DIFFERENCES - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
322800.9968Differences in Gut Microbiome Composition and Antibiotic Resistance Gene Distribution between Chinese and Pakistani University Students from a Common Peer Group. Gut microbiomes play important functional roles in human health and are also affected by many factors. However, few studies concentrate on gut microbiomes under exercise intervention. Additionally, antibiotic resistance genes (ARGs) carried by gut microbiomes may constantly pose a threat to human health. Here, ARGs and microbiomes of Chinese and Pakistanis participants were investigated using 16S rRNA gene sequencing and high-throughput quantitative PCR techniques. The exercise had no impact on gut microbiomes in the 12 individuals investigated during the observation period, while the different distribution of gut microbiomes was found in distinct nationalities. Overall, the dominant microbial phyla in the participants' gut were Bacteroidota, Firmicutes and Proteobacteria. Some genera such as Prevotella and Dialister were more abundant in Pakistani participants and some other genera such as Bacteroides and Faecalibacterium were more abundant in Chinese participants. The microbial diversity in Chinese was higher than that in Pakistanis. Furthermore, microbial community structures were also different between Chinese and Pakistanis. For ARGs, the distribution of all detected ARGs is not distinct at each time point. Among these ARGs, floR was distributed differently in Chinese and Pakistani participants, and some ARGs such as tetQ and sul2 are positively correlated with several dominant microbiomes, particularly Bacteroidota and Firmicutes bacteria that did not fluctuate over time.202134072124
706410.9968Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. As agriculture industrializes, concentrated animal feeding operations (CAFOs) are becoming more common. Feces from CAFOs is often used as fertilizer on fields. However, little is known about the effects manure has on the soil microbiome, which is an important aspect of soil health and fertility. In addition, due to the subtherapeutic levels of antibiotics necessary to keep the animals healthy, CAFO manure has elevated levels of antibiotic resistant bacteria. Using 16s rRNA high-throughput sequencing and qPCR, this study sought to determine the impact of swine CAFO manure application on both the soil microbiome and abundance of select antibiotic resistance genes (ARGs) and mobile element genes (erm(B), erm(C), sul1, str(B), intI1, IncW repA) in agricultural soil over the fall and spring seasons. We found the manure community to be distinct from the soil community, with a majority of bacteria belonging to Bacteroidetes and Firmicutes. The soil samples had more diverse communities dominated by Acidobacteria, Actinobacteria, Proteobacteria, Verrucomicrobia, and unclassified bacteria. We observed significant differences in the soil microbiome between all time points, except between the spring samples. However, by tracking manure associated taxa, we found the addition of the manure microbiome to be a minor driver of the shift. Of the measured genes, manure application only significantly increased the abundance of erm(B) and erm(C) which remained elevated in the spring. These results suggest bacteria in the manure do not survive well in soil and that ARG dynamics in soil following manure application vary by resistance gene.201931425534
737320.9968Distributional Pattern of Bacteria, Protists, and Diatoms in Ocean according to Water Depth in the Northern South China Sea. Ocean microbiomes provide insightful details about the condition of water and the global impact of marine ecosystems. A fine-scale analysis of ocean microbes may shed light on the dynamics and function of the ocean microbiome community. In this study, we evaluated the changes in the community and function of marine bacteria, protists, and diatoms corresponding to different ocean depths using next-generation sequencing methods. We found that diatoms displayed a potential water-depth pattern in species richness (alpha diversity) and community composition (beta diversity). However, for bacteria and protists, there was no significant relationship between water depth and species richness. This may be related to the biological characteristics of diatoms. The photosynthesis of diatoms and their distribution may be associated with the fluctuating light regime in the underwater climate. Moreover, salinity displayed negative effects on the abundance of some diatom and bacterial groups, which indicates that salinity may be one of the factors restricting ocean microorganism diversity. In addition, compared to the global ocean microbiome composition, function, and antibiotic resistance genes, a water depth pattern due to the fine-scale region was not observed in this study. IMPORTANCE Fine-scale analysis of ocean microbes provides insights into the dynamics and functions of the ocean microbiome community. Here, using amplicon and metagenome sequencing methods, we found that diatoms in the northern South China Sea displayed a potential water-depth pattern in species richness and community composition, which may be related to their biological characteristics. The potential effects of the differences in geographic sites mainly occurred in the diatom and bacterial communities. Moreover, given the correlation between the environmental factors and relative abundance of antibiotic resistance genes (ARGs), the study of ocean ARG distribution patterns should integrate the potential effects of environmental factors.202236222702
