these same genes have been horizontally transferred from phage or bacteria to animals and have resulted in novel adaptations. We discovered that two widespread bacterial genes encoding toxins of animal cells, cytolethal distending toxin subunit B (cdtB) and apoptosis-inducing protein of 56 kDa (aip56), were captured by insect genomes through horizontal gene transfer from bacteria or phages. To study the function of these genes in insects, we focused on Drosophila ananassae as a model. In the D. ananassae subgroup species, cdtB and aip56 are present as singular (cdtB) or fused copies (cdtB::aip56) on the second chromosome. We found that cdtB and aip56 genes and encoded proteins were expressed by immune cells, some proteins were localized to the wasp embryo's serosa, and their expression increased following parasitoid wasp infection. Species of the ananassae subgroup are highly resistant to parasitoid wasps, and we observed that D. ananassae lines carrying null mutations in cdtB and aip56 toxin genes were more susceptible to parasitoids than the wild type. We conclude that toxin cargo genes were captured by these insects millions of years ago and integrated as novel modules into their innate immune system. These modules now represent components of a heretofore undescribed defense response and are important for resistance to parasitoid wasps. Phage or bacterially derived eukaryotic toxin genes serve as macromutations that can spur the instantaneous evolution of novelty in animals. | 2023 | 37036995 |
| 8806 | 2 | 0.9857 | Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch. It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant. | 2024 | 38869625 |
| 8439 | 3 | 0.9853 | Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans. | 2022 | 35761183 |
| 8438 | 4 | 0.9853 | Virulence of Bacteria Colonizing Vascular Bundles in Ischemic Lower Limbs. BACKGROUND: We documented previously the presence of bacterial flora in vascular bundles, lymphatics, and lymph nodes of ischemic lower limbs amputated because of multifocal atheromatic changes that made them unsuitable for reconstructive surgery and discussed their potential role in tissue destruction. The question arose why bacterial strains inhabiting lower limb skin and considered to be saprophytes become pathogenic once they colonize deep tissues. Bacterial pathogenicity is evoked by activation of multiple virulence factors encoded by groups of genes. METHODS: We identified virulence genes in bacteria cultured from deep tissue of ischemic legs of 50 patients using a polymerase chain reaction technique. RESULTS: The staphylococcal virulence genes fnbA (fibronectin-binding protein A), cna (collagen adhesin precursor), and ica (intercellular adhesion) were present in bacteria isolated from both arteries and, to a lesser extent, skin. The IS256 gene, whose product is responsible for biofilm formation, was more frequent in bacteria retrieved from the arteries than skin bacteria. Among the virulence genes of Staphylococcus epidermidis encoding autolysin atlE, icaAB (intercellular adhesion), and biofilm insert IS256, only the latter was detected in arterial specimens. Bacteria cultured from the lymphatics did not reveal expression of eta and IS256 in arteries. The Enterococcus faecalis asa 373 (aggregation substance) and cylA (cytolysin activator) frequency was greater in arteries than in skin bacteria, as were the E. faecium cyl A genes. All Pseudomonas aeruginosa virulence genes were present in bacteria cultured from both the skin and arteries. Staphylococci colonizing arterial bundles and transported to tissues via ischemic limb lymphatics expressed virulence genes at greater frequency than did those dwelling on the skin surface. Moreover, enterococci and Pseudomonas isolated from arterial bundles expressed many virulence genes. CONCLUSIONS: These findings may add to the understanding of the mechanism of development of destructive changes in lower limb ischemic tissues by the patient's, but not hospital-acquired, bacteria, as well as the generally unsatisfactory results of antibiotic administration in these cases. More aggressive antibiotic therapy targeted at the virulent species should be applied. | 2016 | 26431369 |
