DISTINCT - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
866700.9981Glacier-Fed Stream Biofilms Harbor Diverse Resistomes and Biosynthetic Gene Clusters. Antimicrobial resistance (AMR) is a universal phenomenon the origins of which lay in natural ecological interactions such as competition within niches, within and between micro- to higher-order organisms. To study these phenomena, it is crucial to examine the origins of AMR in pristine environments, i.e., limited anthropogenic influences. In this context, epilithic biofilms residing in glacier-fed streams (GFSs) are an excellent model system to study diverse, intra- and inter-domain, ecological crosstalk. We assessed the resistomes of epilithic biofilms from GFSs across the Southern Alps (New Zealand) and the Caucasus (Russia) and observed that both bacteria and eukaryotes encoded twenty-nine distinct AMR categories. Of these, beta-lactam, aminoglycoside, and multidrug resistance were both abundant and taxonomically distributed in most of the bacterial and eukaryotic phyla. AMR-encoding phyla included Bacteroidota and Proteobacteria among the bacteria, alongside Ochrophyta (algae) among the eukaryotes. Additionally, biosynthetic gene clusters (BGCs) involved in the production of antibacterial compounds were identified across all phyla in the epilithic biofilms. Furthermore, we found that several bacterial genera (Flavobacterium, Polaromonas, Superphylum Patescibacteria) encode both atimicrobial resistance genes (ARGs) and BGCs within close proximity of each other, demonstrating their capacity to simultaneously influence and compete within the microbial community. Our findings help unravel how naturally occurring BGCs and AMR contribute to the epilithic biofilms mode of life in GFSs. Additionally, we report that eukaryotes may serve as AMR reservoirs owing to their potential for encoding ARGs. Importantly, these observations may be generalizable and potentially extended to other environments that may be more or less impacted by human activity. IMPORTANCE Antimicrobial resistance is an omnipresent phenomenon in the anthropogenically influenced ecosystems. However, its role in shaping microbial community dynamics in pristine environments is relatively unknown. Using metagenomics, we report the presence of antimicrobial resistance genes and their associated pathways in epilithic biofilms within glacier-fed streams. Importantly, we observe biosynthetic gene clusters associated with antimicrobial resistance in both pro- and eukaryotes in these biofilms. Understanding the role of resistance in the context of this pristine environment and complex biodiversity may shed light on previously uncharacterized mechanisms of cross-domain interactions.202336688698
986110.9978Comparative genomics of native plasmids from plant pathogenic Gammaproteobacteria. Plasmids are key in the evolution and adaptation of plant pathogenic Gammaproteobacteria (PPG), yet their diversity and functional contributions remain underexplored. Here, comparative genomics revealed extensive variation in plasmid size, replicon types, mobility, and genetic content across PPG. Most plasmids are small (< 200 kb), except in Pantoea, exhibiting high coding densities (76% to 78%). Five ancestral replicon types were identified across multiple orders, indicating vertical descent yet efficient horizontal transfer across taxa, although with limited genetic conservation. Virulence plasmids are widespread (56% to 68%) but differ in virulence gene content across orders: type III effector (T3E) genes are common in Pseudomonas and Xanthomonas, but rare in Enterobacterales and Xylella, aligning with their smaller effector repertoires. Plasmids frequently carry regulatory genes, highlighting their role in bacterial phenotype modulation. Distinct patterns were observed among orders: Enterobacterales plasmids often harbor thiamin biosynthesis operons and transcriptional regulators but lack post-transcriptional regulators, while most Pseudomonas and Xanthomonas plasmids are mobile, enriched in T3E genes, and exhibit high insertion sequence densities, fostering DNA mobility. Resistance to ultraviolet light is common, but not to antimicrobial compounds. These findings highlight the dynamic role of plasmids in spreading adaptive traits, shaping virulence, and driving the evolution of plant pathogenic bacteria.202540273218
966120.9978Pangenomes of human gut microbiota uncover links between genetic diversity and stress response. The genetic diversity of the gut microbiota has a central role in host health. Here, we created pangenomes for 728 human gut prokaryotic species, quadrupling the genes of strain-specific genomes. Each of these species has a core set of a thousand genes, differing even between closely related species, and an accessory set of genes unique to the different strains. Functional analysis shows high strain variability associates with sporulation, whereas low variability is linked with antibiotic resistance. We further map the antibiotic resistome across the human gut population and find 237 cases of extreme resistance even to last-resort antibiotics, with a predominance among Enterobacteriaceae. Lastly, the presence of specific genes in the microbiota relates to host age and sex. Our study underscores the genetic complexity of the human gut microbiota, emphasizing its significant implications for host health. The pangenomes and antibiotic resistance map constitute a valuable resource for further research.202439353429
