DIGESTATE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
812300.9857The effect of bulk-biochar and nano-biochar amendment on the removal of antibiotic resistance genes in microplastic contaminated soil. Biochar amendment has significant benefits in removing antibiotic resistance genes (ARGs) in the soil. Nevertheless, there is little information on ARGs removal in microplastic contaminated soil. Herein, a 42-day soil microcosm experiment were carried out to study how two coconut shell biochars (bulk- and nano-size) eliminate soil ARGs with/without microplastic presence. The results showed that microplastic increased significantly the numbers and abundances of ARGs in soil at 14d of cultivation. And, two biochars amendment effectively inhibited soil ARGs spread whether or not microplastic was present, especially for nano-biochar which had more effective removal compared to bulk-biochar. However, microplastic weakened soil ARGs removal after applying same biochar. Two biochars removed ARGs through decreasing horizontal gene transfer (HGT) of ARGs, potential host-bacteria abundances, some bacteria crowding the eco-niche of hosts and promoting soil properties. The adverse effect of microplastic on ARGs removal was mainly caused by weakening mobile genetic elements (MGEs) removal, and by changing soil properties. Structural equation modeling (SEM) analysis indicated that biochar's effect on ARGs profile was changed by its size and microplastic presence through altering MGEs abundances. These results highlight that biochar amendment is still an effective method for ARGs removal in microplastic contaminated soil.202437907163
811110.9854Effect of alkaline-thermal pretreatment on biodegradable plastics degradation and dissemination of antibiotic resistance genes in co-compost system. Biodegradable plastics (BDPs) are an eco-friendly alternative to traditional plastics in organic waste, but their microbial degradation and impact on antibiotic resistance genes (ARGs) transmission during co-composting remain poorly understood. This study examines how alkaline-thermal pretreatment enhances BDPs degradation and influences the fate of ARGs and mobile genetic elements (MGEs) in co-composting. Pretreatment with 0.1 mol/L NaOH at 100℃ for 40 minutes increased the surface roughness and hydrophilicity of BDPs while reducing their molecular weight and thermal stability. Incorporating pretreated BDPs film (8 g/kg-TS) into the compost reduced the molecular weight of the BDPs by 59.70 % during the maturation stage, facilitating compost heating and prolonging the thermophilic stage. However, incomplete degradation of BDPs releases numerous smaller-sized microplastics, which can act as carriers for microorganisms, facilitating the dissemination of ARGs across environments and posing significant ecological and public health risks. Metagenomic analysis revealed that pretreatment enriched plastic-degrading bacteria, such as Thermobifida fusca, on BDPs surfaces and accelerated microbial plastic degradation during the thermophilic stage, but also increased ARGs abundance. Although pretreatment significantly reduced MGEs abundance (tnpA, IS19), the risk of ARGs dissemination remained. Three plastic-degrading bacteria (Pigmentiphaga sp002188465, Bacillus clausii, and Bacillus altitudinis) were identified as ARGs hosts, underscoring the need to address the risk of horizontal gene transfer of ARGs associated with pretreatment in organic waste management.202539970645
690720.9852Deciphering the impact of organic loading rate and digestate recirculation on the occurrence patterns of antibiotics and antibiotic resistance genes in dry anaerobic digestion of kitchen waste. Organic loading rate (OLR) is crucial for determining the stability of dry anaerobic digestion (AD). Digestate recirculation contributes to reactor stability and enhances methane production. Nevertheless, the understanding of how OLR and digestate recirculation affect the abundance and diversity of antibiotics and antibiotic resistance genes (ARGs), as well as the mechanisms involved in the dissemination of ARGs, remains limited. This study thoroughly investigated this critical issue through a long-term pilot-scale experiment. The metabolome analyses revealed the enrichment of various antibiotics, such as aminoglycoside, tetracycline, and macrolide, under low OLR conditions (OLR ≤ 4.0 g·VS/L·d) and the reactor instability. Antibiotics abundance decreased by approximately 19.66-31.69 % during high OLR operation (OLR ≥ 6.0 g·VS/L·d) with digestate recirculation. The metagenome analyses demonstrated that although low OLR promoted reactor stability, it facilitated the proliferation of antibiotic-resistant bacteria, such as Pseudomonas, and triggered functional profiles related to ATP generation, oxidative stress response, EPS secretion, and cell membrane permeability, thereby facilitating horizontal gene transfer (HGT) of ARGs. However, under stable operation at an OLR of 6.0 g·VS/L·d, there was a decrease in ARGs abundance but a notable increase in human pathogenic bacteria (HPB) and mobile genetic elements (MGEs). Subsequently, during reactor instability, the abundance of ARGs and HPB increased. Notably, during digestate recirculation at OLR levels of 6.0 and 7.0 g·VS/L·d, the process attenuated the risk of ARGs spread by reducing the diversity of ARGs hosts, minimizing interactions among ARGs hosts, ARGs, and MGEs, and weakening functional profiles associated with HGT of ARGs. Overall, digestate recirculation aids in reducing the abundance of antibiotics and ARGs under high OLR conditions. These findings provide advanced insights into how OLR and digestate recirculation affect the occurrence patterns of antibiotics and ARGs in dry AD.202438968733