| 5145 | 5 | 0.9852 | Genome sequence and comparative analysis of a putative entomopathogenic Serratia isolated from Caenorhabditis briggsae. BACKGROUND: Entomopathogenic associations between nematodes in the genera Steinernema and Heterorhabdus with their cognate bacteria from the bacterial genera Xenorhabdus and Photorhabdus, respectively, are extensively studied for their potential as biological control agents against invasive insect species. These two highly coevolved associations were results of convergent evolution. Given the natural abundance of bacteria, nematodes and insects, it is surprising that only these two associations with no intermediate forms are widely studied in the entomopathogenic context. Discovering analogous systems involving novel bacterial and nematode species would shed light on the evolutionary processes involved in the transition from free living organisms to obligatory partners in entomopathogenicity. RESULTS: We report the complete genome sequence of a new member of the enterobacterial genus Serratia that forms a putative entomopathogenic complex with Caenorhabditis briggsae. Analysis of the 5.04 MB chromosomal genome predicts 4599 protein coding genes, seven sets of ribosomal RNA genes, 84 tRNA genes and a 64.8 KB plasmid encoding 74 genes. Comparative genomic analysis with three of the previously sequenced Serratia species, S. marcescens DB11 and S. proteamaculans 568, and Serratia sp. AS12, revealed that these four representatives of the genus share a core set of ~3100 genes and extensive structural conservation. The newly identified species shares a more recent common ancestor with S. marcescens with 99% sequence identity in rDNA sequence and orthology across 85.6% of predicted genes. Of the 39 genes/operons implicated in the virulence, symbiosis, recolonization, immune evasion and bioconversion, 21 (53.8%) were present in Serratia while 33 (84.6%) and 35 (89%) were present in Xenorhabdus and Photorhabdus EPN bacteria respectively. CONCLUSION: The majority of unique sequences in Serratia sp. SCBI (South African Caenorhabditis briggsae Isolate) are found in ~29 genomic islands of 5 to 65 genes and are enriched in putative functions that are biologically relevant to an entomopathogenic lifestyle, including non-ribosomal peptide synthetases, bacteriocins, fimbrial biogenesis, ushering proteins, toxins, secondary metabolite secretion and multiple drug resistance/efflux systems. By revealing the early stages of adaptation to this lifestyle, the Serratia sp. SCBI genome underscores the fact that in EPN formation the composite end result - killing, bioconversion, cadaver protection and recolonization- can be achieved by dissimilar mechanisms. This genome sequence will enable further study of the evolution of entomopathogenic nematode-bacteria complexes. | 2015 | 26187596 |
| 5169 | 6 | 0.9851 | Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus spp. during Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Patients with chronic obstructive pulmonary disease (COPD) benefit from the immunomodulatory effect of azithromycin, but long-term administration may alter colonizing bacteria. Our goal was to identify changes in Haemophilus influenzae and Haemophilus parainfluenzae during azithromycin treatment. Fifteen patients were followed while receiving prolonged azithromycin treatment (Hospital Universitari de Bellvitge, Spain). Four patients (P02, P08, P11, and P13) were persistently colonized by H. influenzae for at least 3 months and two (P04 and P11) by H. parainfluenzae. Isolates from these patients (53 H. influenzae and 18 H. parainfluenzae) were included to identify, by whole-genome sequencing, antimicrobial resistance changes and genetic variation accumulated during persistent colonization. All persistent lineages isolated before treatment were azithromycin-susceptible but developed resistance within the first months, apart from those belonging to P02, who discontinued the treatment. H. influenzae isolates from P08-ST107 acquired mutations in 23S rRNA, and those from P11-ST2480 and P13-ST165 had changes in L4 and L22. In H. parainfluenzae, P04 persistent isolates acquired changes in rlmC, and P11 carried genes encoding MefE/MsrD efflux pumps in an integrative conjugative element, which was also identified in H. influenzae P11-ST147. Other genetic variation occurred in genes associated with cell wall and inorganic ion metabolism. Persistent H. influenzae strains all showed changes in licA and hgpB genes. Other genes (lex1, lic3A, hgpC, and fadL) had variation in multiple lineages. Furthermore, persistent strains showed loss, acquisition, or genetic changes in prophage-associated regions. Long-term azithromycin therapy results in macrolide resistance, as well as genetic changes that likely favor bacterial adaptation during persistent respiratory colonization. IMPORTANCE The immunomodulatory properties of azithromycin reduce the frequency of exacerbations and improve the quality of life of COPD patients. However, long-term administration may alter the respiratory microbiota, such as Haemophilus influenzae, an opportunistic respiratory colonizing bacteria that play an important role in exacerbations. This study contributes to a better understanding of COPD progression by characterizing the clinical evolution of H. influenzae in a cohort of patients with prolonged azithromycin treatment. The emergence of macrolide resistance during the first months, combined with the role of Haemophilus parainfluenzae as a reservoir and source of resistance dissemination, is a cause for concern that may lead to therapeutic failure. Furthermore, genetic variations in cell wall and inorganic ion metabolism coding genes likely favor bacterial adaptation to host selective pressures. Therefore, the bacterial pathoadaptive evolution in these severe COPD patients raise our awareness of the possible spread of macrolide resistance and selection of host-adapted clones. | 2023 | 36475849 |