966430.9978Distribution of Genetic Determinants Associated with CRISPR-Cas Systems and Resistance to Antibiotics in the Genomes of Archaea and Bacteria. The CRISPR-Cas system represents an adaptive immune mechanism found across diverse Archaea and Bacteria, allowing them to defend against invading genetic elements such as viruses and plasmids. Despite its broad distribution, the prevalence and complexity of CRISPR-Cas systems differ significantly between these domains. This study aimed to characterize and compare the genomic distribution, structural features, and functional implications of CRISPR-Cas systems and associated antibiotic resistance genes in 30 archaeal and 30 bacterial genomes. Through bioinformatic analyses of CRISPR arrays, cas gene architectures, direct repeats (DRs), and thermodynamic properties, we observed that Archaea exhibit a higher number and greater complexity of CRISPR loci, with more diverse cas gene subtypes exclusively of Class 1. Bacteria, in contrast, showed fewer CRISPR loci, comprising a mix of Class 1 and Class 2 systems, with Class 1 representing the majority (~75%) of the detected systems. Notably, Bacteria lacking CRISPR-Cas systems displayed a higher prevalence of antibiotic resistance genes, suggesting a possible inverse correlation between the presence of these immune systems and the acquisition of such genes. Phylogenetic and thermodynamic analyses further highlighted domain-specific adaptations and conservation patterns. These findings support the hypothesis that CRISPR-Cas systems play a dual role: first, as a defense mechanism preventing the integration of foreign genetic material-reflected in the higher complexity and diversity of CRISPR loci in Archaea-and second, as a regulator of horizontal gene transfer, evidenced by the lower frequency of antibiotic resistance genes in organisms with active CRISPR-Cas systems. Together, these results underscore the evolutionary and functional diversification of CRISPR-Cas systems in response to environmental and selective pressures.202540572209
514740.9977Multiscale comparative pathogenomic analysis of Vibrio anguillarum linking serotype diversity, genomic plasticity and pathogenicity. Vibrio anguillarum is a major marine fish pathogen causing high mortality and potential zoonotic risks. Understanding its genomic diversity, virulence factors, and antibiotic resistance is crucial for aquaculture disease management. In this study, a comparative pan-genomic analysis of 16 V. anguillarum strains was conducted to examine core and accessory genome diversity, virulence factors, and antibiotic resistance mechanisms. The phylogenetic analysis was conducted using six core genes and SNPs to evaluate evolutionary relationships and pathogenic traits. The core genome contained 2,038 unique ORFs, while the accessory genome had 5,197 cloud genes, confirming an open pangenome. This study identified 118 pathogenic genomic islands, antibiotic resistance genes (tetracycline, quinolone, and carbapenem), and virulence factors, including type VI secretion system (T6SS) components and RTX toxins (hcp-2, vipB/mglB, rtxC). Core genes such as ftsI uncovered substantial evolutionary divergence among species, identifying more than 150 distinct SNPs. Phylogenetic analysis showed serotype-specific clustering, with O1 strains displaying genetic homogeneity, whereas O2 and O3 exhibited divergence, suggesting distinct evolutionary adaptations influencing pathogenicity and ecological interactions. These findings provide primary insights for developing molecular markers and targeted treatments for aquaculture pathogens.202540854641
840850.9977The defensome of prokaryotes in aquifers. Groundwater harbors a pristine biosphere where microbes co-evolve with less human interference, yet the ancient and ongoing arms race between prokaryotes and viruses remains largely unknown in such ecosystems. Based on our recent nationwide groundwater monitoring campaign across China, we construct a metagenomic groundwater prokaryotic defensome catalogue (GPDC), encompassing 190,810 defense genes, 90,824 defense systems, 139 defense families, and 669 defense islands from 141 prokaryotic phyla. Over 94% of the defense genes in GPDC are novel and contribute vast microbial immune resources in groundwater. We find that candidate phyla radiation (CPR) bacteria possess higher defense system density and diversity against intense phage infection, while microbes as a whole exhibit an inverse relationship between defense systems and adaptive traits like resistance genes in groundwater. We further identify five first-line defense families covering 69.2% of the total defense systems, and high-turnover accessory immune genes are mostly conveyed to defense islands by mobile genetic elements. Our study also reveals viral resistance to microbial defense through co-localized anti-defense genes and interactions between CRISPR-Cas9 and anti-CRISPR protein. These findings expand our understanding of microbial immunity in pristine ecosystems and offer valuable immune resources for potential biotechnological applications.202540659683
