# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8189 | 0 | 0.9976 | Engineering nanoparticles to silence bacterial communication. The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing (QS) is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. QS is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP) were engineered to target the signaling molecules [i.e., acylhomoserine lactones (HSLs)] used for QS in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with β-cyclodextrin (β-CD), then added to cultures of bacteria (Vibrio fischeri), whose luminous output depends upon HSL-mediated QS, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR) analyses of luminescence genes. Binding of HSLs to Si-NPs was examined using nuclear magnetic resonance (NMR) spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate QS, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to QS-a target that will reduce resistance pressures imposed by traditional antibiotics. | 2015 | 25806030 |
| 740 | 1 | 0.9976 | Effects of NF-kB Signaling Inhibitors on Bed Bug Resistance to Orally Provisioned Entomopathogenic Bacteria. Bed bugs are globally important pests and there is an ongoing need for the development and improvement of bed bug control tools. Though promising against other insect pests, the exploration of biological methods for bed bug control is limited. Previously, we identified several species of bacteria that have entomopathogenic effects against bed bugs when ingested. We also described the conservation of several antibacterial responses in bed bugs, including the expression of immune effector genes regulated by NF-kB transcription factors through the Toll and immune deficiency (IMD) signaling pathways. Accordingly, we predicted that chemical inhibition of NF-kB signaling could reduce bed bug resistance to orally provisioned entomopathogenic bacteria, potentially improving their effectiveness as biological control agents. In the present study, we administered four small molecule inhibitors of NF-kB signaling (BMS345541, IKK16, IMD0354, Takinib) to bed bugs by feeding them in a blood meal. We then quantified basal mortality and mortality in response to oral infection with two different entomopathogenic bacteria (Pseudomonas entomophila and Bacillus thuringiensis israelensis). None of the NF-kB signaling inhibitors tested increased mortality above control levels when administered alone, suggesting a lack of direct toxicity. However, one inhibitor (IKK16) significantly enhanced the rate of mortality from oral infection with P. entomophila. Enhanced mortality was independent of direct effects of IKK16 on P. entomophila growth in vitro but was associated with higher bacterial loads in vivo (i.e., reduced resistance). Together, these results provide new insight into the regulation of the bed bug immune system and suggest that administration of entomopathogens in combination with inhibition of immune signaling pathways to reduce infection resistance may be effective for biological control of bed bugs. | 2021 | 33808065 |
| 8339 | 2 | 0.9975 | Dynamical model of antibiotic responses linking expression of resistance genes to metabolism explains emergence of heterogeneity during drug exposures. Antibiotic responses in bacteria are highly dynamic and heterogeneous, with sudden exposure of bacterial colonies to high drug doses resulting in the coexistence of recovered and arrested cells. The dynamics of the response is determined by regulatory circuits controlling the expression of resistance genes, which are in turn modulated by the drug's action on cell growth and metabolism. Despite advances in understanding gene regulation at the molecular level, we still lack a framework to describe how feedback mechanisms resulting from the interdependence between expression of resistance and cell metabolism can amplify naturally occurring noise and create heterogeneity at the population level. To understand how this interplay affects cell survival upon exposure, we constructed a mathematical model of the dynamics of antibiotic responses that links metabolism and regulation of gene expression, based on the tetracycline resistancetetoperon inE. coli. We use this model to interpret measurements of growth and expression of resistance in microfluidic experiments, both in single cells and in biofilms. We also implemented a stochastic model of the drug response, to show that exposure to high drug levels results in large variations of recovery times and heterogeneity at the population level. We show that stochasticity is important to determine how nutrient quality affects cell survival during exposure to high drug concentrations. A quantitative description of how microbes respond to antibiotics in dynamical environments is crucial to understand population-level behaviors such as biofilms and pathogenesis. | 2024 | 38412523 |