787330.9849Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems.202336996986
692140.9849Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.202236547725
792750.9849Different microplastics distinctively enriched the antibiotic resistance genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Both microplastics (MPs) and antibiotic resistance genes (ARGs) are intensively detected in waste activated sludge (WAS). However, the distinctive impacts of different MPs on ARGs emergence, dissemination, and its potential mechanisms remain unclear. In this study, long-term semi-continuous digesters were performed to examine the profiles of ARGs and antibiotic-resistant bacteria (ARB) in response to two different typical MPs (polyethylene (PE) and polyvinyl chloride (PVC)) in anaerobic sludge digestion. Metagenomic results show that PE- and PVC-MPs increase ARGs abundance by 14.8% and 23.6% in digester, respectively. ARB are also enriched by PE- and PVC-MPs, Acinetobacter sp. and Salmonella sp. are the dominant ARB. Further exploration reveals that PVC-MPs stimulates the acquisition of ARGs by human pathogen bacteria (HPB) and functional microorganisms (FMs), but PE-MPs doesn't. Network analysis shows that more ARGs tend to co-occur with HBP and FMs after MPs exposure, and more importantly, new bacteria are observed to acquire ARGs possibly via horizontal gene flow (HGF) in MPs-stressed digester. The genes involved in the HGF process, including reactive oxygen species (ROS) production, cell membrane permeability, extracellular polymeric substances (EPS) secretion, and ATP synthesis, are also enhanced by MPs, thereby attributing to the promoted ARGs dissemination. These findings offer advanced insights into the distinctive contribution of MPs to fate, host, dissemination of ARGs in anaerobic sludge digestion.202336423550
794060.9849Microplastics affect the ammonia oxidation performance of aerobic granular sludge and enrich the intracellular and extracellular antibiotic resistance genes. Microplastics (MPs) and antibiotic resistance genes (ARGs), as emerging pollutants, are frequently detected in wastewater treatment plants, and their threats to the environment have received extensive attentions. However, the effects of MPs on the nitrification of aerobic granular sludge (AGS) and the spread patterns of intracellular and extracellular ARGs (iARGs and eARGs) in AGS were still unknown. In this study, the responses of AGS to the exposure of 1, 10 and 100 mg/L of typical MPs (polyvinyl chloride (PVC), polyamide (PA), polystyrene (PS) and polyethylene (PE)) and tetracycline were focused on in 3 L nitrifying sequencing batch reactors. 10 mg/L MPs decreased the nitrification function, but nitrification could recover. Furthermore, MPs inhibited ammonia-oxidizing bacteria and enriched nitrite-oxidizing bacteria, leading partial nitrification to losing stability. PVC, PA and PS stimulated the secretion of extracellular polymeric substances and reactive oxygen species. PE had less negative effect on AGS than PVC, PA and PS. The abundances of iARGs and eARGs (tetW, tetE and intI1) increased significantly and the intracellular and extracellular microbial communities obviously shifted in AGS system under MPs stress. Potential pathogenic bacteria might be the common hosts of iARGs and eARGs in AGS system and were enriched in AGS and MPs biofilms.202133387747
812070.9849Insight into the fate of antibiotic resistance genes and bacterial community in co-composting green tea residues with swine manure. Green tea residues (GTRs) are byproducts of tea production and processing, and this type of agricultural waste retains nutritious components. This study investigated the co-composting of GTRs with swine manure, as well as the effects of GTRs on antibiotic resistance genes (ARGs) and the bacterial community during co-composting. The temperature and C/N ratio indicate compost was mature after processing. The addition of GTRs effectively promoted the reduction in the abundances of most targeted ARGs (tet and sul genes), mobile genetic element (MGE; intI1), and metal resistance genes (MRGs; pcoA and tcrB). Redundancy analysis (RDA) showed that GTRs can reduce the abundance of MRGs and ARGs by reducing the bioavailability of heavy metals. Network analysis shows that Firmicutes and Actinobacteria were the main hosts of ARGs and ARGs, MGEs, and MRGs shared the same potential host bacteria. Adding GTRs during composting may reduce ARGs transmission through horizontal gene transfer (HGT). GTRs affected the bacterial community, thereby influencing the variations in the ARG profiles and reducing the potential risk associated with the compost product.202032310121