706530.9967Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. We investigated immediate and long-term effects on bacterial populations of soil amended with cattle manure, sewage sludge or municipal solid waste compost in an ongoing agricultural field trial. Soils were sampled in weeks 0, 3, 9 and 29 after fertilizer application. Pseudomonas isolates were enumerated, and the impact on soil bacterial community structure was investigated using 16S rRNA amplicon pyrosequencing. Bacterial community structure at phylum level remained mostly unaffected. Actinobacteria, Proteobacteria and Chloroflexi were the most prevalent phyla significantly responding to sampling time. Seasonal changes seemed to prevail with decreasing bacterial richness in week 9 followed by a significant increase in week 29 (springtime). The Pseudomonas population richness seemed temporarily affected by fertilizer treatments, especially in sludge- and compost-amended soils. To explain these changes, prevalence of antibiotic- and mercury-resistant pseudomonads was investigated. Fertilizer amendment had a transient impact on the resistance profile of the soil community; abundance of resistant isolates decreased with time after fertilizer application, but persistent strains appeared multiresistant, also in unfertilized soil. Finally, the ability of a P. putida strain to take up resistance genes from indigenous soil bacteria by horizontal gene transfer was present only in week 0, indicating a temporary increase in prevalence of transferable antibiotic resistance genes.201425087596
687140.9966Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. Microplastics are of great public concern due to their wide distribution and the potential risk to humans and animals. In this study, the microplastic pollution associated with bacterial communities, human pathogenic bacteria, and antibiotic resistance genes (ARGs) were investigated compared to water, sediment, and natural wood particles. Microplastics were widely distributed in surface water of the Ganjiang River at a watershed level with an average value of 407 particles m(-3). The fragment was the main microplastic shape found in the basin. Microplastics had significantly higher observed species and Chao1 index of bacterial communities than those in water, but comparable to wood particles. However, there was no difference in the microplastics pollution and alpha diversity indices of bacterial between different reaches along the Ganjiang River. Flavobacterium, Rhodoferax, Pseudomonas, and Janthinobacterium on the microplastics were all found to be enriched compared with water and sediment. Principal component analysis of the composition and function profile of bacterial communities showed that microplastics provide a new microbial niche in the Ganjiang River, which was distinct from water, sediment, and natural wood. Pseudomonas genus dominated the composition of human pathogenic bacteria on the microplastics, which was significantly different from water and sediment. No difference was observed in the relative abundance of total ARGs among the four media. However, microplastic and wood particles showed similar composition patterns of ARGs compared with water and sediment.202134048747
707350.9966Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.201931589689
322760.9966Geographic pattern of antibiotic resistance genes in the metagenomes of the giant panda. The rise in infections by antibiotic-resistant bacteria poses a serious public health problem worldwide. The gut microbiome of animals is a reservoir for antibiotic resistance genes (ARGs). However, the correlation between the gut microbiome of wild animals and ARGs remains controversial. Here, based on the metagenomes of giant pandas (including three wild populations from the Qinling, Qionglai and Xiaoxiangling Mountains, and two major captive populations from Yaan and Chengdu), we investigated the potential correlation between the constitution of the gut microbiome and the composition of ARGs across the different geographic locations and living environments. We found that the types of ARGs were correlated with gut microbiome composition. The NMDS cluster analysis using Jaccard distance of the ARGs composition of the gut microbiome of wild giant pandas displayed a difference based on geographic location. Captivity also had an effect on the differences in ARGs composition. Furthermore, we found that the Qinling population exhibited profound dissimilarities of both gut microbiome composition and ARGs (the highest proportion of Clostridium and vancomycin resistance genes) when compared to the other wild and captive populations studies, which was supported by previous giant panda whole-genome sequencing analysis. In this study, we provide an example of a potential consensus pattern regarding host population genetics, symbiotic gut microbiome and ARGs. We revealed that habitat isolation impacts the ARG structure in the gut microbiome of mammals. Therefore, the difference in ARG composition between giant panda populations will provide some basic information for their conservation and management, especially for captive populations.202132812361
