DHFRIX - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
305600.8131Spread of a newly found trimethoprim resistance gene, dhfrIX, among porcine isolates and human pathogens. A plasmid-borne gene mediating trimethoprim resistance, dhfrIX, newly found among porcine strains of Escherichia coli, was observed at a frequency of 11% among trimethoprim-resistant veterinary isolates. This rather high frequency of dhfrIX could be due to the extensive use of trimethoprim in veterinary practice in Sweden. After searching several hundred clinical isolates, one human E. coli strain was also found to harbor the dhfrIX gene. Thus, the dhfrIX gene seems to have spread from porcine bacteria to human pathogens. Furthermore, the occurrence of other genes coding for resistant dihydrofolate reductase enzymes (dhfrI, dhfrII, dhfrV, dhfrVII, and dhfrVIII) among the porcine isolates was investigated. In addition, association of dhfr genes with the integraselike open reading frames of transposons Tn7 and Tn21 was studied. In colony hybridization experiments, both dhfrI and dhfrII were found associated with these integrase genes. The most common combination was dhfrI and int-Tn7, indicating a high prevalence of Tn7.19921482138
82610.7999Sequence identity with type VIII and association with IS176 of type IIIc dihydrofolate reductase from Shigella sonnei. An uncommon dihydrofolate reductase (DHFR), type IIIc, was coded for by Shigella sonnei that harbors plasmid pBH700 and that was isolated in North Carolina. The trimethoprim resistance gene carried on pBH700 was subcloned and sequenced. The nucleotide sequence of the gene encoding type IIIc DHFR was identical to the gene encoding type VIII DHFR. The type IIIc amino acid sequence was approximately 50% similar to those of DHFRs commonly found in enteric bacteria. Furthermore, this gene was flanked by IS176 (IS26), an insertion sequence usually associated with those of aminoglycoside resistance genes. The gene for type IIIc DHFR was located by hybridization within a 1,993-bp PstI fragment in each of eight conjugative plasmids from geographically diverse strains of S. sonnei. Each plasmid also conferred resistance to ampicillin, streptomycin, and sulfamethoxazole and belonged to incompatibility group M. Plasmids carrying this new trimethoprim resistance gene, which is uniquely associated with IS176, have disseminated throughout the United States.19957695291
53420.7963Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164
53530.7943Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129. These plasmids facilitate the transfer of cloned DNA fragments to the broad-host-range vectors. Finally, the broad-host-range cosmid cloning vector pLAFR3 was improved by the addition of a double cos casette to generate the new plasmid, pLAFR5. This latter cosmid simplifies vector preparation and has permitted the rapid cloning of genomic DNA fragments generated with Sau3A. The resulting clones may be introduced into other Gram-negative bacteria by conjugation.19882853689
601040.7940The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Putrescine, one of the main biogenic amines associated to microbial food spoilage, can be formed by bacteria from arginine via ornithine decarboxylase (ODC), or from agmatine via agmatine deiminase (AgDI). This study aims to correlate putrescine production from agmatine to the pathway involving N-carbamoylputrescine formation via AdDI (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), or putrescine carbamoyltransferase (the ptcA product) in bacteria. PCR methods were developed to detect the two genes involved in putrescine production from agmatine. Putrescine production from agmatine could be linked to the aguA and ptcA genes in Lactobacillus hilgardii X1B, Enterococcus faecalis ATCC 11700, and Bacillus cereus ATCC 14579. By contrast Lactobacillus sakei 23K was unable to produce putrescine, and although a fragment of DNA corresponding to the gene aguA was amplified, no amplification was observed for the ptcA gene. Pseudomonas aeruginosa PAO1 produces putrescine and is reported to harbour aguA and aguB genes, responsible for agmatine deiminase and N-carbamoylputrescine amidohydrolase activities. The enzyme from P. aeruginosa PAO1 that converts N-carbamoylputrescine to putrescine (the aguB product) is different from other microorganisms studied (the ptcA product). Therefore, the aguB gene from P. aeruginosa PAO1 could not be amplified with ptcA-specific primers. The aguB and ptcA genes have frequently been erroneously annotated in the past, as in fact these two enzymes are neither homologous nor analogous. Furthermore, the aguA, aguB and ptcA sequences available from GenBank were subjected to phylogenetic analysis, revealing that gram-positive bacteria harboured ptcA, whereas gram-negative bacteria harbour aguB. This paper also discusses the role of the agmatine deiminase system (AgDS) in acid stress resistance.201021404211
