DIETARY - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
865100.9910Repercussions of Prolonged Pesticide Use on Natural Soil Microbiome Dynamics Using Metagenomics Approach. The residual pesticides in soil can affect the natural microbiome composition and genetic profile that drive nutrient cycling and soil fertility. In the present study, metagenomic approach was leveraged to determine modulations in nutrient cycling and microbial composition along with connected nexus of pesticide, antibiotic, and heavy metal resistance in selected crop and fallow soils having history of consistent pesticide applications. GC-MS analysis estimated residuals of chlorpyrifos, hexachlorbenzene, and dieldrin showing persistent nature of pesticides that pose selective pressure for microbial adaptation. Taxonomic profiling showed increased abundance of pesticide degrading Streptomyces, Xanthomonas, Cupriavidus, and Pseudomonas across the selected soils. Genes encoding for pesticide degrading cytochrome p450, organophosphorus hydrolase, aldehyde dehydrogenase, and oxidase were predominant and positively correlated with Bacillus, Sphingobium, and Burkholderia. Nitrogen-fixing genes (nifH, narB, and nir) were relatively less abundant in crop soils, correlating to the decrease in nitrogen-fixing bacteria (Anabaena, Pantoea, and Azotobacter). Microbial enzymes involved in carbon (pfkA, gap, pgi, and tpiA) and phosphorus cycle (gmbh and phnJ) were significantly higher in crop soils indicating extensive utilization of pesticide residuals as a nutrient source by the indigenous soil microbiota. Additionally, presence of antibiotic and heavy metal resistance genes suggested potential cross-resistance under pressure from pesticide residues. The results implied selective increase in pesticide degrading microbes with decrease in beneficial bacteria that resulted in reduced soil health and fertility. The assessment of agricultural soil microbial profile will provide a framework to develop sustainable agriculture practices to conserve soil health and fertility.202539096471
693510.9908Effects of soil protists on the antibiotic resistome under long term fertilization. Soil protists are key in regulating soil microbial communities. However, our understanding on the role of soil protists in shaping antibiotic resistome is limited. Here, we considered the diversity and composition of bacteria, fungi and protists in arable soils collected from a long-term field experiment with multiple fertilization treatments. We explored the effects of soil protists on antibiotic resistome using high-throughput qPCR. Our results showed that long term fertilization had stronger effect on the composition of protists than those of bacteria and fungi. The detected number and relative abundance of antibiotic resistance genes (ARGs) were elevated in soils amended with organic fertilizer. Co-occurrence network analysis revealed that changes in protists may contribute to the changes in ARGs composition, and the application of different fertilizers altered the communities of protistan consumers, suggesting that effects of protistan communities on ARGs might be altered by the top-down impact on bacterial composition. This study demonstrates soil protists as promising agents in monitoring and regulating ecological risk of antibiotic resistome associated with organic fertilizers.202235609845
691120.9907Linking bacterial life strategies with the distribution pattern of antibiotic resistance genes in soil aggregates after straw addition. Straw addition markedly affects the soil aggregates and microbial community structure. However, its influence on the profile of antibiotic resistance genes (ARGs), which are likely associated with changes in bacterial life strategies, remains unclear. To clarify this issue, a soil microcosm experiment was incubated under aerobic (WS) or anaerobic (AnWS) conditions after straw addition, and metagenomic sequencing was used to characterise ARGs and bacterial communities in soil aggregates. The results showed that straw addition shifted the bacterial life strategies from K- to r-strategists in all aggregates, and the aerobic and anaerobic conditions stimulated the growth of aerobic and anaerobic r-strategist bacteria, respectively. The WS decreased the relative abundances of dominant ARGs such as QnrS5, whereas the AnWS increased their abundance. After straw addition, the macroaggregates consistently exhibited a higher number of significantly altered bacteria and ARGs than the silt+clay fractions. Network analysis revealed that the WS increased the number of aerobic r-strategist bacterial nodes and fostered more interactions between r-and K-strategist bacteria, thus promoting ARGs prevalence, whereas AnWS exhibited an opposite trend. These findings provide a new perspective for understanding the fate of ARGs and their controlling factors in soil ecosystems