773070.9965Cerebral Intraparenchymal Hemorrhage Changes Patients' Gut Bacteria Composition and Function. Gut bacteria consists of 150 times more genes than humans that are vital for health. Several studies revealed that gut bacteria are associated with disease status and influence human behavior and mentality. Whether human brain injury alters the gut bacteria is yet unclear, we tested 20 fecal samples from patients with cerebral intraparenchymal hemorrhage and corresponding healthy controls through metagenomic shotgun sequencing. The composition of patients' gut bacteria changed significantly at the phylum level; Verrucomicrobiota was the specific phylum colonized in the patients' gut. The functional alteration was observed in the patients' gut bacteria, including high metabolic activity for nutrients or neuroactive compounds, strong antibiotic resistance, and less virulence factor diversity. The changes in the transcription and metabolism of differential species were more evident than those of the non-differential species between groups, which is the primary factor contributing to the functional alteration of patients with cerebral intraparenchymal hemorrhage.202235372117
724680.9965Tetracycline resistance genes are more prevalent in wet soils than in dry soils. This study aimed to reveal the effects of water content on the spread of tetracycline resistance genes (TRGs) in the soil. Amendments of four samples with different soil water contents, namely 16% (dry soil) and 25% (wet soil), and with or without pig manures (PM) were conducted under laboratory conditions. Quantitative polymerase chain reaction (q-PCR) results showed that the relative abundance of TRGs (tetB, tetC, tetM, tetO, tetT, and tetZ) in the wet soils was significantly higher than that in the dry soils whether under fertilization or non-fertilization conditions. Moreover, PM application enhanced the relative abundance of TRGs. The absolute copies of TRGs did not decline with the decrease in 16S rRNA genes in wet soils, implying that most TRGs were probably located in facultative anaerobic bacteria. However, cultivable tetracycline-resistant bacteria (TRB) in the wet soils were not in line with the q-PCR results, further indicating that aerobes might not account for the increases in the relative abundance of TRGs. Diversities of aerobic TRB were significantly higher in the wet soils than in the dry soils, especially on days 14 and 28. The patterns of community structures of aerobic TRB in the wet soils or dry soils containing PM were different from those in the dry soils. Together, this study showed that the variations in bacterial communities between the wet and dry soils, especially reflected in the diversity of aerobic TRB and/or community structure of facultative anaerobic TRB, might be an important reason behind the changes in the abundance of TRGs.201829573724
695790.9965Untreated swine wastes changed antibiotic resistance and microbial community in the soils and impacted abundances of antibiotic resistance genes in the vegetables. Animal waste fertilization is a traditional agricultural practice, which may have adverse effects to soil ecosystem. However, the side-effects of animal waste fertilization on vegetables are less studied. Here we selected a swine farming village for investigation with a nearby village without swine farming as comparison. In the swine farming village, the farmers use untreated swine manure and wastewater as fertilizers for vegetable cultivation. In the reference village, the farmers mainly use commercial organic fertilizers. The objective of this study is to assess the impacts of untreated swine waste fertilization on both soils and vegetables in terms of antibiotics, antibiotic resistance genes (ARGs) and bacterial microbial communities. The results indicate that untreated swine waste fertilization caused both antibiotic and ARG contaminations and changed the microbial community compositions in the soils. Varieties of tetracyclines and related resistance genes were detected especially in swine wastewater treated soils. The soil quality was impacted with the relations to bacterial abundances and microbial geochemical functions. Proteobacteria and Bacteroidetes were prevalent and positively correlated to ARGs in soils, indicating they were potential antibiotic resistant bacteria. Antibiotics and ARGs were detected in vegetables of both villages. The abundances of ARGs were relatively higher in some vegetable samples of the swine farming village than the reference village. In addition, intracellular parasites Rickettsiales with positive correlation to ARGs were prevalent in some vegetables of swine farming village, indicating potential health risks through eating contaminated vegetables. The results of this study suggest that untreated swine wastes may cause adverse effects to not only agricultural soils but also associated vegetables.202032615438