795080.9849Fate and removal of fluoroquinolone antibiotics in mesocosmic wetlands: Impact on wetland performance, resistance genes and microbial communities. The fate of fluoroquinolone antibiotics norfloxacin and ofloxacin were investigated in mesocosmic wetlands, along with their effects on nutrients removal, antibiotic resistance genes (ARGs) and epiphytic microbial communities on Hydrilla verticillate using bionic plants as control groups. Approximately 99% of norfloxacin and ofloxacin were removed from overlaying water, and H. verticillate inhibited fluoroquinolones accumulation in surface sediments compared to bionic plants. Partial least squares path modeling showed that antibiotics significantly inhibited the nutrient removal capacity (0.55) but had no direct effect on plant physiology. Ofloxacin impaired wetland performance more strongly than norfloxacin and more impacted the primary microbial phyla, whereas substrates played the most decisive role on microbial diversities. High antibiotics concentration shifted the most dominant phyla from Proteobacteria to Bacteroidetes and inhibited the Xenobiotics biodegradation function, contributing to the aggravation in wetland performance. Dechloromonas and Pseudomonas were regarded as the key microorganisms for antibiotics degradation. Co-occurrence network analysis excavated that microorganisms degrade antibiotics mainly through co-metabolism, and more complexity and facilitation/reciprocity between microbes attached to submerged plants compared to bionic plants. Furthermore, environmental factors influenced ARGs mainly by altering the community dynamics of differential bacteria. This study offers new insights into antibiotic removal and regulation of ARGs accumulation in wetlands with submerged macrophyte.202438569335
692690.9846Insights into the driving factors of vertical distribution of antibiotic resistance genes in long-term fertilized soils. The prevalence of antibiotic resistance genes (ARGs) in soils has aroused wide attention. However, the influence of long-term fertilization on the distribution of ARGs in different soil layers and its dominant drivers remain largely unknown. In this study, a total of 203 ARGs were analyzed in greenhouse vegetable soils (0-100 cm from a 13-year field experiment applied with different fertilizers (control, chemical fertilizer, organic manure, and mixed fertilizer). Compared with unfertilized and chemically fertilized soils, manure application significantly increased the abundance and alpha diversity of soil ARGs, where the assembly of ARG communities was strongly driven by stochastic processes. The distribution of ARGs was significantly driven by manure application within 60 cm, while it was insignificantly changed in soil below 60 cm under different fertilization regimes. The inter-correlations of ARGs with mobile genetic elements (MGEs) and microbiota were strengthened in manured soil, indicating manure application posed a higher risk for ARGs diffusion in subsurface soil. Bacteria abundance and MGEs directly influenced ARG abundance and composition, whereas soil depth and manure application indirectly influenced ARG abundance and composition by affecting antibiotics. These results strengthen our understanding of the long-term anthropogenic influence on the vertical distribution of soil ARGs and highlight the ecological risk of ARGs in subsurface soil induced by long-term manure application.202337247491
6393100.9846A review of the impact of conductive materials on antibiotic resistance genes during the anaerobic digestion of sewage sludge and animal manure. The urgent need to reduce the environmental burden of antibiotic resistance genes (ARGs) has become even more apparent as concerted efforts are made globally to tackle the dissemination of antimicrobial resistance. Concerning levels of ARGs abound in sewage sludge and animal manure, and their inadequate attenuation during conventional anaerobic digestion (AD) compromises the safety of the digestate, a nutrient-rich by-product of AD commonly recycled to agricultural land for improvement of soil quality. Exogenous ARGs introduced into the natural environment via the land application of digestate can be transferred from innocuous environmental bacteria to clinically relevant bacteria by horizontal gene transfer (HGT) and may eventually reach humans through food, water, and air. This review, therefore, discusses the prospects of using carbon- and iron-based conductive materials (CMs) as additives to mitigate the proliferation of ARGs during the AD of sewage sludge and animal manure. The review spotlights the core mechanisms underpinning the influence of CMs on the resistome profile, the steps to maximize ARG attenuation using CMs, and the current knowledge gaps. Data and information gathered indicate that CMs can profoundly reduce the abundance of ARGs in the digestate by easing selective pressure on ARGs, altering microbial community structure, and diminishing HGT.202336586329