after straw addition. ENVIRONMENTAL IMPLICATIONS: Straw soil amendment has been recommended to mitigate soil fertility degradation, improve soil structure, and ultimately increase crop yields. However, our findings highlight the importance of the elevated prevalence of ARGs associated with r-strategist bacteria in macroaggregates following the addition of organic matter, particularly fresh substrates. In addition, when assessing the environmental risk posed by ARGs in soil that receives crop straw, it is essential to account for the soil moisture content. This is because the species of r-strategist bacteria that thrive under aerobic and anaerobic conditions play a dominant role in the dissemination and accumulation of ARG.202438643583
812830.9907Recognize and assessment of key host humic-reducing microorganisms of antibiotic resistance genes in different biowastes composts. Humic-reducing microorganisms (HRMs) can utilize humic substance as terminal electron mediator promoting the bioremediation of contaminate, which is ubiquitous in composts. However, the impacts of HRMs on antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in composts and different HRMs community composition following the types of biowastes effected the spread of ARGs have not been investigated. Herein, the dynamics and mobility of ARGs and HRMs during protein-, lignocellulose- and lignin-rich composting were investigated. Result show that ARGs change significantly at the thermophilic phase, and the relative abundance of most ARGs increase during composting. Seven groups of HRMs communities are classified as primary host HRMs of ARGs, and most host HRMs groups from protein-rich composts. Conclusively, regulating methods for inhibiting ARGs spread for different composts are proposed. HRMs show a higher ARGs dissemination capacity in protein-rich composts than lignocellulose- and lignin-rich composts, but the spread of ARGs can be inhibited by regulate physicochemical parameters in protein-rich composts. In contrary, most HRMs have inhibitory effects on ARGs spread in lignocellulose- and lignin-rich composts, and those HRMs can be used as a new agent that inhibits the spread of ARGs. Our results can help in understanding the potential risk spread of ARGs by inoculating functional bacteria derived from different biowastes composts for environmental remediation, given their expected importance to developing a classification-oriented approach for composting different biowastes.202234600985
864640.9907A Degeneration Gradient of Poplar Trees Contributes to the Taxonomic, Functional, and Resistome Diversity of Bacterial Communities in Rhizosphere Soils. Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.202133810508
764550.9906Antibiotic Resistance in the Collembolan Gut Microbiome Accelerated by the Nonantibiotic Drug Carbamazepine. The effects of pharmaceuticals as emerging contaminants in soil on the gut microbiome and antibiotic resistome in nontarget soil fauna are largely elusive. In this study, we explored the composition of the bacterial community and the presence of antibiotic resistance genes (ARGs) in the gut of the model soil collembolan (Folsomia candida) upon antiepileptic drug carbamazepine (CBZ) and antibiotic tetracycline (TC) exposure. Results showed that, individually or in combination, exposure to TC or CBZ significantly altered the gut community structure of F. candida, causing some enrichment of the bacteria associated with xenobiotic metabolism, such as Arthrobacter, Achromobacter, Gordonia, and Shinella. More importantly, oral exposure to the nonantibiotic drug CBZ enhanced the abundance and diversity of ARGs in the gut of F. candida, especially for the beta-lactams and multidrug resistance genes. Our results revealed that the most likely hosts of ARGs in the gut of F. candida were Proteobacteria and Actinobacteria. The significant positive correlation between mobile genetic elements (MGEs) and ARGs indicated the potential risk of ARGs transmission in the gut of F. candida. Overall, the nonantibiotic CBZ is likely to disturb the gut microbiota of nontarget soil fauna such as collembolans, thereby enhancing the dissemination of ARGs.202032816468