966360.9977The structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria. With their ability to integrate into the bacterial chromosome and thereby transfer virulence or drug-resistance genes across bacterial species, temperate phage play a key role in bacterial evolution. Thus, it is paramount to understand who infects whom to be able to predict the movement of DNA across the prokaryotic world and ultimately the emergence of novel (drug-resistant) pathogens. We empirically investigated lytic infection patterns among Vibrio spp. from distinct phylogenetic clades and their derived temperate phage. We found that across distantly related clades, infections occur preferentially within modules of the same clade. However, when the genetic distance of the host bacteria decreases, these clade-specific infections disappear. This indicates that the structure of temperate phage-bacteria infection networks changes with the phylogenetic distance of the host bacteria.201830429242
964970.9977Bacteria of the order Burkholderiales are original environmental hosts of type II trimethoprim resistance genes (dfrB). It is consensus that clinically relevant antibiotic resistance genes have their origin in environmental bacteria, including the large pool of primarily benign species. Yet, for the vast majority of acquired antibiotic resistance genes, the original environmental host(s) has not been identified to date. Closing this knowledge gap could improve our understanding of how antimicrobial resistance proliferates in the bacterial domain and shed light on the crucial step of initial resistance gene mobilization in particular. Here, we combine information from publicly available long- and short-read environmental metagenomes as well as whole-genome sequences to identify the original environmental hosts of dfrB, a family of genes conferring resistance to trimethoprim. Although this gene family stands in the shadow of the more widespread, structurally different dfrA, it has recently gained attention through the discovery of several new members. Based on the genetic context of dfrB observed in long-read metagenomes, we predicted bacteria of the order Burkholderiales to function as original environmental hosts of the predominant gene variants in both soil and freshwater. The predictions were independently confirmed by whole-genome datasets and statistical correlations between dfrB abundance and taxonomic composition of environmental bacterial communities. Our study suggests that Burkholderiales in general and the family Comamonadaceae in particular represent environmental origins of dfrB genes, some of which now contribute to the acquired resistome of facultative pathogens. We propose that our workflow centered on long-read environmental metagenomes allows for the identification of the original hosts of further clinically relevant antibiotic resistance genes.202439658215
437580.9977Evidence of a large novel gene pool associated with prokaryotic genomic islands. Microbial genes that are "novel" (no detectable homologs in other species) have become of increasing interest as environmental sampling suggests that there are many more such novel genes in yet-to-be-cultured microorganisms. By analyzing known microbial genomic islands and prophages, we developed criteria for systematic identification of putative genomic islands (clusters of genes of probable horizontal origin in a prokaryotic genome) in 63 prokaryotic genomes, and then characterized the distribution of novel genes and other features. All but a few of the genomes examined contained significantly higher proportions of novel genes in their predicted genomic islands compared with the rest of their genome (Paired t test = 4.43E-14 to 1.27E-18, depending on method). Moreover, the reverse observation (i.e., higher proportions of novel genes outside of islands) never reached statistical significance in any organism examined. We show that this higher proportion of novel genes in predicted genomic islands is not due to less accurate gene prediction in genomic island regions, but likely reflects a genuine increase in novel genes in these regions for both bacteria and archaea. This represents the first comprehensive analysis of novel genes in prokaryotic genomic islands and provides clues regarding the origin of novel genes. Our collective results imply that there are different gene pools associated with recently horizontally transmitted genomic regions versus regions that are primarily vertically inherited. Moreover, there are more novel genes within the gene pool associated with genomic islands. Since genomic islands are frequently associated with a particular microbial adaptation, such as antibiotic resistance, pathogen virulence, or metal resistance, this suggests that microbes may have access to a larger "arsenal" of novel genes for adaptation than previously thought.200516299586