7942110.9846Insight into effects of polyethylene microplastics in anaerobic digestion systems of waste activated sludge: Interactions of digestion performance, microbial communities and antibiotic resistance genes. The environmental risks of microplastics (MPs) have raised an increasing concern. However, the effects of MPs in anaerobic digestion (AD) systems of waste activated sludge (WAS), especially on the fate of antibiotic resistance genes (ARGs), have not been clearly understood. Herein, the variation and interaction of digestion performance, microbial communities and ARGs during AD process of WAS in the presence of polyethylene (PE) MPs with two sizes, PE MPs-180μm and PE MPs-1mm, were investigated. The results showed that the presence of PE MPs, especially PE MPs-1mm, led to the increased hydrolysis of soluble polysaccharides and proteins and the accumulation of volatile fatty acids. The methane production decreased by 6.1% and 13.8% in the presence of PE MPs-180μm and PE MPs-1mm, respectively. Together with this process, hydrolytic bacteria and acidogens were enriched, and methanogens participating in acetoclastic methanogenesis were reduced. Meanwhile, ARGs were enriched obviously by the presence of PE MPs, the abundances of which in PE MPs-180μm and PE MPs-1mm groups were 1.2-3.0 times and 1.5-4.0 times higher than that in the control by the end of AD. That was associated with different co-occurrence patterns between ARGs and bacterial taxa and the enrichment of ARG-hosting bacteria caused by the presence of PE MPs. Together these results suggested the adverse effects of PE MPs on performance and ARGs removal during AD process of WAS through inducing the changes of microbial populations.202235944782
6937120.9845Differential responses of bacterial and archaeal communities to biodegradable and non-biodegradable microplastics in river. Microplastics are widespread environmental pollutants that pose risks to ecosystems, yet their effects on bacterial and archaeal communities in aquatic ecosystems remain understudied. In this study, we performed a 14-day microcosm experiment combined with metagenomic sequencing to compare bacterial and archaeal responses to a biodegradable microplastic (polylactic acid, PLA) and a non-biodegradable microplastic (polyvinyl chloride, PVC). Microplastics selectively enriched distinct microbial assemblages, with Pseudomonadota and Euryarchaeota identified as the dominant bacterial and archaeal phyla, accounting for 67.83 % and 15.95 %, respectively. Archaeal community in surrounding water were more sensitive to colonization time than bacterial community. Compared to the surrounding water, the plastisphere displayed simpler and more loosely connected microbial networks. Notably, co-occurrence networks of both bacteria and archaea in the PVC plastisphere were predominantly shaped by symbiotic interactions. Both bacteria and archaea carried diverse antibiotic resistance genes (ARGs), but PLS-PM indicated that bacteria were the primary drivers of ARG dissemination (path coefficient = 0.952). While the PVC plastisphere showed higher ARG abundance than the PLA plastisphere, elevated intI1 expression in the PLA plastisphere suggests a potentially greater risk of ARG dissemination associated with PLA microplastics. These findings reveal the distinct effects of PLA and PVC microplastics on microbial communities and highlight the role of microplastics in ARG dissemination, emphasizing their ecological risks in aquatic ecosystems.202540712359
8126130.9844Antiallergic drugs drive the alteration of microbial community and antibiotic resistome in surface waters: A metagenomic perspective. Antiallergic drugs (AADs) are emerging contaminants of global concern due to their environmental persistence and potential ecological impacts. This study investigated the effects of seven AADs (chlorpheniramine, diphenhydramine, cetirizine, loratadine, desloratadine, sodium cromoglicate and calcium gluconate) at environmentally relevant concentrations on antibiotic resistome and bacterial community structures in water using microcosm experiments and metagenomic sequencing. The results showed that AADs increased the abundance of antibiotic-resistant bacteria (ARB) by 1.24- to 7.78-fold. Community structure shifts indicated that chlorpheniramine, diphenhydramine, and cetirizine promoted Actinobacteria (e.g., Aurantimicrobium), while the other four AADs favored Proteobacteria (e.g., Limnohabitans). AADs also significantly altered the relative abundance of antibiotic resistance genes (ARGs), with Actinobacteria and Proteobacteria identified as key ARB components and potential hosts of ARGs (e.g., evgS, mtrA, RanA). Host analysis showed ARGs were primarily carried by Actinobacteria (e.g., Aurantimicrobium) under chlorpheniramine, diphenhydramine, and cetirizine exposure, but by Proteobacteria (e.g., Limnohabitans) under the other four AADs. Furthermore, AADs facilitated the horizontal transfer of ARGs (e.g., evgS) within microbial communities, contributing to antibiotic resistance dissemination. This study highlights the ecological risks of AADs in promoting antibiotic resistance spread and provides new insights into their impact on microbial communities and resistome dynamics in aquatic environments.202540570627