| 8729 | 7 | 0.9849 | Protein S-Acyl Transferase GhPAT27 Was Associated with Verticillium wilt Resistance in Cotton. Protein palmitoylation is an ability of the frame of the cell marker protein is one of the most notable reversible changes after translation. However, studies on protein palmitoylation in cotton have not yet been performed. In our current research, the PAT gene family was systematically identified and bioinformatically analyzed in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, and 211 PAT genes were authenticated and classified into six subfamilies. Sixty-nine PAT genes were identified in upland cotton, mainly at the ends of its the 26 chromosomes of upland cotton. The majority of these genes are located in the nucleus of the plant. Gene structure analysis revealed that each member encodes a protein that which contains at least one DHHC structural domain. Cis-acting element analysis indicated that GhPATs genes are mainly involved in hormone production, light response and stress response. Gene expression pattern analysis indicated that most GhPATs genes were differentially expressed upon induction by pathogenic bacteria, drought, salt, hot and cold stresses, and some GhPATs could be induced by multiple abiotic stresses simultaneously. GhPATs genes showed different expression patterns in tissue-specific assays and were found to be preferentially expressed in roots, followed by expression in stems and leaves. Virus-induced gene silencing (VIGS) experiments showed that cotton was significantly less resistant to Verticillium dahliae when GhPAT27 was silenced. We conclude that the GhPAT27 gene, which mediates S-palmitoylation acetylation, may be involved in the regulation of upland cotton resistance to Verticillium wilt (VW). Overall, this work has provided a fundamental framework for understanding the latent capabilities of GhPATs and a solid foundation for molecular breeding and plant pathogen resistance in cotton. | 2022 | 36297782 |
| 8445 | 8 | 0.9849 | A genome-wide association study in catfish reveals the presence of functional hubs of related genes within QTLs for columnaris disease resistance. BACKGROUND: Columnaris causes severe mortalities among many different wild and cultured freshwater fish species, but understanding of host resistance is lacking. Catfish, the primary aquaculture species in the United States, serves as a great model for the analysis of host resistance against columnaris disease. Channel catfish in general is highly resistant to the disease while blue catfish is highly susceptible. F2 generation of hybrids can be produced where phenotypes and genotypes are segregating, providing a useful system for QTL analysis. To identify genes associated with columnaris resistance, we performed a genome-wide association study (GWAS) using the catfish 250 K SNP array with 340 backcross progenies derived from crossing female channel catfish (Ictalurus punctatus) with male F1 hybrid catfish (female channel catfish I. punctatus × male blue catfish I. furcatus). RESULTS: A genomic region on linkage group 7 was found to be significantly associated with columnaris resistance. Within this region, five have known functions in immunity, including pik3r3b, cyld-like, adcyap1r1, adcyap1r1-like, and mast2. In addition, 3 additional suggestively associated QTL regions were identified on linkage groups 7, 12, and 14. The resistant genotypes on the QTLs of linkage groups 7 and 12 were found to be homozygous with both alleles being derived from channel catfish. The paralogs of the candidate genes in the suggestively associated QTL of linkage group 12 were found on the QTLs of linkage group 7. Many candidate genes on the four associated regions are involved in PI3K pathway that is known to be required by many bacteria for efficient entry into the host. CONCLUSION: The GWAS revealed four QTLs associated with columnaris resistance in catfish. Strikingly, the candidate genes may be arranged as functional hubs; the candidate genes within the associated QTLs on linkage groups 7 and 12 are not only co-localized, but also functionally related, with many of them being involved in the PI3K signal transduction pathway, suggesting its importance for columnaris resistance. | 2015 | 25888203 |
| 5163 | 9 | 0.9848 | Multi-omics data elucidate parasite-host-microbiota interactions and resistance to Haemonchus contortus in sheep. BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep. | 2024 | 38429820 |