763560.9906Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. Composting is a common practice used for treating animal manures before they are used as organic fertilizers for crop production. Whether composting can effectively reduce microbial pathogens and antibiotic resistance genes remain poorly understood. In this study, we compared 3 different dairy manure composting methods-anaerobic fermentation (AF), static compost (SC), and organic fertilizer production (OFP)-for their effects on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial community diversity in the treated manures. The 3 composting methods produced variable and distinct effects on antibiotic-resistant bacteria, zoonotic bacteria, and resistance genes, some of which were decreased and others of which showed no significant changes during composting. Particularly, SC and OFP reduced chloramphenicol resistance gene fexA and opportunistic pathogen Vibrio fluvialis, whereas AF significantly reduced tetracycline resistance gene tetB and opportunistic pathogens Enterococcus faecium and Escherichia fergusonii. The compositions of microbial communities varied significantly during the composting processes, and there were significant differences between the 3 composting methods. In all 3 composts, the dominant phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. Interestingly, Firmicutes, Proteobacteria, and Bacteroidetes remained stable in the entire AF process, whereas they were dominated at the beginning, decreased at the early stage of composting, and rebounded at the later stage during SC and OFP. In general, SC and OFP produced a more profound effect than AF on microbial community diversities, pathogens, and dominant species. Additionally, Enterococcus aquimarinus was isolated from AF for the first time. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States function prediction analysis indicated that the genes related to membrane transport and amino acid metabolism were abundant in the 3 composts. The metabolism of amino acids, lipids, and carbohydrates increased as composting progressed. The biosynthesis of antibiotics was enhanced after fermentation in the 3 composting methods, and the increase in the SC was the most obvious. These results reveal dynamic changes in antibiotic-resistant bacteria, antibiotic resistance genes, microbial community composition, and function succession in different dairy manure composts and provide useful information for further optimization of composting practices.202336333143
812770.9906Microbial Multitrophic Communities Drive the Variation of Antibiotic Resistome in the Gut of Soil Woodlice (Crustacea: Isopoda). Multitrophic communities inhabit in soil faunal gut, including bacteria, fungi, and protists, which have been considered a hidden reservoir for antibiotic resistance genes (ARGs). However, there is a dearth of research focusing on the relationships between ARGs and multitrophic communities in the gut of soil faunas. Here, we studied the contribution of multitrophic communities to variations of ARGs in the soil woodlouse gut. The results revealed diverse and abundant ARGs in the woodlouse gut. Network analysis further exhibited strong connections between key ecological module members and ARGs, suggesting that multitrophic communities in the keystone ecological cluster may play a pivotal role in the variation of ARGs in the woodlouse gut. Moreover, long-term application of sewage sludge significantly altered the woodlice gut resistome and interkingdom communities. The variation portioning analysis indicated that the fungal community has a greater contribution to variations of ARGs than bacterial and protistan communities in the woodlice gut after long-term application of sewage sludge. Together, our results showed that changes in gut microbiota associated with agricultural practices (e.g., sewage sludge application) can largely alter the gut interkingdom network in ecologically relevant soil animals, with implications for antibiotic resistance, which advances our understanding of the microecological drivers of ARGs in terrestrial ecosystem.202235876241
692180.9905Impacts of Chemical and Organic Fertilizers on the Bacterial Communities, Sulfonamides and Sulfonamide Resistance Genes in Paddy Soil Under Rice-Wheat Rotation. The responses of sulfonamides, sulfonamide-resistance genes (sul) and soil bacterial communities to different fertilization regimes were investigated by performing a field experiment using paddy soil with no fertilizer applied, chemical fertilizer applied, organic fertilizer applied, and combination of chemical and organic fertilizer applied. Applying organic fertilizer increased the bacterial community diversity and affected the bacterial community composition. Eutrophic bacteria (Bacteroidetes, Gemmatimonadetes, and Proteobacteria) were significantly enriched by applying organic fertilizer. It was also found organic fertilizer application increased sulfamethazine content and the relative abundances of sul1 and sul2 in the soil. In contrast, applying chemical fertilizer significantly increased the abundance of Nitrospirae, Parcubacteria, and Verrucomicrobia and caused no obvious changes on sul. Correlation analysis indicated that sul enrichment was associated with the increases in sulfamethazine content and potential hosts (e.g., Novosphingobium and Rhodoplanes) population. The potential ecological risks of antibiotics in paddy soil with organic fertilizer applied cannot be ignored.202236547725