7058100.9965Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced? The demand for organic food products, especially for organic vegetables has been growing rapidly in the last few decades. However, the risk of introducing more antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) to the vegetables by organic production procedures has long been overlooked. In our study, by using high-throughput quantitative PCR and 16sRNA Illumina sequencing technology, we investigated the abundance and diversity of ARGs and the microbial communities in conventionally (CPL) and organically produced lettuce (OPL). A total of 134 ARGs were detected in the phyllosphere and leaf endophyte of the samples. Absolute copy numbers of ARGs in phyllosphere were 8-fold higher in the OPL than in CPL. We also observed a significant difference in the microbial communities between OPL and CPL, and a lower diversity of both phyllosphere and leaf endophytic bacteria in OPL than in CPL. The Mantel test and variation partitioning analysis (VPA) suggested that the profile of ARGs is strongly affected by bacterial community compositions. Network analysis between ARGs and bacterial taxa indicated that eight bacterial families were implicated to be the potential hosts of ARGs. These results provide insights into the impacts of organic farming on the profiles of bacterial and ARG compositions in vegetables.201727823798
7374110.9965Unravelling the Portuguese Coastal and Transitional Waters' Microbial Resistome as a Biomarker of Differential Anthropogenic Impact. Portugal mainland and Atlantic archipelagos (Madeira and Azores) provide a wide array of coastal ecosystems with varying typology and degrees of human pressure, which shape the microbial communities thriving in these habitats, leading to the development of microbial resistance traits. The samples collected on the Portuguese northeast Atlantic coast waters show an unequivocal prevalence of Bacteria over Archaea with a high prevalence of Proteobacteria, Cyanobacteria, Bacteroidetes and Actinobacteria. Several taxa, such as the Vibrio genus, showed significant correlations with anthropogenic pollution. These anthropogenic pressures, along with the differences in species diversity among the surveyed sites, lead to observed differences in the presence and resistance-related sequences' abundance (set of all metal and antibiotic resistant genes and their precursors in pathogenic and non-pathogenic bacteria). Gene ontology terms such as antibiotic resistance, redox regulation and oxidative stress response were prevalent. A higher number of significant correlations were found between the abundance of resistance-related sequences and pollution, inorganic pressures and density of nearby population centres when compared to the number of significant correlations between taxa abundance at different phylogenetic levels and the same environmental traits. This points towards predominance of the environmental conditions over the sequence abundance rather than the taxa abundance. Our data suggest that the whole resistome profile can provide more relevant or integrative answers in terms of anthropogenic disturbance of the environment, either as a whole or grouped in gene ontology groups, appearing as a promising tool for impact assessment studies which, due to the ubiquity of the sequences across microbes, can be surveyed independently of the taxa present in the samples.202236287893
6925120.9965Multiple driving factors contribute to the variations of typical antibiotic resistance genes in different parts of soil-lettuce system. The application of manure compost may cause the transmission of antibiotic resistance genes (ARGs) in agroecological environment, which poses a global threat to public health. However, the driving factors for the transmission of ARGs from animal manure to agroecological systems remains poorly understood. Here, we explored the spatiotemporal variation in ARG abundance and bacterial community composition as well as relative driving factors in a soil-lettuce system amended with swine manure compost. The results showed that ARGs abundance had different variation trends in soil, lettuce phylloplane and endophyere after the application of swine manure compost. The temporal variations of total ARGs abundance had no significant different in soil and lettuce phylloplane, while lettuce endosphere enriched half of ARGs to the highest level at harvest. There was a significant linear correlation between ARGs and integrase genes (IGs). In contrast to the ARGs