# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 110 | 0 | 0.9661 | Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit. | 2002 | 12417742 |
| 109 | 1 | 0.9655 | Identification of two putative ATP-cassette genes in Encephalitozoon intestinalis. Currently existing chemotherapeutic compounds are limited and few are effective for treating microsporidiosis. It is possible that resistance of Encephalitozoon to some drugs occurs by efflux mechanisms similar to those previously described for mammalian tumour cells, bacteria or protozoal parasites such as Plasmodium, Leishmania and Entamoeba histolytica. The data in the present study suggest that Encephalitozoon intestinalis contains at least one multidrug resistance gene. We report here two complete sequences EiABC1 and EiABC2, encoding different ATP-binding cassette genes from E. intestinalis, including a P-gp. | 2001 | 11730796 |
| 3753 | 2 | 0.9654 | Flavophospholipol use in animals: positive implications for antimicrobial resistance based on its microbiologic properties. Bambermycin (flavophospholipol) is a phosphoglycolipid antimicrobial produced by various strains of Streptomyces. It is active primarily against Gram-positive bacteria because of inhibition of transglycosylase and thus of cell wall synthesis. Bambermycin is used as a feed additive growth promoter in cattle, pigs, chickens, and turkeys, but has no therapeutic use in humans or animals. Flavophospholipol is known to suppress certain microorganisms (e.g., Staphylococcus spp. and Enterococcus faecalis) and thus contributes to an improved equilibrium of the gut microflora providing a barrier to colonization with pathogenic bacteria and resultant improved weight gain and feed conversion. Flavophospholipol has also been shown to decrease the frequency of transferable drug resistance among Gram-negative enteropathogens and to reduce the shedding of pathogenic bacteria such as Salmonella in pigs, calves, and chickens. Plasmid-mediated resistance to bambermycin has not been described. Likewise, cross-resistance among bacteria between bambermycin and penicillin, tetracycline, streptomycin, erythromycin, or oleandromycin has not been observed. This brief review summarizes the antimicrobial properties of bambermycin, in particular, its potentially favorable role in decreasing antimicrobial resistance. | 2006 | 16698216 |
| 231 | 3 | 0.9654 | Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Lincosamides, streptogramins, phenicols, and pleuromutilins (LSPPs) represent four structurally different classes of antimicrobial agents that inhibit bacterial protein synthesis by binding to particular sites on the 50S ribosomal subunit of the ribosomes. Members of all four classes are used for different purposes in human and veterinary medicine in various countries worldwide. Bacteria have developed ways and means to escape the inhibitory effects of LSPP antimicrobial agents by enzymatic inactivation, active export, or modification of the target sites of the agents. This review provides a comprehensive overview of the mode of action of LSPP antimicrobial agents as well as of the mutations and resistance genes known to confer resistance to these agents in various bacteria of human and animal origin. | 2016 | 27549310 |
| 3744 | 4 | 0.9648 | Vancomycin resistance VanS/VanR two-component systems. Vancomycin is a member of the glycopeptide class of antibiotics. Vancomycin resistance (van) gene clusters are found in human pathogens such as Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus, glycopeptide-producing actinomycetes such as Amycolotopsis orientalis, Actinoplanes teichomyceticus and Streptomyces toyocaensis and the nonglycopeptide producing actinomycete Streptomyces coelicolor. Expression of the van genes is activated by the VanS/VanR two-component system in response to extracellular glycopeptide antibiotic. Two major types of inducible vancomycin resistance are found in pathogenic bacteria; VanA strains are resistant to vancomycin itself and also to the lipidated glycopeptide teicoplanin, while VanB strains are resistant to vancomycin but sensitive to teicoplanin. Here we discuss the enzymes the van genes encode, the range of different VanS/VanR two-component systems, the biochemistry of VanS/VanR, the nature of the effector ligand(s) recognised by VanS and the evolution of the van cluster. | 2008 | 18792691 |