691090.9905Fallow practice mitigates antibiotic resistance genes in soil by shifting host bacterial survival strategies. Soil is a key reservoir of antibiotic resistance genes (ARGs), with cropland soils potentially transferring ARGs through the food chain, posing risks to human health. However, the profile of soil ARGs under different crop rotation patterns, particularly fallow practice aimed at enhancing soil fertility, remains inadequately understood. This study characterized the dynamic distribution of ARGs and survival strategies of ARGs host bacteria in two crop rotation patterns (rice-wheat rotation, RW, and rice-fallow rotation, RF), as well as the factors impacting the ARGs profiles. The results demonstrated ARGs abundance was significantly reduced by 45.04 % in the RF system, especially those related to multidrug resistance. In the RF system, the higher content of soil organic matter (SOM) serves as the primary nutrient source, driving a shift in host bacterial survival strategies toward K-strategists. Concurrently, the depletion of SOM restricts the proliferation of host bacteria, ultimately leading to a reduction in the abundance of ARGs. In contrast, fertilizer application in the RW system leads to NO(3)(-)-N accumulation, thereby favoring the proliferation of r-strategist bacteria that carry ARGs and exacerbating ARGs abundance in the soil. This study suggests that fallow could be an important field management practice for mitigating soil ARGs contamination in cropland.202540555016
6936100.9904Pivotal role of earthworm gut protists in mediating antibiotic resistance genes under microplastic and sulfamethoxazole stress in soil-earthworm systems. Microplastics (MPs) are currently receiving widespread attention worldwide, and their co-occurrence with antibiotics is unavoidable. However, our understanding of how protists respond to co-pollution and mediate antibiotic resistance genes (ARGs) profiles remains exceedingly limited, particularly within non-target animals' guts. To bridge these gaps, we investigated the individual and combined effects of polyethylene and sulfamethoxazole (SMZ) on microbial communities and ARGs in soil and earthworm guts. We found that the MP-SMZ combination significantly elevated the abundance and richness of ARGs in the soil and earthworm. Protistan compositions (particularly consumers) responded more strongly to pollutants than did bacterial and fungal communities, especially under combined pollution. Interkingdom cooccurrence network analysis revealed that protists had stronger and more effective interactions with the resistome in the earthworm guts, suggesting that the impact of these protists on ARGs compositional changes was potentially modulated through the "top-down" regulation of bacteria and fungi. Meta-cooccurrence networks further confirmed that protist-related networks had more keystone pollution-sensitive ASVs (psASVs) and these psASVs were mostly associated with protistan consumers. Our study highlights protists as promising agents for regulating and monitoring microbial functions, as well as the ecological risks of the antibiotic resistome associated with MPs and SMZ pollution in agricultural ecosystems.202540412325
7987110.9904Assessing the effect of composted cyclosporin A fermentation residue as organic fertilizer: Focus on soil fertility and antibiotic resistance. Cyclosporin A fermentation residue (CFR) is a type of organic waste generated during the production of cyclosporin A, which are abundant in nutrients including organic matter, phosphorus, nitrogen and potassium. Inappropriate handling of CFR not only waste valuable bioresources, but may also lead to the cyclosporin A and associated resistance genes into the natural environment, posing a significant threat to ecological system and human health. Land application was an effective way to resource recovery of CFR after aerobic composting (CAC). This study investigated the impact of CAC on soil fertility and environmental safety. The results indicated that CAC could improve soil nutrient contents and enhance enzyme activities. CAC altered the diversity and community composition of soil bacteria, resulting in an increase in the abundance of relevant bacteria beneficial for organic matter decomposition and cyclosporin A degradation. The introduced cyclosporin A (71.69 µg/kg) completely degraded within 20 days due to soil biodegradation. The significantly increased abundance of intIl, mdr3, pgp, TSR and pmra in the soil cultivation early stage were restored to the soil background level within 90 days, indicating a reduced risk of antimicrobial resistance. The results demonstrated that reasonable land application of CAC could improve soil fertility without antimicrobial resistance risk, which is helpful for evaluating the resource utilization value and environmental risks of antibiotic fermentation residue after aerobic composting.202540602925