variation trend, the alpha diversity of soil and phylloplane bacteria showed increasing trends over planting time, and endosphere bacteria remained stable. Correlation analysis showed no identical ARG-related genera in the three parts, but the shared Proteobacteria, Pseudomonas, Halomonas and Chelativorans, from manure compost dominated ARG profile in the soil-lettuce system. Moreover, redundancy analysis and structural equation modelling showed the variations of ARGs may have resulted from the combination of multiple driving factors in soil-lettuce system. ARGs in soil were more affected by the IGs, antibiotic and heavy metals, and bacterial community structure and IGs were the major influencing factors of ARG profiles in the lettuce. The study provided insight into the multiple driving factors contribute to the variations of typical ARGs in different parts of soil-lettuce system, which was conducive to the risk assessment of ARGs in agroecosystem and the development of effective prevention and control measures for ARGs spread in the environment.202134562788
7009130.9965Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36-55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils.201930861417
7220140.9965Occurrence and Drivers of Antibiotic Resistance Genes Carried by Bacteriophages in Soils Following Different Fertilization Treatments. Fertilization has an important effect on soil antibiotic resistance. Most recent studies have focused on antibiotic resistance genes (ARGs) harbored by bacteria (bARGs); however, little is known about ARGs carried by soil bacteriophages (pARGs) under different fertilization treatments. Here, 24 pARG subtypes were quantified in soils with long-term application of different fertilizers using droplet digital PCR (ddPCR). The results showed that the detection rates of the target ARGs in bacteriophages were 66.67%, 70.83%, and 75.00% in unfertilized, chemically fertilized, and organically fertilized soils, respectively. The total abundance of pARGs in soils amended with organic fertilizer was significantly higher than that in unfertilized and chemically fertilized soils. The multidrug resistance gene (mexF) exhibited the highest abundance in soils amended with organic fertilizer. A significant positive correlation was observed between bARGs and pARGs, and the detected pARG subtype abundances were one to two orders of magnitude lower than those of the corresponding bARGs. The results of variation partitioning analysis revealed that the interaction between the bacterial community and soil properties drove the variation in soil pARGs. Our findings indicate that bacteriophages are important vectors of ARGs, in addition to bacteria, in agricultural soils, and their contribution to antibiotic resistance should not be overlooked.202540559968
7062150.9965Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. Treatment of manures prior to land application can potentially reduce the abundance of antibiotic resistance genes and thus the risk of contaminating crops or water resources. In this study, raw and composted chicken litter were applied to field plots that were cropped to carrots, lettuce and radishes. Vegetables were washed per normal culinary practice before downstream analysis. The impact of composting on manure microbial composition, persistence of antibiotic resistant bacteria in soil following application, and distribution of antibiotic resistance genes and bacteria on washed vegetables were determined. A subset of samples that were thought likely to reveal the most significant effects were chosen for shotgun sequencing. The absolute abundance of all target genes detected by qPCR decreased after composting except sul1, intI1, incW and erm(F) that remained stable. The shotgun sequencing revealed that some integron integrases were enriched by composting. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. Manure-amended soil showed significantly higher abundances of sul1, str(A), str(B), erm(B), aad(A), intI1 and incW compared to unmanured soil. At harvest, those genes that were detected in soil samples before the application of manure (intI1, sul1, strA and strB) were quantifiable by qPCR on vegetables, with a larger number of gene targets detected on the radishes than in the carrots or lettuce. Shotgun metagenomic sequencing suggested that the increase of antibiotic resistance genes on radishes produced in soil receiving raw manure may be due to changes to soil microbial communities following manure application, rather than transfer to the radishes of enteric bacteria. Overall, under field conditions there was limited evidence for transfer of antibiotic resistance genes from composted or raw manure to vegetables that then persisted through washing.202134425441
7063160.9965Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.201728076772