| 612 | 5 | 0.9644 | Pathways and roles of wall teichoic acid glycosylation in Staphylococcus aureus. The thick peptidoglycan layers of Gram-positive bacteria are connected to polyanionic glycopolymers called wall teichoic acids (WTA). Pathogens such as Staphylococcus aureus, Listeria monocytogenes, or Enterococcus faecalis produce WTA with diverse, usually strain-specific structure. Extensive studies on S. aureus WTA mutants revealed important functions of WTA in cell division, growth, morphogenesis, resistance to antimicrobials, and interaction with host or phages. While most of the S. aureus WTA-biosynthetic genes have been identified it remained unclear for long how and why S. aureus glycosylates WTA with α- or β-linked N-acetylglucosamine (GlcNAc). Only recently the discovery of two WTA glycosyltransferases, TarM and TarS, yielded fundamental insights into the roles of S. aureus WTA glycosylation. Mutants lacking WTA GlcNAc are resistant towards most of the S. aureus phages and, surprisingly, TarS-mediated WTA β-O-GlcNAc modification is essential for β-lactam resistance in methicillin-resistant S. aureus. Notably, S. aureus WTA GlcNAc residues are major antigens and activate the complement system contributing to opsonophagocytosis. WTA glycosylation with a variety of sugars and corresponding glycosyltransferases were also identified in other Gram-positive bacteria, which paves the way for detailed investigations on the diverse roles of WTA modification with sugar residues. | 2014 | 24365646 |
| 4141 | 6 | 0.9641 | Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Aspects of bacterial resistance to the major classes of antimicrobials used in veterinary dermatology are presented in this review. Resistance of gram-positive and gram-negative bacteria to tetracyclines, macrolide-lincosamide-streptogramin antibiotics, chloramphenicol, mupirocin, sulphonamides, trimethoprim, aminoglycosides, fluoroquinolones and β-lactam antibiotics are depicted with respect to the different mechanisms of acquired and intrinsic resistance. Examples are given for the three major resistance mechanisms, enzymatic inactivation, decreased intracellular drug accumulation and target modification. In addition, basic information about mobile genetic elements which carry resistance genes, such as plasmids, transposons and gene cassettes, and their modes of spreading via transduction, conjugation, mobilization and transformation is provided. | 1999 | 34644923 |
| 4145 | 7 | 0.9640 | Antimicrobial Resistance among Staphylococci of Animal Origin. Antimicrobial resistance among staphylococci of animal origin is based on a wide variety of resistance genes. These genes mediate resistance to many classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. In addition, numerous mutations have been identified that confer resistance to specific antimicrobial agents, such as ansamycins and fluoroquinolones. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents, including agents approved solely for human use. The resistance genes code for all three major resistance mechanisms: enzymatic inactivation, active efflux, and protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate not only the exchange of resistance genes among members of the same and/or different staphylococcal species, but also between staphylococci and other Gram-positive bacteria. The observation that plasmids of staphylococci often harbor more than one resistance gene points toward coselection and persistence of resistance genes even without direct selective pressure by a specific antimicrobial agent. This chapter provides an overview of the resistance genes and resistance-mediating mutations known to occur in staphylococci of animal origin. | 2018 | 29992898 |
| 5188 | 8 | 0.9639 | Zoonotic bacterial and parasitic intestinal pathogens in foxes, raccoons and other predators from eastern Germany. In this study, we investigated faecal specimens from legally hunted and road-killed red foxes, raccoons, raccoon dogs, badgers and martens in Germany for parasites and selected zoonotic bacteria. We found that Baylisascaris procyonis, a zoonotic parasite of raccoons, had spread to northeastern Germany, an area previously presumed to be free of this parasite. We detected various pathogenic bacterial species from the genera Listeria, Clostridium (including baratii), Yersinia and Salmonella, which were analysed using whole-genome sequencing. One isolate of Yersinia enterocolitica contained a virulence plasmid. The Salmonella Cholerasuis isolate encoded an aminoglycoside resistance gene and a parC point mutation, conferring resistance to ciprofloxacin. We also found tetracycline resistance genes in Paeniclostridium sordellii and Clostridium baratii. Phylogenetic analyses revealed that the isolates were polyclonal, indicating the absence of specific wildlife-adapted clones. Predators, which scavenge from various sources including human settlements, acquire and spread zoonotic pathogens. Therefore, their role should not be overlooked in the One Health context. | 2024 | 38747071 |
| 4144 | 9 | 0.9638 | The diversity of antimicrobial resistance genes among staphylococci of animal origin. Staphylococci of animal origin harbor a wide variety of resistance genes. So far, more than 40 different resistance genes have been identified in staphylococci from animals. This includes genes that confer resistance to virtually all classes of antimicrobial agents approved for use in animals, such as penicillins, cephalosporins, tetracyclines, macrolides, lincosamides, phenicols, aminoglycosides, aminocyclitols, pleuromutilins, and diaminopyrimidines. The gene products of some of these resistance genes confer resistance to only specific members of a class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into three major categories: (i) enzymatic inactivation, (ii) active efflux, or (iii) protection/modification/replacement of the cellular target sites of the antimicrobial agents. Mobile genetic elements, in particular plasmids and transposons, play a major role as carriers of antimicrobial resistance genes in animal staphylococci. They facilitate the exchange of resistance genes with staphylococci of human origin but also with other Gram-positive bacteria. | 2013 | 23499306 |