| 8250 | 3 | 0.9975 | Research Progress in the Mechanisms of Resistance to Biotic Stress in Sweet Potato. Sweet potato (Ipomoea batatas (L.) Lam.) is one of the most important food, feed, industrial raw materials, and new energy crops, and is widely cultivated around the world. China is the largest sweet potato producer in the world, and the sweet potato industry plays an important role in China's agriculture. During the growth of sweet potato, it is often affected by biotic stresses, such as fungi, nematodes, insects, viruses, and bacteria. These stressors are widespread worldwide and have severely restricted the production of sweet potato. In recent years, with the rapid development and maturity of biotechnology, an increasing number of stress-related genes have been introduced into sweet potato, which improves its quality and resistance of sweet potato. This paper summarizes the discovery of biological stress-related genes in sweet potato and the related mechanisms of stress resistance from the perspectives of genomics analysis, transcriptomics analysis, genetic engineering, and physiological and biochemical indicators. The mechanisms of stress resistance provide a reference for analyzing the molecular breeding of disease resistance mechanisms and biotic stress resistance in sweet potato. | 2023 | 38003049 |
| 8335 | 4 | 0.9975 | Implementing Optogenetic-Controlled Bacterial Systems in Drosophila melanogaster for Alleviation of Heavy Metal Poisoning. Drosophila melanogaster (fruit fly) is an animal model chassis in biological and genetic research owing to its short life cycle, ease of cultivation, and acceptability to genetic modification. While the D. melanogaster chassis offers valuable insights into drug efficacy, toxicity, and mechanisms, several obvious challenges such as dosage control and drug resistance still limit its utility in pharmacological studies. Our research combines optogenetic control with engineered gut bacteria to facilitate the precise delivery of therapeutic substances in D. melanogaster for biomedical research. We have shown that the engineered bacteria can be orally administered to D. melanogaster to get a stable density of approximately 28,000 CFUs/per fly, leading to no detectable negative effects on the growth of D. melanogaster. In a model of D. melanogaster exposure to heavy metal, these orally administered bacteria uniformly express target genes under green light control to produce MtnB protein for binding and detoxifying lead, which significantly reduces the level of oxidative stress in the intestinal tract of Pb-treated flies. This pioneering study lays the groundwork for using optogenetic-controlled bacteria in the model chassis D. melanogaster to advance biomedical applications. | 2024 | 39312764 |
| 8258 | 5 | 0.9974 | Elevating crop disease resistance with cloned genes. Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO₂ emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. | 2014 | 24535396 |
| 9170 | 6 | 0.9974 | It is the time for quorum sensing inhibition as alternative strategy of antimicrobial therapy. Multiple drug resistance poses a significant threat to public health worldwide, with a substantial increase in morbidity and mortality rates. Consequently, searching for novel strategies to control microbial pathogenicity is necessary. With the aid of auto-inducers (AIs), quorum sensing (QS) regulates bacterial virulence factors through cell-to-cell signaling networks. AIs are small signaling molecules produced during the stationary phase. When bacterial cultures reach a certain level of growth, these molecules regulate the expression of the bound genes by acting as mirrors that reflect the inoculum density.Gram-positive bacteria use the peptide derivatives of these signaling molecules, whereas Gram-negative bacteria use the fatty acid derivatives, and the majority of bacteria can use both types to modulate the expression of the target gene. Numerous natural and synthetic QS inhibitors (QSIs) have been developed to reduce microbial pathogenesis. Applications of QSI are vital to human health, as well as fisheries and aquaculture, agriculture, and water treatment. Video Abstract. | 2023 | 37316831 |