7670170.9965Co-occurrence of antibiotic, biocide, and heavy metal resistance genes in bacteria from metal and radionuclide contaminated soils at the Savannah River Site. Contaminants such as heavy metals may contribute to the dissemination of antimicrobial resistance (AMR) by enriching resistance gene determinants via co-selection mechanisms. In the present study, a survey was performed on soils collected from four areas at the Savannah River Site (SRS), South Carolina, USA, with varying contaminant profiles: relatively pristine (Upper Three Runs), heavy metals (Ash Basins), radionuclides (Pond B) and heavy metal and radionuclides (Tim's Branch). Using 16S rRNA gene amplicon sequencing, we explored the structure and diversity of soil bacterial communities. Sites with legacies of metal and/or radionuclide contamination displayed significantly lower bacterial diversity compared to the reference site. Metagenomic analysis indicated that multidrug and vancomycin antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) including those associated with copper, arsenic, iron, nickel and zinc were prominent in all soils including the reference site. However, significant differences were found in the relative abundance and diversity of certain ARGs and MRGs in soils with metal/radionuclide contaminated soils compared to the reference site. Co-occurrence patterns revealed significant ARG/MRG subtypes in predominant soil taxa including Acidobacteriaceae, Bradyrhizobium, Mycobacterium, Streptomyces, Verrumicrobium, Actinomadura and Solirubacterales. Overall, the study emphasizes the potential risk of human activities on the dissemination of AMR in the environment.202032363769
7129180.9965Impact of flooding on urban soils: Changes in antibiotic resistance and bacterial community after Hurricane Harvey. Major perturbations in soil and water quality are factors that can negatively impact human health. In soil environments of urban areas, changes in antibiotic-resistance profiles may represent an increased risk of exposure to antibiotic-resistant bacteria via oral, dermal, or inhalation routes. We studied the perturbation of antibiotic-resistance profiles and microbial communities in soils following a major flooding event in Houston, Texas, caused by Hurricane Harvey. The main objective of this study was to examine the presence of targeted antibiotic-resistance genes and changes in the diversity of microbial communities in soils a short time (3-5 months) and a long time (18 months) after the catastrophic flooding event. Using polymerase chain reaction, we surveyed fourteen antibiotic-resistance elements: intI1, intI2, sul1, sul2, tet(A) to (E), tet(M), tet(O), tet(W), tet(X), and bla(CMY-2). The number of antibiotic-resistance genes detected were higher in short-time samples compared to samples taken a long time after flooding. From all the genes surveyed, only tet(E), bla(CMY-2), and intI1 were prevalent in short-time samples but not observed in long-time samples; thus, we propose these genes as indicators of exogenous antibiotic resistance in the soils. Sequencing of the V3-V4 region of the bacterial 16S rRNA gene was used to find that flooding may have affected bacterial community diversity, enhanced differences among bacterial lineages profiles, and affected the relative abundance of Actinobacteria, Verrucomicrobia, and Gemmatimonadetes. A major conclusion of this study is that antibiotic resistance profiles of soil bacteria are impacted by urban flooding events such that they may pose an enhanced risk of exposure for up to three to five months following the hurricane. The occurrence of targeted antibiotic-resistance elements decreased eighteen months after the hurricane indicating a reduction of the risk of exposure long time after Harvey.202133077230
7671190.9965Predicting the abundance of metal resistance genes in subtropical estuaries using amplicon sequencing and machine learning. Heavy metals are a group of anthropogenic contaminants in estuary ecosystems. Bacteria in estuaries counteract the highly concentrated metal toxicity through metal resistance genes (MRGs). Presently, metagenomic technology is popularly used to study MRGs. However, an easier and less expensive method of acquiring MRG information is needed to deepen our understanding of the fate of MRGs. Thus, this study explores the feasibility of using a machine learning approach-namely, random forests (RF)-to predict MRG abundance based on the 16S rRNA amplicon sequenced datasets from subtropical estuaries in China. Our results showed that the total MRG abundance could be predicted by RF models using bacterial composition at different taxonomic levels. Among them, the relative abundance of bacterial phyla had the highest predicted accuracy (71.7 %). In addition, the RF models constructed by bacterial phyla predicted the abundance of six MRG types and nine MRG subtypes with substantial accuracy (R(2) > 0.600). Five bacterial phyla (Firmicutes, Bacteroidetes, Patescibacteria, Armatimonadetes, and Nitrospirae) substantially determined the variations in MRG abundance. Our findings prove that RF models can predict MRG abundance in South China estuaries during the wet season by using the bacterial composition obtained by 16S rRNA amplicon sequencing.202236068766