| 112 | 10 | 0.9638 | Glycopeptide resistance determinants from the teicoplanin producer Actinoplanes teichomyceticus. In enterococci and other pathogenic bacteria, high-level resistance to vancomycin and other glycopeptide antibiotics requires the action of the van genes, which direct the synthesis of peptidoglycan terminating in the depsipeptide D-alanyl-D-lactate, in place of the usual D-Ala-D-Ala. The Actinoplanes teichomyceticus tcp cluster, devoted to the biosynthesis of the glycopeptide antibiotic teicoplanin, contains van genes associated to a murF-like sequence (murF2). We show that A. teichomyceticus contains also a house-keeping murF1 gene, capable of complementing a temperature sensitive Escherichia coli murF mutant. MurF1, expressed in Streptomyces lividans, can catalyze the addition of either D-Ala-D-Ala or D-Ala-D-Lac to the UDP-N-acetyl-muramyl-L-Ala-D-Glu-d-Lys. However, similarly expressed MurF2 shows a small enzymatic activity only with D-Ala-D-lactate. Introduction of a single copy of the entire set of van genes confers resistance to teicoplanin-type glycopeptides to S. coelicolor. | 2004 | 15500981 |
| 418 | 11 | 0.9637 | Plasmid-mediated mechanisms of resistance to aminoglycoside-aminocyclitol antibiotics and to chloramphenicol in group D streptococci. Genes conferring resistance to aminoglycoside-aminocyclitol antibiotics in three group D streptococcal strains, Streptococcus faecalis JH1 and JH6 and S. faecium JH7, and to chloramphenicol in JH6 are carried by plasmids that can transfer to other S. faecalis cells. The aminoglycoside resistance is mediated by constitutively synthesized phosphotransferase enzymes that have substrate profiles very similar to those of aminoglycoside phosphotransferases found in gram-negative bacteria. Phosphorylation probably occurs at the aminoglycoside 3'-hydroxyl group. Plasmid-borne streptomycin resistance is due to production of the enzyme streptomycin adenylyltransferase, which, as in staphylococci and in contrast to that detected in gram-negative bacteria, is less effective against spectinomycin as substrate. Resistance to chloramphenicol is by enzymatic acetylation. The chloramphenicol acetyltransferase is inducible and bears a close resemblance to the type D chloramphenicol acetyltransferase variant from staphylococci. | 1978 | 96732 |
| 3750 | 12 | 0.9637 | Non-faecium non-faecalis enterococci: a review of clinical manifestations, virulence factors, and antimicrobial resistance. SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes. | 2024 | 38466110 |
| 3748 | 13 | 0.9634 | Vancomycin resistance in Gram-positive bacteria other than Enterococcus spp. This is a review article on vancomycin resistance on gram positive bacteria other than enterococci. Epidemiology of varying resistance, its clinical relevance and therapeutic options in infections caused by vancomycin resistant Listeria spp., Corynebacteria, streptococci and staphylocci are discussed. | 2000 | 10720798 |
| 359 | 14 | 0.9634 | Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression. Shuttle vectors capable of replication in both Escherichia coli and Bacteroides fragilis have been developed. Conjugal transfer of these plasmids from E. coli to B. fragilis is facilitated by inclusion of the origin of transfer of the IncP plasmid RK2. The vectors pDK1 and pDK2 provide unique sites for cloning selectable markers in Bacteroides. pOA10 is a cosmid vector containing the replication region of pCP1 necessary for maintenance in Bacteroides. pDK3, pDK4.1, and pDK4.2 contain the Bacteroides clindamycin resistance gene allowing selection and maintenance in B. fragilis of plasmids containing inserted DNA fragments. pDK3 was used to test the expression in B. fragilis of five foreign tetracycline resistance (TcR) genes. The tetA, -B, and -C markers from facultative gram-negative bacteria, as well as a TcR determinant from Clostridium perfringens, did not express TcR in B. fragilis. The tetM gene, originally described in streptococci, encoded a small but reproducible increase of TcR in Bacteroides. These studies demonstrate the utility of shuttle vectors for introducing cloned genes into Bacteroides and underscore the differences in gene expression in these anaerobes. | 1988 | 3071818 |