| 8322 | 7 | 0.9974 | Pathogen-induced damage in Drosophila: Uncoupling disease tolerance from resistance. Immune response against infections can be divided into mechanisms of resistance that ensure active pathogen elimination, and mechanisms of disease tolerance, which include processes that return the host to physiological homeostasis without direct control of pathogen load. Studies on host immune response to infection have targeted mechanisms of resistance, and consequently, these are now well-described in both vertebrates and invertebrates. By comparison, the mechanistic basis of disease tolerance is poorly understood. This is in part because both processes interact and can be difficult to disentangle under an infection scenario. Using the insect model Drosophila melanogaster exposed to its natural entomopathogen, Pseudomonas entomophila, we aimed to tease apart mechanisms of disease tolerance from those of resistance. To this end, we reasoned that the response to oral exposure to heat-killed entomopathogenic bacteria, whilst initially triggering both resistance and disease tolerance mechanisms, would be resolved mainly by disease tolerance alone. Using this method, we observe that oral exposure to heat-killed P. entomophila causes mortality and reduced fecundity in D. melanogaster. We confirm that this reduction in fitness-related traits depends on the duration of the exposure, is sexually dimorphic, and is dependent on the virulence of the bacterium. We also found the microbiota to play a role, with its presence exacerbating the deleterious effect on host survival. In addition, we show that the Imd pathway, but not effector genes, is involved in the process of surviving exposure to HK bacteria. This experimental framework, which may be extended to other systems, can be instrumental towards an understanding of the molecular, genetic, and physiological basis of disease tolerance and its interactions with resistance mechanisms. | 2025 | 40971962 |
| 9200 | 8 | 0.9974 | Application of the CRISPR/Cas System for Generation of Pathogen-Resistant Plants. The use of the CRISPR/Cas9 prokaryotic adaptive immune system has led to a breakthrough in targeted genome editing in eukaryotes. The CRISPR/Cas technology allows to generate organisms with desirable characteristics by introducing deletions/insertions into selected genome loci resulting in the knockout or modification of target genes. This review focuses on the current state of the CRISPR/Cas use for the generation of plants resistant to viruses, bacteria, and parasitic fungi. Resistance to DNA- and RNA-containing viruses is usually provided by expression in transgenic plants of the Cas endonuclease gene and short guide RNAs (sgRNAs) targeting certain sites in the viral or the host plant genomes to ensure either direct cleavage of the viral genome or modification of the plant host genome in order to decrease the efficiency of virus replication. Editing of plant genes involved in the defense response to pathogens increases plants resistance to bacteria and pathogenic fungi. The review explores strategies and prospects of the development of pathogen-resistant plants with a focus on the generation of non-transgenic (non-genetically modified) organisms, in particular, by using plasmid (DNA)-free systems for delivery of the Cas/sgRNA editing complex into plant cells. | 2018 | 30878030 |
| 8257 | 9 | 0.9974 | RNA interference in Colorado potato beetle: steps toward development of dsRNA as a commercial insecticide. Colorado potato beetle (CPB) is a notorious pest on potatoes and has a remarkable ability to detoxify plant chemicals and develop resistance against insecticides. dsRNA targeting CPB genes could be expressed in potato plants to control this pest. However, previous attempts at introducing transgenic potato plants to control CPB were not highly successful. Recent studies showed that feeding dsRNA expressed in bacteria works very well to kill CPB. To realize the potential of RNAi to control this and other economically important pests, more efficient methods for production and delivery of dsRNA need to be developed. Extensive research to determine off-target and non-target effects, environmental fate and potential for resistance development is also essential. | 2014 | 26705514 |
| 9169 | 10 | 0.9974 | Interference of bacterial cell-to-cell communication: a new concept of antimicrobial chemotherapy breaks antibiotic resistance. Bacteria use a cell-to-cell communication activity termed "quorum sensing" to coordinate group behaviors in a cell density dependent manner. Quorum sensing influences the expression profile of diverse genes, including antibiotic tolerance and virulence determinants, via specific chemical compounds called "autoinducers". During quorum sensing, Gram-negative bacteria typically use an acylated homoserine lactone (AHL) called autoinducer 1. Since the first discovery of quorum sensing in a marine bacterium, it has been recognized that more than 100 species possess this mechanism of cell-to-cell communication. In addition to being of interest from a biological standpoint, quorum sensing is a potential target for antimicrobial chemotherapy. This unique concept of antimicrobial control relies on reducing the burden of virulence rather than killing the bacteria. It is believed that this approach will not only suppress the development of antibiotic resistance, but will also improve the treatment of refractory infections triggered by multi-drug resistant pathogens. In this paper, we review and track recent progress in studies on AHL inhibitors/modulators from a biological standpoint. It has been discovered that both natural and synthetic compounds can disrupt quorum sensing by a variety of means, such as jamming signal transduction, inhibition of signal production and break-down and trapping of signal compounds. We also focus on the regulatory elements that attenuate quorum sensing activities and discuss their unique properties. Understanding the biological roles of regulatory elements might be useful in developing inhibitor applications and understanding how quorum sensing is controlled. | 2013 | 23720655 |