7000120.9904Animal manures application increases the abundances of antibiotic resistance genes in soil-lettuce system associated with shared bacterial distributions. An increasing amount of animal manures is being used in agriculture, and the effect of animal manures application on the abundance of antibiotics resistance genes (ARGs) in soil-plant system has attracted widespread attention. However, the impacts of animal manures application on the various types of bacterial distribution that occur in soil-lettuce system are unclear. To address this topic, the effects of poultry manure, swine manure or chemical fertilizer application on ARG abundance and the distribution of shared bacteria were investigated in this study. In a lettuce pot experiment, 13 ARGs and 2 MGEs were quantified by qPCR, and bacterial communities in the soil, lettuce endosphere and lettuce phyllosphere were analysed by 16S rRNA sequence analysis. The results showed that the application of poultry or swine manure significantly increased ARG abundance in the soil, a result attributed mainly to increases in the abundances of tetG and tetC. The application of poultry manure, swine manure and chemical fertilizer significantly increased ARG abundance in the lettuce endosphere, and tetG abundance was significantly increased in the poultry and swine manure groups. However, animal manures application did not significantly increase ARG abundance in the lettuce phyllosphere. Flavobacteriaceae, Sphingomonadaceae and 11 other bacterial families were the shared bacteria in the soil, lettuce endosphere, and phyllosphere. The Streptomycetaceae and Methylobacteriaceae were significantly positively correlated with intI1 in both the soil and endosphere. Chemical fertilizer application increased both the proportions of Sphingomonadaceae and tetX abundance, which were positively correlated in the endosphere. Comamonadaceae and Flavobacteriaceae were not detected in the lettuce endosphere under swine manure application. Cu was related to Flavobacteriaceae in the lettuce endosphere. Overall, poultry and swine manure application significantly increased ARG abundance in the soil-lettuce system, which might be due to the shared bacterial distribution.202134004530
6960130.9904Effortless rule: Effects of oversized microplastic management on lettuce growth and the dynamics of antibiotic resistance genes from fertilization to harvest. The complexity of soil microplastic pollution has driven deeper exploration of waste management strategies to evaluate environmental impact. This study introduced oversized microplastics (OMPs, 1-5 mm) during membrane composting to produce organic fertilizers, and conducted a 2 × 2 pot experiment: exogenous OMPs were added when normal fertilizer (no OMPs intervention) was applied, while artificial removal of OMPs was implemented when contaminated fertilizer (with OMPs) was used. The study assessed the effects of these management strategies on lettuce growth, soil environments, and potential biological safety risks related to the spread and expression of high-risk antibiotic resistance genes (ARGs) in humans. Results showed that both exogenous OMPs addition and removal negatively affected plant height and harvest index, with shifts in the rhizosphere microbial community identified as a key factor rather than soil nutrients. Exogenous OMPs altered rhizosphere and endophytic microbial communities, and plant growth-promoting bacteria were transferred to the surface of OMPs from rhizosphere soil. In contrast, bacteria such as Truepera, Pseudomonas, and Streptomyces in compost-derived OMPs supported lettuce growth, and their removal negated these effects. Some endophytic bacteria may promote growth but pose public health risks when transmitted through the food chain. OMPs in composting or planting significantly enhanced the expression of target ARGs in lettuce, particularly bla(TEM). However, simulated digestion results indicated that OMPs reduced the expression of six key ARGs, including bla(TEM), among the ten critical target ARGs identified in this context. Notably, the removal management strategies raised five of them posing potential risks from lettuce consumption. This study highlights that both introducing and removing OMPs may pose ecological and food safety risks, emphasizing the need for optimized organic waste management strategies to mitigate potential health hazards.202540157188