| 358 | 15 | 0.9634 | Resistance factors in anaerobic bacteria. Resistance transfer factors have been described in both Bacteroides and clostridia. The clindamycin (Cln) resistance transfer factors from the Bacteroides fragilis group of organisms have been best studied, including our own plasmid pBFTM10. The clindamycin resistance determinant (Cln X) of pBFTM10 can be detected in 90% of Cln resistant Bacteroides isolated from dispersed geographical areas. This determinant can be located in the chromosome and on plasmids. Recent studies from our laboratory have shown that the Cln X genes of pBFTM 10 are carried on a compound transposon, Tn4400. Bacteroides plasmids have been cloned in Escherichia coli and shuttle vectors have been developed that allow transfers of DNA from E. coli back to B. fragilis, using the broad host range plasmid RK2 to supply essential conjugation functions. We have shown that shuttle vectors containing pBFTM 10 can be retransferred from B. fragilis back to E. coli. In addition, a tetracycline transfer element from B. fragilis strain TM230 is able to promote high frequency conjugation between B. fragilis and E. coli. The results of these investigations indicate that Bacteroides has efficient mechanisms to exchange genetic material and that genetic exchange can occur between Bacteroides and E. coli, which exist in intimate contact in the human colon. | 1986 | 3029859 |
| 611 | 16 | 0.9631 | The Staphylococcus aureus FASII bypass escape route from FASII inhibitors. Antimicrobials targeting the fatty acid synthesis (FASII) pathway are being developed as alternative treatments for bacterial infections. Emergence of resistance to FASII inhibitors was mainly considered as a consequence of mutations in the FASII target genes. However, an alternative and efficient anti-FASII resistance strategy, called here FASII bypass, was uncovered. Bacteria that bypass FASII incorporate exogenous fatty acids in membrane lipids, and thus dispense with the need for FASII. This strategy is used by numerous Gram-positive low GC % bacteria, including streptococci, enterococci, and staphylococci. Some bacteria repress FASII genes once fatty acids are available, and "constitutively" shift to FASII bypass. Others, such as the major pathogen Staphylococcus aureus, can undergo high frequency mutations that favor FASII bypass. This capacity is particularly relevant during infection, as the host supplies the fatty acids needed for bacteria to bypass FASII and thus become resistant to FASII inhibitors. Screenings for anti-FASII resistance in the presence of exogenous fatty acids confirmed that FASII bypass confers anti-FASII resistance among clinical and veterinary isolates. Polymorphisms in S. aureus FASII initiation enzymes favor FASII bypass, possibly by increasing availability of acyl-carrier protein, a required intermediate. Here we review FASII bypass and consequences in light of proposed uses of anti-FASII to treat infections, with a focus on FASII bypass in S. aureus. | 2017 | 28728970 |
| 111 | 17 | 0.9631 | The tylosin resistance gene tlrB of Streptomyces fradiae encodes a methyltransferase that targets G748 in 23S rRNA. tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance. | 2000 | 10972803 |
| 3769 | 18 | 0.9631 | Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. The present paper is divided into two parts. The first part focuses on the role of Clostridioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified. The genes most commonly harbored therein were: ermB, blaCDD, vanT, vanR, vanG and vanS. Tn6194 was likely associated with resistance to erythromycin, Tn6192 and CTn7 with resistance to the β-lactams and vancomycin, IS256 with resistance to aminoglycoside and Tn6105 to vancomycin. | 2021 | 34202117 |
| 4485 | 19 | 0.9631 | Distribution of macrolide, lincosamide, streptogramin, ketolide and oxazolidinone (MLSKO) resistance genes in Gram-negative bacteria. A number of different mechanisms of macrolide resistance have been described in Gram-negative bacteria. These include 16 acquired genes (esterases, phosphorylases, rRNA methylases, and effluxes) and include those thought to be unique to Gram-negative bacteria (both esterases and two of the phosphorylases) and those shared with Gram-positive bacteria (one phosphorylase) and those primarily of Gram-positive origin (rRNA methylases and efflux genes). In addition, mutations, which modify the 23S rRNA, ribosomal proteins L4 and/or L22, and/or changes in expression of innate efflux systems which occur by missense, deletion and/or insertion events have been described in five Gram-negative groups, while an innate transferase conferring resistance to streptogramin A has been identified in a sixth genus. However, the amount of information on both acquisition and mutations leading to macrolide, lincosamides, streptogramins, ketolides and oxazolidinones (MLSKO) resistance is limited. As a consequence this review likely underestimates the true distribution of acquired genes and mutations in Gram-negative bacteria. As use of these drugs increases, it is likely that interaction between members of the MLSKO antibiotic family and Gram-negative bacteria will continue to change resistance to these antibiotics; by mutations of existing genes as well as by acquisition and perhaps mutations of acquired resistant genes in these organisms and more work needs to be done to get a clearer picture of what is in the Gram-negative population now, such that changes can be monitored. | 2004 | 15379732 |