| 8669 | 10 | 0.9848 | The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BACKGROUND: Frankia are actinobacteria that form a symbiotic nitrogen-fixing association with actinorhizal plants, and play a significant role in actinorhizal plant colonization of metal contaminated areas. Many Frankia strains are known to be resistant to several toxic metals and metalloids including Pb(2+), Al(+3), SeO2, Cu(2+), AsO4, and Zn(2+). With the availability of eight Frankia genome databases, comparative genomics approaches employing phylogeny, amino acid composition analysis, and synteny were used to identify metal homeostasis mechanisms in eight Frankia strains. Characterized genes from the literature and a meta-analysis of 18 heavy metal gene microarray studies were used for comparison. RESULTS: Unlike most bacteria, Frankia utilize all of the essential trace elements (Ni, Co, Cu, Se, Mo, B, Zn, Fe, and Mn) and have a comparatively high percentage of metalloproteins, particularly in the more metal resistant strains. Cation diffusion facilitators, being one of the few known metal resistance mechanisms found in the Frankia genomes, were strong candidates for general divalent metal resistance in all of the Frankia strains. Gene duplication and amino acid substitutions that enhanced the metal affinity of CopA and CopCD proteins may be responsible for the copper resistance found in some Frankia strains. CopA and a new potential metal transporter, DUF347, may be involved in the particularly high lead tolerance in Frankia. Selenite resistance involved an alternate sulfur importer (CysPUWA) that prevents sulfur starvation, and reductases to produce elemental selenium. The pattern of arsenate, but not arsenite, resistance was achieved by Frankia using the novel arsenite exporter (AqpS) previously identified in the nitrogen-fixing plant symbiont Sinorhizobium meliloti. Based on the presence of multiple tellurite resistance factors, a new metal resistance (tellurite) was identified and confirmed in Frankia. CONCLUSIONS: Each strain had a unique combination of metal import, binding, modification, and export genes that explain differences in patterns of metal resistance between strains. Frankia has achieved similar levels of metal and metalloid resistance as bacteria from highly metal-contaminated sites. From a bioremediation standpoint, it is important to understand mechanisms that allow the endosymbiont to survive and infect actinorhizal plants in metal contaminated soils. | 2014 | 25495525 |
| 8374 | 11 | 0.9848 | Importance of RpoD- and Non-RpoD-Dependent Expression of Horizontally Acquired Genes in Cupriavidus metallidurans. The genome of the metal-resistant, hydrogen-oxidizing bacterium Cupriavidus metallidurans contains a large number of horizontally acquired plasmids and genomic islands that were integrated into its chromosome or chromid. For the C. metallidurans CH34 wild-type strain growing under nonchallenging conditions, 5,763 transcriptional starting sequences (TSSs) were determined. Using a custom-built motif discovery software based on hidden Markov models, patterns upstream of the TSSs were identified. The pattern TTGACA, -35.6 ± 1.6 bp upstream of the TSSs, in combination with a TATAAT sequence 15.8 ± 1.4 bp upstream occurred frequently, especially upstream of the TSSs for 48 housekeeping genes, and these were assigned to promoters used by RNA polymerase containing the main housekeeping sigma factor RpoD. From patterns upstream of the housekeeping genes, a score for RpoD-dependent promoters in C. metallidurans was derived and applied to all 5,763 TSSs. Among these, 2,572 TSSs could be associated with RpoD with high probability, 373 with low probability, and 2,818 with no probability. In a detailed analysis of horizontally acquired genes involved in metal resistance and not involved in this process, the TSSs responsible for the expression of these genes under nonchallenging conditions were assigned to RpoD- or non-RpoD-dependent promoters. RpoD-dependent promoters occurred frequently in horizontally acquired metal resistance and other determinants, which should allow their initial expression in a new host. However, other sigma factors and sense/antisense effects also contribute-maybe to mold in subsequent adaptation steps the assimilated gene into the regulatory network of the cell. IMPORTANCE In their natural environment, bacteria are constantly acquiring genes by horizontal gene transfer. To be of any benefit, these genes should be expressed. We show here that the main housekeeping sigma factor RpoD plays an important role in the expression of horizontally acquired genes in the metal-resistant hydrogen-oxidizing bacterium C. metallidurans. By conservation of the RpoD recognition consensus sequence, a newly arriving gene has a high probability to be expressed in the new host cell. In addition to integrons and genes travelling together with that for their sigma factor, conservation of the RpoD consensus sequence may be an important contributor to the overall evolutionary success of horizontal gene transfer in bacteria. Using C. metallidurans as an example, this publication sheds some light on the fate and function of horizontally acquired genes in bacteria. | 2022 | 35311568 |