6928140.9904Assessing the effects of tylosin fermentation dregs as soil amendment on macrolide antibiotic resistance genes and microbial communities: Incubation study. Tylosin fermentation dregs (TFDs) are biosolid waste of antibiotics tylosin production process which contain nutritious components and may be recycled as soil amendments. However, the specific ecological safety of TFDs from the perspective of bacterial resistance in soil microenvironment is not fully explored. In the present study, a series of replicated lab-scale work were performed using the simulated fertilization to gain insight into the potential environmental effects and risks of macrolide antibiotic resistance genes (ARGs) and the soil microbial communities composition via quantitative PCR and 16S rRNA sequencing following the TFDs land application as the soil amendments. The results showed that bio-processes might play an important role in the decomposition of tylosin which degraded above 90% after 20 days in soil. The application of TFDs might induce the development of antibiotic-resistant bacteria, change soil environment and reduce the microbial diversity. Though the abundances of macrolide ARGs exhibited a decreasing trend following the tylosin degradation, other components in TFDs may have a lasting impact on both macrolide ARGs abundance and soil bacterial communities. Thus, this study pointed out the fate of TFDs on soil ecological environment when directly applying into soil, and provide valuable scientific basis for TFDs management.202032648501
6938150.9903Assessment of the Effects of Biodegradable and Nonbiodegradable Microplastics Combined with Pesticides on the Soil Microbiota. Microplastics (MPs) and pesticides pose significant threats to the health of soil ecosystems. This study investigated the individual and combined effects of biodegradable polylactic acid (PLA) and nonbiodegradable polyethylene terephthalate (PET) microplastics alongside glyphosate and imidacloprid pesticides on soil microbial communities and antibiotic resistance genes (ARGs) via microcosm experiments. Compared with the control, PLA significantly increased microbial alpha diversity and enhanced microbial functions related to environmental information processing and metabolism. However, PLA also selectively enriched populations of beneficial and potentially pathogenic bacteria, whereas PET had comparatively weaker effects. Crucially, PLA exposure resulted in substantially higher total abundance and ecological risk levels of soil ARGs than did PET. Coexposure with pesticides further amplified these effects, with PLA demonstrating notable synergistic interactions with both glyphosate and imidacloprid. These findings challenge the conventional assumption that biodegradable MPs such as PLA are environmentally safer than nonbiodegradable MPs, thus highlighting their potential to induce more complex and potentially severe ecological risks under co-contamination scenarios with pesticides.202541175058
7008160.9903Pharmaceutical exposure changed antibiotic resistance genes and bacterial communities in soil-surface- and overhead-irrigated greenhouse lettuce. New classes of emerging contaminants such as pharmaceuticals, antibiotic resistant bacteria (ARB), and antibiotic resistance genes (ARGs) have received increasing attention due to rapid increases of their abundance in agroecosystems. As food consumption is a direct exposure pathway of pharmaceuticals, ARB, and ARGs to humans, it is important to understand changes of bacterial communities and ARG profiles in food crops produced with contaminated soils and waters. This study examined the level and type of ARGs and bacterial community composition in soil, and lettuce shoots and roots under soil-surface or overhead irrigation with pharmaceuticals-contaminated water, using high throughput qPCR and 16S rRNA amplicon sequencing techniques, respectively. In total 52 ARG subtypes were detected in the soil, lettuce shoot and root samples, with mobile genetic elements (MGEs), and macrolide-lincosamide-streptogramin B (MLSB) and multidrug resistance (MDR) genes as dominant types. The overall abundance and diversity of ARGs and bacteria associated with lettuce shoots under soil-surface irrigation were lower than those under overhead irrigation, indicating soil-surface irrigation may have lower risks of producing food crops with high abundance of ARGs. ARG profiles and bacterial communities were sensitive to pharmaceutical exposure, but no consistent patterns of changes were observed. MGE intl1 was consistently more abundant with pharmaceutical exposure than in the absence of pharmaceuticals. Pharmaceutical exposure enriched Proteobacteria (specifically Methylophilaceae) and decreased bacterial alpha diversity. Finally, there were significant interplays among bacteria community, antibiotic concentrations, and ARG abundance possibly involving hotspots including Sphingomonadaceae, Pirellulaceae, and Chitinophagaceae, MGEs (intl1 and tnpA_1) and MDR genes (mexF and oprJ).201931336252