7929140.9842Size-dependent effects of microplastics on antibiotic resistance genes fate in wastewater treatment systems: The role of changed surface property and microbial assemblages in a continuous exposure mode. Microplastics (MPs) were continuously transported to wastewater treatment systems and accumulated in sludge constantly, potentially affecting systems function and co-occurrent contaminants fate. However, previous studies were based on acute exposure of MPs, which could not reflect the dynamics of MPs accumulation. Herein, this study firstly raised a more realistic method to evaluate the practical impacts of MPs on systems purification efficiency and antibiotic resistance genes (ARGs) fate. Continuous exposure of MPs did not pose negative effects on nutrients removal, but significantly changed the occurrence patterns of ARGs. ARGs abundances increased by 42.8 % and 54.3 % when exposed to millimeter-size MPs (mm-MPs) polyamide and polyethylene terephthalate, but increased by 31.3 % and 39.4 % to micron-size MPs (μm-MPs), respectively. Thus, mm-MPs posed severer effects on ARGs than μm-MPs. Further, mm-MPs surface properties were obviously altered after long-term exposure (higher specific surface area and O-containing species), which benefited microbes attachment. More importantly, more taxa linkages and changed topological properties (higher average degree and average weight) of co-occurrent network were observed in sludge with mm-MPs than with μm-MPs, as well as totally different potential host bacteria of ARGs. Rough surface of MPs and closer relations between ARGs and bacteria taxa contributed to the propagation of ARGs, which accounted for the observed higher ARGs abundances of mm-MPs. This study demonstrated that long-term accumulation of MPs in wastewater treatment systems affected ARGs fate, and mm-MPs caused severer risk due to their enrichment of ARGs. The results would promote the understanding of MPs real environmental behavior and influences.202236037899
8117150.9842Composting of oxytetracycline fermentation residue in combination with hydrothermal pretreatment for reducing antibiotic resistance genes enrichment. Hydrothermal pretreatment can efficiently remove the residual antibiotics in oxytetracycline fermentation residue (OFR), but its effect on antibiotic resistance genes (ARGs) during composting remains unclear. This study compared the shifts in bacterial community and evolutions in ARGs and integrons during different composting processes of OFRs with and without hydrothermal pretreatment. The results demonstrated that hydrothermal pretreatment increased the bacterial alpha diversity at the initial phase, and increased the relative abundances of Proteobacteria and Actinobacteria but decreased that of Bacteroidetes at the final phase by inactivating mycelia and removing residual oxytetracycline. Composting process inevitably elevated the abundance and relative abundance of ARGs. However, the increase in ARGs was significantly reduced by hydrothermal pretreatment, because the removal of oxytetracycline decreased their potential host bacteria and inhibited their horizontal gene transfer. The results demonstrated that hydrothermal pretreatment is an efficient strategy to reduce the enrichment of ARGs during the OFR composting.202033099099
6915160.9841Industrial-scale aerobic composting of livestock manures with the addition of biochar: Variation of bacterial community and antibiotic resistance genes caused by various composting stages. The presence of large amounts of antibiotic resistance genes (ARGs) in livestock manures poses an impending, tough safety risk to ecosystems. To investigate more comprehensively the mechanisms of ARGs removal from industrial-scale composting of livestock manure based on biochar addition, we tracked the dynamics of bacterial community and ARGs at various stages of aerobic composting of livestock manures with 10% biochar. There were no significant effects of biochar on the bacterial community and the profiles of ARGs. During aerobic composting, the relative abundance of ARGs and mobile genetic elements (MGEs) showed overall trends of decreasing and then increasing. The key factor driving the dynamics of ARGs was bacterial community composition, and the potential hosts of ARGs were Caldicoprobacter, Tepidimicrobium, Ignatzschineria, Pseudogracilibacillus, Actinomadura, Flavobacterium and Planifilum. The retention of the thermophilic bacteria and the repopulation of the initial bacteria were the dominant reasons for the increase in ARGs at maturation stage. Additionally, among the MGEs, the relative abundance of transposon gene was substantially removed, while the integron genes remained at high relative abundance. Our results highlighted that the suitability of biochar addition to industrial-scale aerobic composting needs to be further explored and that effective measures are needed to prevent the increase of ARGs content on maturation stage.202236162559