| 4761 | 12 | 0.9848 | Antimicrobial resistance and biofilm formation of penile prosthesis isolates: insights from in-vitro analysis. BACKGROUND: Inflatable penile prostheses (IPPs) have been shown to harbor biofilms in the presence and absence of infection despite exposure to various antimicrobials. Microbes persisting on IPPs following antibiotic exposure have not been adequately studied to assess biofilm formation capacity and antibiotic resistance. AIM: In this study, we aimed to assess these properties of microbes obtained from explanted infected and non-infected IPPS using an in vitro model. METHODS: 35 bacterial isolates were grown and tested against various single-agent or multiple agent antibiotic regimens including: bacitracin, cefaclor, cefazolin, gentamicin, levofloxacin, trimethoprim-sulfamethoxazole, tobramycin, vancomycin, piperacillin/tazobactam, gentamicin + piperacillin/tazobactam, gentamicin + cefazolin, and gentamicin + vancomycin. Zones of inhibition were averaged for each sample site and species. Statistics were analyzed with Holm's corrected, one-sample t-tests against a null hypothesis of 0. Isolates were also allowed to form biofilms in a 96-well polyvinyl plate and absorbance was tested at 570 nm using a microplate reader. OUTCOMES: Resistance was determined via clinical guidelines or previously established literature, and the mean and standard deviation of biofilm absorbance values were calculated and normalized to the optical density600 of the bacterial inoculum. RESULTS: Every species tested was able to form robust biofilms with the exception of Staphylococcus warneri. As expected, most bacteria were resistant to common perioperative antimicrobial prophylaxis. Gentamicin dual therapy demonstrated somewhat greater efficacy. STRENGTHS AND LIMITATIONS: This study examines a broad range of antimicrobials against clinically obtained bacterial isolates. However, not all species and antibiotics tested had standardized breakpoints, requiring the use of surrogate values from the literature. The microbes included in this study and their resistance genes are expectedly biased towards those that survived antibiotic exposure, and thus reflect the types of microbes which might "survive" in vivo exposure following revisional surgery. CLINICAL TRANSLATION: Despite exposure to antimicrobials, bacteria isolated during penile prosthesis revision for both infected and non-infected cases exhibit biofilm forming capacity and extensive antibiotic resistance patterns in vitro. These microbes merit further investigation to understand when simple colonization vs re-infection might occur. CONCLUSIONS: Although increasing evidence supports the concept that all IPPs harbor biofilms, even in the absence of infection, a deeper understanding of the characteristics of bacteria that survive revisional surgery is warranted. This study demonstrated extensive biofilm forming capabilities, and resistance patterns among bacteria isolated from both non-infected and infected IPP revision surgeries. Further investigation is warranted to determine why some devices become infected while others remain colonized but non-infected. | 2025 | 40062463 |
| 5183 | 13 | 0.9848 | Development of phage resistance in multidrug-resistant Klebsiella pneumoniae is associated with reduced virulence: a case report of a personalised phage therapy. OBJECTIVES: Phage-resistant bacteria often emerge rapidly when performing phage therapy. However, the relationship between the emergence of phage-resistant bacteria and improvements in clinical symptoms is still poorly understood. METHODS: An inpatient developed a pulmonary infection caused by multidrug-resistant Klebsiella pneumoniae. He received a first course of treatment with a single nebulized phage (ΦKp_GWPB35) targeted at his bacterial isolate of Kp7450. After 14 days, he received a second course of treatment with a phage cocktail (ΦKp_GWPB35+ΦKp_GWPA139). Antibiotic treatment was continued throughout the course of phage therapy. Whole-genome analysis was used to identify mutations in phage-resistant strains. Mutated genes associated with resistance were further analysed by generating knockouts of Kp7450 and by measuring phage adsorption rates of bacteria treated with proteinase K and periodate. Bacterial virulence was evaluated in mouse and zebrafish infection models. RESULTS: Phage-resistant Klebsiella pneumoniae strains emerged after the second phage treatment. Comparative genomic analyses revealed that fabF was deleted in phage-resistant strains. The fabF knockout strain (Kp7450ΔfabF) resulted in an altered structure of lipopolysaccharide (LPS), which was identified as the host receptor for the therapeutic phages. Virulence evaluations in mice and zebrafish models showed that LPS was the main determinant of virulence in Kp7450 and alteration of LPS structure in Kp7450ΔfabF, and the bacteriophage-resistant strains reduced their virulence at cost. DISCUSSION: This study may shed light on the mechanism by which some patients experience clinical improvement in their symptoms post phage therapy, despite the incomplete elimination of pathogenic bacteria. | 2023 | 37652124 |