6912170.9903Regulation of antibiotic resistance gene rebound by degrees of microecological niche occupation by microbiota carried in additives during the later phases of swine manure composting. The occupation of microecological niches (MNs) by bacteria carrying lower antibiotic resistance genes (ARGs) has been demonstrated an effective strategy for reducing ARGs in compost, thereby mitigating the associated land use risks. In this study, humus soil (HS), matured compost (MC), and their respective isolated microbial agents (HSM and MCM), which exhibit varying abundances of ARGs, were introduced as additives after the thermophilic phase to investigate their influence on ARG removal and the mechanisms underlying effective MN occupation. The addition of HS resulted in the most favorable outcomes, including the highest carbon degradation, minimized nitrogen loss, and an 83.16 % reduction in ARG abundance during the later composting stages. In comparison, ARG rebound levels were 61.77 %-285.33 % across other treatments and 729.23 % in the control. Distinct dominant bacterial genera and potential ARG-host bacterial communities were observed, which varied with different additives and contributed to MN occupation dynamics. The addition of the HS additive intensified competition among non-host bacteria, and diversified the interactions both between genes and between bacteria. These changes suppressed horizontal gene transfer (HGT) mediated by mobile genetic elements (MGEs) and altered the abundance and composition of both dominant and non-dominant potential host species. Furthermore, it shifted the relative importance of key physicochemical parameters, collectively enhancing ARG removal during composting. These findings elucidate the mechanisms by which MN adjustments contribute to ARG reduction, providing actionable insights for designing composting strategies that mitigate environmental ARG dissemination risks more effectively.202540154224
7673180.9903Effects of ex situ conservation on diversity and function of the gut microbiota of the Tibetan wild ass (Equus kiang). Ex situ conservation is the main method for the protection of endangered wildlife. To explore the effect of ex situ conservation on the gut microbiota of the kiang (Equus kiang), metagenomic sequencing combined with bioinformatics analysis was used to investigate the composition and function of the gut microbiota of the kiang. The results showed that ex situ conservation not only protected wildlife, but also affected the composition and function of gut microbiota, as well as the health of animals. In the zoo, the ratio of the relative abundance of Firmicutes to that of Bacteroidetes (F/B) is higher, clusters of potentially pathogenic bacteria (such as Catonella, Catonella, and Mycoplasma) are more numerous, the abundance of resistance genes is higher, and the abundance of metabolic functions is increased. The dynamic changes of the gut microbiota also played an important role in the nutritional absorption, energy metabolism, and environmental adaptation of the kiang. Improving the rearing environment and increasing food diversity play important roles for increasing the diversity of gut microbiota, reducing the spread of potentially pathogenic bacteria, and reducing diseases. In the wild, especially in winter and in food-deficient areas, food supplementation can enhance the gut microbial homeostasis of wild animals and reduce the impact of crises. In depth studies of the gut microbial function of wildlife have important implications for improving ex situ conservation.202337231976
6930190.9903Effect of fertilizer type on antibiotic resistance genes by reshaping the bacterial community and soil properties. Conventional and bio-organic fertilizers play an important role in maintaining soil health and promoting crop growth. However, the effect of organic fertilizers on the prevalence of antibiotic resistance genes (ARGs) in the vegetable cropping system has been largely overlooked. In this study, we investigated the impacts of soil properties and biotic factors on ARG profiles by analyzing ARG and bacterial communities in vegetable copping soils with a long-term history of manure and bio-organic fertilizer application. The ARG abundance in the soil was significantly increased by 116% with manure application compared to synthetic NPK fertilizer application. This finding was corroborated by our meta-analysis that the longer the duration of manure application, the greater the response of increased soil ARG abundance. However, bio-organic fertilizers containing Trichoderma spp. Significantly reduced ARG contamination by 31% compared to manure application. About half of the ARG variation was explained by changes in bacterial abundance and structure, followed by soil properties. The mitigation of ARG by Trichoderma spp. Is achieved by altering the structure of the bacterial community and weakening the close association between bacteria and ARG prevalence. Taken together, these findings shed light on the contribution of bio-organic fertilizers in mitigating ARG contamination in agricultural soils, which can help manage the ecological risk posed by ARG inputs associated with manure application.202337343633