| 9616 | 11 | 0.9974 | Precision targeting of food biofilm-forming genes by microbial scissors: CRISPR-Cas as an effective modulator. The abrupt emergence of antimicrobial resistant (AMR) bacterial strains has been recognized as one of the biggest public health threats affecting the human race and food processing industries. One of the causes for the emergence of AMR is the ability of the microorganisms to form biofilm as a defense strategy that restricts the penetration of antimicrobial agents into bacterial cells. About 80% of human diseases are caused by biofilm-associated sessile microbes. Bacterial biofilm formation involves a cascade of genes that are regulated via the mechanism of quorum sensing (QS) and signaling pathways that control the production of the extracellular polymeric matrix (EPS), responsible for the three-dimensional architecture of the biofilm. Another defense strategy utilized commonly by various bacteria includes clustered regularly interspaced short palindromic repeats interference (CRISPRi) system that prevents the bacterial cell from viral invasion. Since multigenic signaling pathways and controlling systems are involved in each and every step of biofilm formation, the CRISPRi system can be adopted as an effective strategy to target the genomic system involved in biofilm formation. Overall, this technology enables site-specific integration of genes into the host enabling the development of paratransgenic control strategies to interfere with pathogenic bacterial strains. CRISPR-RNA-guided Cas9 endonuclease, being a promising genome editing tool, can be effectively programmed to re-sensitize the bacteria by targeting AMR-encoding plasmid genes involved in biofilm formation and virulence to revert bacterial resistance to antibiotics. CRISPRi-facilitated silencing of genes encoding regulatory proteins associated with biofilm production is considered by researchers as a dependable approach for editing gene networks in various biofilm-forming bacteria either by inactivating biofilm-forming genes or by integrating genes corresponding to antibiotic resistance or fluorescent markers into the host genome for better analysis of its functions both in vitro and in vivo or by editing genes to stop the secretion of toxins as harmful metabolites in food industries, thereby upgrading the human health status. | 2022 | 36016778 |
| 8241 | 12 | 0.9974 | Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses. | 2022 | 34937124 |
| 9617 | 13 | 0.9974 | Multiplex CRISPRi System Enables the Study of Stage-Specific Biofilm Genetic Requirements in Enterococcus faecalis. Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication.IMPORTANCEEnterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology. | 2020 | 33082254 |
| 9161 | 14 | 0.9974 | In Silico Evaluation of the Impacts of Quorum Sensing Inhibition (QSI) on Strain Competition and Development of QSI Resistance. As understanding of bacterial regulatory systems and pathogenesis continues to increase, QSI has been a major focus of research. However, recent studies have shown that mechanisms of resistance to quorum sensing (QS) inhibitors (QSIs) exist, calling into question their clinical value. We propose a computational framework that considers bacteria genotypes relative to QS genes and QS-regulated products including private, quasi-public, and public goods according to their impacts on bacterial fitness. Our results show (1) QSI resistance spreads when QS positively regulates the expression of private or quasi-public goods. (2) Resistance to drugs targeting secreted compounds downstream of QS for a mix of private, public, and quasi-public goods also spreads. (3) Changing the micro-environment during treatment with QSIs may decrease the spread of resistance. At fundamental-level, our simulation framework allows us to directly quantify cell-cell interactions and biofilm dynamics. Practically, the model provides a valuable tool for the study of QSI-based therapies, and the simulations reveal experimental paths that may guide QSI-based therapies in a manner that avoids or decreases the spread of QSI resistance. | 2016 | 27734907 |