| 8675 | 14 | 0.9847 | Adaptive Strategies in a Poly-Extreme Environment: Differentiation of Vegetative Cells in Serratia ureilytica and Resistance to Extreme Conditions. Poly-extreme terrestrial habitats are often used as analogs to extra-terrestrial environments. Understanding the adaptive strategies allowing bacteria to thrive and survive under these conditions could help in our quest for extra-terrestrial planets suitable for life and understanding how life evolved in the harsh early earth conditions. A prime example of such a survival strategy is the modification of vegetative cells into resistant resting structures. These differentiated cells are often observed in response to harsh environmental conditions. The environmental strain (strain Lr5/4) belonging to Serratia ureilytica was isolated from a geothermal spring in Lirima, Atacama Desert, Chile. The Atacama Desert is the driest habitat on Earth and furthermore, due to its high altitude, it is exposed to an increased amount of UV radiation. The geothermal spring from which the strain was isolated is oligotrophic and the temperature of 54°C exceeds mesophilic conditions (15 to 45°C). Although the vegetative cells were tolerant to various environmental insults (desiccation, extreme pH, glycerol), a modified cell type was formed in response to nutrient deprivation, UV radiation and thermal shock. Scanning (SEM) and Transmission Electron Microscopy (TEM) analyses of vegetative cells and the modified cell structures were performed. In SEM, a change toward a circular shape with reduced size was observed. These circular cells possessed what appears as extra coating layers under TEM. The resistance of the modified cells was also investigated, they were resistant to wet heat, UV radiation and desiccation, while vegetative cells did not withstand any of those conditions. A phylogenomic analysis was undertaken to investigate the presence of known genes involved in dormancy in other bacterial clades. Genes related to spore-formation in Myxococcus and Firmicutes were found in S. ureilytica Lr5/4 genome; however, these genes were not enough for a full sporulation pathway that resembles either group. Although, the molecular pathway of cell differentiation in S. ureilytica Lr5/4 is not fully defined, the identified genes may contribute to the modified phenotype in the Serratia genus. Here, we show that a modified cell structure can occur as a response to extremity in a species that was previously not known to deploy this strategy. This strategy may be widely spread in bacteria, but only expressed under poly-extreme environmental conditions. | 2019 | 30804904 |
| 9600 | 15 | 0.9847 | Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation. Bacteriophages infect an estimated 10(23) to 10(25) bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. IMPORTANCE: Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological entities and kill vast numbers of bacteria in natural environments. Many of these bacteria carry plasmids, extrachromosomal DNA elements that frequently encode antibiotic resistance. However, it is largely unknown whether plasmids are destroyed during phage infection or released intact upon phage lysis, whereupon their encoded resistance could be acquired and manifested by other bacteria (transformation). Because phages are being developed to combat antibiotic-resistant bacteria and because transformation is a principal form of horizontal gene transfer, this question has important implications for biomedicine and microbial evolution alike. Here we report the isolation and characterization of two novel Escherichia coli phages, dubbed "superspreaders," that promote extensive plasmid transformation and efficiently disperse antibiotic resistance genes. Our work suggests that phage superspreaders are not suitable for use in medicine but may help drive bacterial evolution in natural environments. | 2017 | 28096488 |