747690.9977Bacterial phylogeny structures soil resistomes across habitats. Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.201424847883
7737100.9977Distinctive signatures of pathogenic and antibiotic resistant potentials in the hadal microbiome. BACKGROUND: Hadal zone of the deep-sea trenches accommodates microbial life under extreme energy limitations and environmental conditions, such as low temperature, high pressure, and low organic matter down to 11,000 m below sea level. However, microbial pathogenicity, resistance, and adaptation therein remain unknown. Here we used culture-independent metagenomic approaches to explore the virulence and antibiotic resistance in the hadal microbiota of the Mariana Trench. RESULTS: The results indicate that the 10,898 m Challenger Deep bottom sediment harbored prosperous microbiota with contrasting signatures of virulence factors and antibiotic resistance, compared with the neighboring but shallower 6038 m steep wall site and the more nearshore 5856 m Pacific basin site. Virulence genes including several famous large translocating virulence genes (e.g., botulinum neurotoxins, tetanus neurotoxin, and Clostridium difficile toxins) were uniquely detected in the trench bottom. However, the shallower and more nearshore site sediment had a higher abundance and richer diversity of known antibiotic resistance genes (ARGs), especially for those clinically relevant ones (e.g., fosX, sul1, and TEM-family extended-spectrum beta-lactamases), revealing resistance selection under anthropogenic stresses. Further analysis of mobilome (i.e., the collection of mobile genetic elements, MGEs) suggests horizontal gene transfer mediated by phage and integrase as the major mechanism for the evolution of Mariana Trench sediment bacteria. Notably, contig-level co-occurring and taxonomic analysis shows emerging evidence for substantial co-selection of virulence genes and ARGs in taxonomically diverse bacteria in the hadal sediment, especially for the Challenger Deep bottom where mobilized ARGs and virulence genes are favorably enriched in largely unexplored bacteria. CONCLUSIONS: This study reports the landscape of virulence factors, antibiotic resistome, and mobilome in the sediment and seawater microbiota residing hadal environment of the deepest ocean bottom on earth. Our work unravels the contrasting and unique features of virulence genes, ARGs, and MGEs in the Mariana Trench bottom, providing new insights into the eco-environmental and biological processes underlying microbial pathogenicity, resistance, and adaptative evolution in the hadal environment.202235468809
4371110.9977Independent origins and evolution of the secondary replicons of the class Gammaproteobacteria. Multipartite genomes, consisting of more than one replicon, have been found in approximately 10 % of bacteria, many of which belong to the phylum Proteobacteria. Many aspects of their origin and evolution, and the possible advantages related to this type of genome structure, remain to be elucidated. Here, we performed a systematic analysis of the presence and distribution of multipartite genomes in the class Gammaproteobacteria, which includes several genera with diverse lifestyles. Within this class, multipartite genomes are mainly found in the order Alteromonadales (mostly in the genus Pseudoalteromonas) and in the family Vibrionaceae. Our data suggest that the emergence of secondary replicons in Gammaproteobacteria is rare and that they derive from plasmids. Despite their multiple origins, we highlighted the presence of evolutionary trends such as the inverse proportionality of the genome to chromosome size ratio, which appears to be a general feature of bacteria with multipartite genomes irrespective of taxonomic group. We also highlighted some functional trends. The core gene set of the secondary replicons is extremely small, probably limited to essential genes or genes that favour their maintenance in the genome, while the other genes are less conserved. This hypothesis agrees with the idea that the primary advantage of secondary replicons could be to facilitate gene acquisition through horizontal gene transfer, resulting in replicons enriched in genes associated with adaptation to different ecological niches. Indeed, secondary replicons are enriched both in genes that could promote adaptation to harsh environments, such as those involved in antibiotic, biocide and metal resistance, and in functional categories related to the exploitation of environmental resources (e.g. carbohydrates), which can complement chromosomal functions.202337185344