| 312 | 15 | 0.9974 | Production of polyhydroxybutyrate by polycistronic expression of bacterial genes in tobacco plastid. Transgenic techniques are used to enhance and improve crop production, and their application to the production of chemical resources in plants has been under investigation. To achieve this latter goal, multiple-gene transformation is required to improve or change plant metabolic pathways; when accomplished by plant nuclear transformation, however, this procedure is costly and time consuming. We succeeded in the metabolic engineering of the tobacco plant by introducing multiple genes within a bacteria-like operon into a plastid genome. A tobacco plastid was transformed with a polycistron consisting of the spectinomycin resistance gene and three bacterial genes for the biosynthesis of the biodegradable polyester, poly[(R)-3-hydroxybutyrate] (PHB), after modification of their ribosome binding sites. DNA and RNA analysis confirmed the insertion of the introduced genes into the plastid genome and their polycistronic expression. As the result, the transplastomic tobacco accumulated PHB in its leaves. The introduced genes and the PHB productivity were maternally inherited, avoiding genetic spread by pollen diffusion, and were maintained stably in the seed progeny. Despite the low PHB productivity, this report demonstrates the feasibility of transplastomic technology for metabolic engineering. This "phyto-fermentation" system can be applied to plant production of various chemical commodities and pharmaceuticals. | 2004 | 15509840 |
| 8144 | 16 | 0.9973 | Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes. | 2022 | 35628704 |
| 8345 | 17 | 0.9973 | Antibiotic Resistance via Bacterial Cell Shape-Shifting. Bacteria have evolved to develop multiple strategies for antibiotic resistance by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities, but the role of cell morphology in antibiotic resistance remains poorly understood. By analyzing cell morphological data for different bacterial species under antibiotic stress, we find that bacteria increase or decrease the cell surface-to-volume ratio depending on the antibiotic target. Using quantitative modeling, we show that by reducing the surface-to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration by decreasing antibiotic influx. The model further predicts that bacteria can increase the surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agreement with experimental data. Using a whole-cell model for the regulation of cell shape and growth by antibiotics, we predict shape transformations that bacteria can utilize to increase their fitness in the presence of antibiotics. We conclude by discussing additional pathways for antibiotic resistance that may act in synergy with shape-induced resistance. | 2022 | 35616332 |
| 8334 | 18 | 0.9973 | Tumour progression: random mutations or an integrated survival response to cellular stress conserved from unicellular organisms? The current paradigm states that cancer progression is caused by random independent mutations, each selected for its survival advantages. The accelerated rates of phenotypic changes, the pleiotropic effect of several genes involved in progression--which need not be necessarily mutated for inducing the observed changes in cancer cell behaviour--lead us to propose an alternative hypothesis. Malignant progression might be a result of the unveiling of a cell-survival program, induced by various aggressions in the same way as the SOS system is induced and regulated in bacteria. This hypothesis depends on the homology between several genes involved in cancer progression (such as bcl2, mdm2, the mismatch repair genes, the heat shock protein genes, the pleiotropic resistance genes, the telomerase gene ...) and several genes involved in the survival of prokaryotes and eukaryotes under stress. The development of multicellular organisms could not take place without the building of a control program, exemplified by the so-called anti-oncogenes. However, this control program had to integrate some weaknesses, in order to allow for embryogenesis, growth, and wound healing. These weaknesses, neutral from an evolutionary point of view--since most cancers are sporadic and kill their hosts long after the birth of the offspring--are exploited by the survival program of individual cells, inherited from the genome of prokaryotes and unicellular eukaryotes, and repressed but not suppressed in animals. If this theory is true, it is probable that (i) no anti-oncogenes will be found in unicellular organisms, (ii) the sensitivity to mutations will be higher in genes involved in proliferation and in anti-oncogenes such as p53 and Rb, than in genes not involved in the cancer process, (iii) a process of transfer of genetic information exists in cancer cells as it exists in bacteria. The identification of the genes governing the survival program could lead to new therapeutic approaches. | 1996 | 8733476 |
| 293 | 19 | 0.9973 | Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system. | 2003 | 12869186 |