7930170.9841Fates of extracellular and intracellular antibiotic resistance genes in activated sludge and plastisphere under sulfadiazine pressure. Microplastics, antibiotics, and antibiotic resistance genes (ARGs) represent prominent emerging contaminants that can potentially hinder the efficacy of biological wastewater treatment and pose health risks. Plastisphere as a distinct ecological niche for microorganisms, acts as a repository for ARGs and potential pathogenic bacteria. Nonetheless, the spread pattern of extracellular ARGs (eARGs) and intracellular ARGs (iARGs) in plastisphere under antibiotic exposure was not yet known. This study aimed to investigate disparities in extracellular polymeric substances (EPS) production, extracellular and intracellular microbial community structures, as well as the transmission of eARGs and iARGs between activated sludge and plastisphere in an anaerobic/anoxic/oxic system under sulfadiazine (SDZ) exposure. SDZ was found to enhance EPS production in activated sludge and plastisphere. Interestingly, as SDZ removal efficiency increased, EPS content decreased in activated sludge and plastisphere collected from oxic zone, and continued to increase in plastisphere samples collected from anaerobic and anoxic zones. There were significant differences in microbial community structure between activated sludge and plastisphere, and the DNA fragments of potential pathogenic bacteria were detected in extracellular samples. SDZ exhibited a promoting effect on the propagation of eARGs, which were more abundant in the plastisphere than in activated sludge, thus heightening the risk of ARGs dissemination. Extracellular mobile genetic elements played a pivotal role in driving the spread of eARGs, while the microbial community induced the changes of iARGs. Potential pathogenic bacteria emerged as potential hosts for ARGs and mobile genetic elements within activated sludge and plastisphere, leading to more serious environmental threats.202337898001
7947180.9841Molecular insights into linkages among free-floating macrophyte-derived organic matter, the fate of antibiotic residues, and antibiotic resistance genes. Macrophyte rhizospheric dissolved organic matter (ROM) served as widespread abiotic components in aquatic ecosystems, and its effects on antibiotic residues and antibiotic resistance genes (ARGs) could not be ignored. However, specific influencing mechanisms for ROM on the fate of antibiotic residues and expression of ARGs still remained unclear. Herein, laboratory hydroponic experiments for water lettuce (Pistia stratiotes) were carried out to explore mutual interactions among ROM, sulfamethoxazole (SMX), bacterial community, and ARGs expression. Results showed ROM directly affect SMX concentrations through the binding process, while CO and N-H groups were main binding sites for ROM. Dynamic changes of ROM molecular composition diversified the DOM pool due to microbe-mediated oxidoreduction, with enrichment of heteroatoms (N, S, P) and decreased aromaticity. Microbial community analysis showed SMX pressure significantly stimulated the succession of bacterial structure in both bulk water and rhizospheric biofilms. Furthermore, network analysis further confirmed ROM bio-labile compositions as energy sources and electron shuttles directly influenced microbial structure, thereby facilitating proliferation of antibiotic resistant bacteria (Methylotenera, Sphingobium, Az spirillum) and ARGs (sul1, sul2, intl1). This investigation will provide scientific supports for the control of antibiotic residues and corresponding ARGs in aquatic ecosystems.202438653136
6917190.9841Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. This research investigated biogas residue and biochar addition on antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and changes in bacterial community during agricultural waste composting. Sequencing technique investigated bacterial community structure and ARGs, MGEs changes. Correlations among physicochemical factors, ARGs, MGEs, and bacterial community structure were determined using redundancy analysis. Results confirmed that biochar and biogas residue amendments effectively lowered the contents of ARGs and MGEs. The main ARGs detected was sul1. Proteobacteria and Firmicutes were the main host bacteria strongly associated with the dissemination of ARGs. The dynamic characteristics of the bacterial community were strongly correlated with pile temperature and pH (P < 0.05). Redundancy and network analysis revealed that nitrate, intI1, and Firmicutes mainly affected the in ARGs changes. Therefore, regulating these key variables would effectively suppress the ARGs spread and risk of compost use.202336657587