8409120.9976Comparative genomics reveals key adaptive mechanisms in pathogen host-niche specialization. INTRODUCTION: Understanding the key factors that enable bacterial pathogens to adapt to new hosts is crucial, as host-microbe interactions not only influence host health but also drive bacterial genome diversification, thereby enhancing pathogen survival in various ecological niches. METHODS: We conducted a comparative genomic analysis of 4,366 high-quality bacterial genomes isolated from various hosts and environments. Bioinformatics databases and machine learning approaches were used to identify genomic differences in functional categories, virulence factors, and antibiotic resistance genes across different ecological niches. RESULTS: Significant variability in bacterial adaptive strategies was observed. Human-associated bacteria, particularly from the phylum Pseudomonadota, exhibited higher detection rates of carbohydrate-active enzyme genes and virulence factors related to immune modulation and adhesion, indicating co-evolution with the human host. In contrast, bacteria from environmental sources, particularly those from the phyla Bacillota and Actinomycetota, showed greater enrichment in genes related to metabolism and transcriptional regulation, highlighting their high adaptability to diverse environments. Bacteria from clinical settings had higher detection rates of antibiotic resistance genes, particularly those related to fluoroquinolone resistance. Animal hosts were identified as important reservoirs of resistance genes. Key host-specific bacterial genes, such as hypB, were found to potentially play crucial roles in regulating metabolism and immune adaptation in human-associated bacteria. DISCUSSION: These findings highlight niche-specific genomic features and adaptive mechanisms of bacterial pathogens. This study provides valuable insights into the genetic basis of host-pathogen interactions and offers evidence to inform pathogen transmission control, infection management, and antibiotic stewardship.202540547794
8411130.9976Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria. BACKGROUND: Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix. RESULTS: According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria. CONCLUSION: These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.201728399796
3782140.9976CRISPR spacers acquired from plasmids primarily target backbone genes, making them valuable for predicting potential hosts and host range. In recent years, there has been a surge in metagenomic studies focused on identifying plasmids in environmental samples. Although these studies have unearthed numerous novel plasmids, enriching our understanding of their environmental roles, a significant gap remains: the scarcity of information regarding the bacterial hosts of these newly discovered plasmids. Furthermore, even when plasmids are identified within bacterial isolates, the reported host is typically limited to the original isolate, with no insights into alternative hosts or the plasmid's potential host range. Given that plasmids depend on hosts for their existence, investigating plasmids without the knowledge of potential hosts offers only a partial perspective. This study introduces a method for identifying potential hosts and host ranges for plasmids through alignment with CRISPR spacers. To validate the method, we compared the PLSDB plasmids database with the CRISPR spacers database, yielding host predictions for 46% of the plasmids. When compared with reported hosts, our predictions achieved 84% concordance at the family level and 99% concordance at the phylum level. Moreover, the method frequently identified multiple potential hosts for a plasmid, thereby enabling predictions of alternative hosts and the host range. Notably, we found that CRISPR spacers predominantly target plasmid backbone genes while sparing functional genes, such as those linked to antibiotic resistance, aligning with our hypothesis that CRISPR spacers are acquired from plasmid-specific regions rather than insertion elements from diverse sources. Finally, we illustrate the network of connections among different bacterial taxa through plasmids, revealing potential pathways for horizontal gene transfer.IMPORTANCEPlasmids are notorious for their role in distributing antibiotic resistance genes, but they may also carry and distribute other environmentally important genes. Since plasmids are not free-living entities and rely on host bacteria for survival and propagation, predicting their hosts is essential. This study presents a method for predicting potential hosts for plasmids and offers insights into the potential paths for spreading functional genes between different bacteria. Understanding plasmid-host relationships is crucial for comprehending the ecological and clinical impact of plasmids and implications for various biological processes.202439508585