| 9027 | 16 | 0.9846 | Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli. The increasing development of microbial resistance to classical antimicrobial agents has led to the search for novel antimicrobials. Antimicrobial peptides (AMPs) derived from scorpion and snake venoms offer an attractive source for the development of novel therapeutics. Smp24 (24 amino acids [aa]) and Smp43 (43 aa) are broad-spectrum AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio mauruspalmatus and subsequently characterized. Using a DNA microarray approach, we examined the transcriptomic responses of Escherichia coli to subinhibitory concentrations of Smp24 and Smp43 peptides following 5 h of incubation. Seventy-two genes were downregulated by Smp24, and 79 genes were downregulated by Smp43. Of these genes, 14 genes were downregulated in common and were associated with bacterial respiration. Fifty-two genes were specifically upregulated by Smp24. These genes were predominantly related to cation transport, particularly iron transport. Three diverse genes were independently upregulated by Smp43. Strains with knockouts of differentially regulated genes were screened to assess the effect on susceptibility to Smp peptides. Ten mutants in the knockout library had increased levels of resistance to Smp24. These genes were predominantly associated with cation transport and binding. Two mutants increased resistance to Smp43. There was no cross-resistance in mutants resistant to Smp24 or Smp43. Five mutants showed increased susceptibility to Smp24, and seven mutants showed increased susceptibility to Smp43. Of these mutants, formate dehydrogenase knockout (fdnG) resulted in increased susceptibility to both peptides. While the electrostatic association between pore-forming AMPs and bacterial membranes followed by integration of the peptide into the membrane is the initial starting point, it is clear that there are numerous subsequent additional intracellular mechanisms that contribute to their overall antimicrobial effect.IMPORTANCE The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. Scorpion venoms have proven to be a rich source of AMPs. Smp24 and Smp43 are new AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, and these peptides can kill a wide range of bacterial pathogens. By better understanding how these AMPs affect bacterial cells, we can modify their structure to make better drugs in the future. | 2021 | 33980680 |
| 5170 | 17 | 0.9846 | Synergistic effect of imp/ostA and msbA in hydrophobic drug resistance of Helicobacter pylori. BACKGROUND: Contamination of endoscopy equipment by Helicobacter pylori (H. pylori) frequently occurs after endoscopic examination of H. pylori-infected patients. In the hospital, manual pre-cleaning and soaking in glutaraldehyde is an important process to disinfect endoscopes. However, this might not be sufficient to remove H. pylori completely, and some glutaraldehyde-resistant bacteria might survive and be passed to the next patient undergoing endoscopic examination through unidentified mechanisms. We identified an Imp/OstA protein associated with glutaraldehyde resistance in a clinical strain, NTUH-C1, from our previous study. To better understand and manage the problem of glutaraldehyde resistance, we further investigated its mechanism. RESULTS: The minimal inhibitory concentrations (MICs) of glutaraldehyde andexpression of imp/ostA RNA in 11 clinical isolates from the National Taiwan University Hospital were determined. After glutaraldehyde treatment, RNA expression in the strains with the MICs of 4-10 microg/ml was higher than that in strains with the MICs of 1-3 microg/ml. We examined the full-genome expression of strain NTUH-S1 after glutaraldehyde treatment using a microarray and found that 40 genes were upregulated and 31 genes were downregulated. Among the upregulated genes, imp/ostA and msbA, two putative lipopolysaccharide biogenesis genes, were selected for further characterization. The sensitivity to glutaraldehyde or hydrophobic drugs increased in both of imp/ostA and msbA single mutants. The imp/ostA and msbA double mutant was also hypersensitive to these chemicals. The lipopolysaccharide contents decreased in individual imp/ostA and msbA mutants and dramatically reduced in the imp/ostA and msbA double mutant. Outer membrane permeability assay demonstrated that the imp/ostA and msbA double mutation resulted in the increase of outer membrane permeability. Ethidium bromide accumulation assay demonstrated that MsbA was involved in efflux of hydrophobic drugs. CONCLUSION: The expression levels of imp/ostA and msbA were correlated with glutaraldehyde resistance in clinical isolates after glutaraldehyde treatment. Imp/OstA and MsbA play a synergistic role in hydrophobic drugs resistance and lipopolysaccharide biogenesis in H. pylori. | 2009 | 19594901 |
| 7131 | 18 | 0.9846 | Longitudinal study of the short- and long-term effects of hospitalisation and oral trimethoprim-sulfadiazine administration on the equine faecal microbiome and resistome. BACKGROUND: Hospitalisation and antimicrobial treatment are common in horses and significantly impact the intestinal microbiota. Antimicrobial treatment might also increase levels of resistant bacteria in faeces, which could spread to other ecological compartments, such as the environment, other animals and humans. In this study, we aimed to characterise the short- and long-term effects of transportation, hospitalisation and trimethoprim-sulfadiazine (TMS) administration on the faecal microbiota and resistome of healthy equids. METHODS: In a longitudinal experimental study design, in which the ponies served as their own control, faecal samples were collected from six healthy Welsh ponies at the farm (D0-D13-1), immediately following transportation to the hospital (D13-2), during 7 days of hospitalisation without treatment (D14-D21), during 5 days of oral TMS treatment (D22-D26) and after discharge from the hospital up to 6 months later (D27-D211). After DNA extraction, 16S rRNA gene sequencing was performed on all samples. For resistome analysis, shotgun metagenomic sequencing was performed on selected samples. RESULTS: Hospitalisation without antimicrobial treatment did not significantly affect microbiota composition. Oral TMS treatment reduced alpha-diversity significantly. Kiritimatiellaeota, Fibrobacteres and Verrucomicrobia significantly decreased in relative abundance, whereas Firmicutes increased. The faecal microbiota composition gradually recovered after discontinuation of TMS treatment and discharge from the hospital and, after 2 weeks, was more similar to pre-treatment composition than to composition during TMS treatment. Six months later, however, microbiota composition still differed significantly from that at the start of the study and Spirochaetes and Verrucomicrobia were less abundant. TMS administration led to a significant (up to 32-fold) and rapid increase in the relative abundance of resistance genes sul2, tetQ, ant6-1a, and aph(3")-lb. lnuC significantly decreased directly after treatment. Resistance genes sul2 (15-fold) and tetQ (six-fold) remained significantly increased 6 months later. CONCLUSIONS: Oral treatment with TMS has a rapid and long-lasting effect on faecal microbiota composition and resistome, making the equine hindgut a reservoir and potential source of resistant bacteria posing a risk to animal and human health through transmission. These findings support the judicious use of antimicrobials to minimise long-term faecal presence, excretion and the spread of antimicrobial resistance in the environment. Video Abstract. | 2023 | 36850017 |
| 9040 | 19 | 0.9846 | Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum. BACKGROUND: Bacteria from the Burkholderia cepacia complex (Bcc) are the only group of cystic fibrosis (CF) respiratory pathogens that may cause death by an invasive infection known as cepacia syndrome. Their large genome (> 7000 genes) and multiple pathways encoding the same putative functions make virulence factor identification difficult in these bacteria. METHODS: A novel microarray was designed to the genome of Burkholderia cenocepacia J2315 and transcriptomics used to identify genes that were differentially regulated when the pathogen was grown in a CF sputum-based infection model. Sputum samples from CF individuals infected with the same B. cenocepacia strain as genome isolate were used, hence, other than a dilution into a minimal growth medium (used as the control condition), no further treatment of the sputum was carried out. RESULTS: A total of 723 coding sequences were significantly altered, with 287 upregulated and 436 downregulated; the microarray-observed expression was validated by quantitative PCR on five selected genes. B. cenocepacia genes with putative functions in antimicrobial resistance, iron uptake, protection against reactive oxygen and nitrogen species, secretion and motility were among the most altered in sputum. Novel upregulated genes included: a transmembrane ferric reductase (BCAL0270) implicated in iron metabolism, a novel protease (BCAL0849) that may play a role in host tissue destruction, an organic hydroperoxide resistance gene (BCAM2753), an oxidoreductase (BCAL1107) and a nitrite/sulfite reductase (BCAM1676) that may play roles in resistance to the host defenses. The assumptions of growth under iron-depletion and oxidative stress formulated from the microarray data were tested and confirmed by independent growth of B. cenocepacia under each respective environmental condition. CONCLUSION: Overall, our first full transcriptomic analysis of B. cenocepacia demonstrated the pathogen alters expression of over 10% of the 7176 genes within its genome when it grows in CF sputum. Novel genetic pathways involved in responses to antimicrobial resistance, oxidative stress, and iron metabolism were revealed by the microarray analysis. Virulence factors such as the cable pilus and Cenocepacia Pathogenicity Island were unaltered in expression. However, B. cenocepacia sustained or increased expression of motility-associated genes in sputum, maintaining a potentially invasive phenotype associated with cepacia syndrome. | 2008 | 18801206 |