8711150.9976Novel soil bacteria possess diverse genes for secondary metabolite biosynthesis. In soil ecosystems, microorganisms produce diverse secondary metabolites such as antibiotics, antifungals and siderophores that mediate communication, competition and interactions with other organisms and the environment(1,2). Most known antibiotics are derived from a few culturable microbial taxa (3) , and the biosynthetic potential of the vast majority of bacteria in soil has rarely been investigated (4) . Here we reconstruct hundreds of near-complete genomes from grassland soil metagenomes and identify microorganisms from previously understudied phyla that encode diverse polyketide and nonribosomal peptide biosynthetic gene clusters that are divergent from well-studied clusters. These biosynthetic loci are encoded by newly identified members of the Acidobacteria, Verrucomicobia and Gemmatimonadetes, and the candidate phylum Rokubacteria. Bacteria from these groups are highly abundant in soils(5-7), but have not previously been genomically linked to secondary metabolite production with confidence. In particular, large numbers of biosynthetic genes were characterized in newly identified members of the Acidobacteria, which is the most abundant bacterial phylum across soil biomes (5) . We identify two acidobacterial genomes from divergent lineages, each of which encodes an unusually large repertoire of biosynthetic genes with up to fifteen large polyketide and nonribosomal peptide biosynthetic loci per genome. To track gene expression of genes encoding polyketide synthases and nonribosomal peptide synthetases in the soil ecosystem that we studied, we sampled 120 time points in a microcosm manipulation experiment and, using metatranscriptomics, found that gene clusters were differentially co-expressed in response to environmental perturbations. Transcriptional co-expression networks for specific organisms associated biosynthetic genes with two-component systems, transcriptional activation, putative antimicrobial resistance and iron regulation, linking metabolite biosynthesis to processes of environmental sensing and ecological competition. We conclude that the biosynthetic potential of abundant and phylogenetically diverse soil microorganisms has previously been underestimated. These organisms may represent a source of natural products that can address needs for new antibiotics and other pharmaceutical compounds.201829899444
9665160.9976Time-calibrated genomic evolution of a monomorphic bacterium during its establishment as an endemic crop pathogen. Horizontal gene transfer is of major evolutionary importance as it allows for the redistribution of phenotypically important genes among lineages. Such genes with essential functions include those involved in resistance to antimicrobial compounds and virulence factors in pathogenic bacteria. Understanding gene turnover at microevolutionary scales is critical to assess the pace of this evolutionary process. Here, we characterized and quantified gene turnover for the epidemic lineage of a bacterial plant pathogen of major agricultural importance worldwide. Relying on a dense geographic sampling spanning 39 years of evolution, we estimated both the dynamics of single nucleotide polymorphism accumulation and gene content turnover. We identified extensive gene content variation among lineages even at the smallest phylogenetic and geographic scales. Gene turnover rate exceeded nucleotide substitution rate by three orders of magnitude. Accessory genes were found preferentially located on plasmids, but we identified a highly plastic chromosomal region hosting ecologically important genes such as transcription activator-like effectors. Whereas most changes in the gene content are probably transient, the rapid spread of a mobile element conferring resistance to copper compounds widely used for the management of plant bacterial pathogens illustrates how some accessory genes can become ubiquitous within a population over short timeframes.202133305421
4374170.9976Core genes can have higher recombination rates than accessory genes within global microbial populations. Recombination is essential to microbial evolution, and is involved in the spread of antibiotic resistance, antigenic variation, and adaptation to the host niche. However, assessing the impact of homologous recombination on accessory genes which are only present in a subset of strains of a given species remains challenging due to their complex phylogenetic relationships. Quantifying homologous recombination for accessory genes (which are important for niche-specific adaptations) in comparison to core genes (which are present in all strains and have essential functions) is critical to understanding how selection acts on variation to shape species diversity and genome structures of bacteria. Here, we apply a computationally efficient, non-phylogenetic approach to measure homologous recombination rates in the core and accessory genome using >100,000 whole genome sequences from Streptococcus pneumoniae and several additional species. By analyzing diverse sets of sequence clusters, we show that core genes often have higher recombination rates than accessory genes, and for some bacterial species the associated effect sizes for these differences are pronounced. In a subset of species, we find that gene frequency and homologous recombination rate are positively correlated. For S. pneumoniae and several additional species, we find that while the recombination rate is higher for the core genome, the mutational divergence is lower, indicating that divergence-based homologous recombination barriers could contribute to differences in recombination rates between the core and accessory genome. Homologous recombination may therefore play a key role in increasing the efficiency of selection in the most conserved parts of the genome.202235801696
9650180.9976Plasmid-Encoded Traits Vary across Environments. Plasmids are key mobile genetic elements in bacterial evolution and ecology as they allow the rapid adaptation of bacteria under selective environmental changes. However, the genetic information associated with plasmids is usually considered separately from information about their environmental origin. To broadly understand what kinds of traits may become mobilized by plasmids in different environments, we analyzed the properties and accessory traits of 9,725 unique plasmid sequences from a publicly available database with known bacterial hosts and isolation sources. Although most plasmid research focuses on resistance traits, such genes made up <1% of the total genetic information carried by plasmids. Similar to traits encoded on the bacterial chromosome, plasmid accessory trait compositions (including general Clusters of Orthologous Genes [COG] functions, resistance genes, and carbon and nitrogen genes) varied across seven broadly defined environment types (human, animal, wastewater, plant, soil, marine, and freshwater). Despite their potential for horizontal gene transfer, plasmid traits strongly varied with their host's taxonomic assignment. However, the trait differences across environments of broad COG categories could not be entirely explained by plasmid host taxonomy, suggesting that environmental selection acts on the plasmid traits themselves. Finally, some plasmid traits and environments (e.g., resistance genes in human-related environments) were more often associated with mobilizable plasmids (those having at least one detected relaxase) than others. Overall, these findings underscore the high level of diversity of traits encoded by plasmids and provide a baseline to investigate the potential of plasmids to serve as reservoirs of adaptive traits for microbial communities. IMPORTANCE Plasmids are well known for their role in the transmission of antibiotic resistance-conferring genes. Beyond human and clinical settings, however, they disseminate many other types of genes, including those that contribute to microbially driven ecosystem processes. In this study, we identified the distribution of traits genetically encoded by plasmids isolated from seven broadly categorized environments. We find that plasmid trait content varied with both bacterial host taxonomy and environment and that, on average, half of the plasmids were potentially mobilizable. As anthropogenic activities impact ecosystems and the climate, investigating and identifying the mechanisms of how microbial communities can adapt will be imperative for predicting the impacts on ecosystem functioning.202336629415
3777190.9976A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. Mobile genetic elements (MGEs) contribute to bacterial adaptation and evolution; however, high-throughput, unbiased MGE detection remains challenging. We describe MGEfinder, a bioinformatic toolbox that identifies integrative MGEs and their insertion sites by using short-read sequencing data. MGEfinder identifies the genomic site of each MGE insertion and infers the identity of the inserted sequence. We apply MGEfinder to 12,374 sequenced isolates of 9 prevalent bacterial pathogens, including Mycobacterium tuberculosis, Staphylococcus aureus, and Escherichia coli, and identify thousands of MGEs, including candidate insertion sequences, conjugative transposons, and prophage elements. The MGE repertoire and insertion rates vary across species, and integration sites often cluster near genes related to antibiotic resistance, virulence, and pathogenicity. MGE insertions likely contribute to antibiotic resistance in laboratory experiments and clinical isolates. Additionally, we identified thousands of mobility genes, a subset of which have unknown function opening avenues for exploration. Future application of MGEfinder to commensal bacteria will further illuminate bacterial adaptation and evolution.202031862382