10250.7933Paradoxical behaviour of pKM101; inhibition of uvr-independent crosslink repair in Escherichia coli by muc gene products. In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks.19853883148
82560.7931Attaching effacement of the rabbit enterocyte brush border is encoded on a single 96.5-kilobase-pair plasmid in an enteropathogenic Escherichia coli O111 strain. An enteropathogenic Escherichia coli (EPE) O111 serotype a,b,H- strain carried the following four plasmids: pLV501 (96.5 kilobase pairs [kbp]) specifying resistance to chloramphenicol, tetracycline, and kanamycin; pLV502 (8 kbp) specifying ampicillin resistance; pLV503 (1.9 kbp) specifying streptomycin resistance; and pLV504 (80 kbp) with no resistance markers. This EPEC attached to HEp-2 cells to produce localized clumps of bacteria (localized adhesion) and attached intimately to the enterocyte surface, leading to loss of the brush border (attaching effacement). Plasmid pLV501 was also found to specify the ability to produce localized adhesion on HEp-2 cells and attaching effacement in a rabbit ileal explant model system. Restriction maps showed considerable dissimilarities between pLV501 and pMAR-2, an EPEC plasmid carrying the EPEC adherence factor (EAF) genes. Furthermore, pLV501 did not hybridize with the EAF probe, whereas pLV504 did. There was sequence homology between pLV501 and large plasmids in all seven other well-characterized EPEC, only five of which hybridized with the EAF probe. These findings indicate that pLV501 carries at least one of the genes responsible for production of the brush border damage characteristic of EPEC.19902182541
306370.7926Antibiotic resistance among coliform and fecal coliform bacteria isolated from the freshwater mussel Hydridella menziesii. Freshwater mussels (Hydridella menziesii) collected from Lakes Rotoroa, Rotoiti, and Brunner, South Island, New Zealand, contained coliform and fecal coliform bacteria. The majority of these bacteria were resistant to one or more antibiotics, but none transferred streptomycin, tetracycline, or kanamycin resistance to an antibiotic-susceptible strain of Escherichia coli K-12.1976779633
33580.7926Construction and characterization of a replication-competent retroviral shuttle vector plasmid. We constructed two versions of an RCASBP-based retroviral shuttle vector, RSVP (RCASBP shuttle vector plasmid), containing either the zeocin or blasticidin resistance gene. In this vector, the drug resistance gene is expressed in avian cells from the long terminal repeat (LTR) promoter, whereas in bacteria the resistance gene is expressed from a bacterial promoter. The vector contains a bacterial origin of replication (ColE1) to allow circular viral DNA to replicate as a plasmid in bacteria. The vector also contains the lac operator sequence, which binds to the lac repressor protein, providing a simple and rapid way to purify the vector DNA. The RSVP plasmid contains the following sequence starting with the 5" end: LTR, gag, pol, env, drug resistance gene, lac operator, ColE1, LTR. After this plasmid was transfected into DF-1 cells, we were able to rescue the circularized unintegrated viral DNA from RSVP simply by transforming the Hirt DNA into Escherichia coli. Furthermore, we were able to rescue the integrated provirus. DNA from infected cells was digested with an appropriate restriction enzyme (ClaI) and the vector-containing segments were enriched using lac repressor protein and then self-ligated. These enriched fractions were used to transform E. coli. The transformation was successful and we did recover integration sites, but higher-efficiency rescue was obtained with electroporation. The vector is relatively stable upon passage in avian cells. Southern blot analyses of genomic DNAs derived from successive viral passages under nonselective conditions showed that the cassette (drug resistance gene-lac operator-ColE1) insert was present in the vector up to the third viral passage for both resistance genes, which suggests that the RSVP vectors are stable for approximately three viral passages. Together, these results showed that RSVP vectors are useful tools for cloning unintegrated or integrated viral DNAs.200211799171
49290.7917Identification of A Novel Arsenic Resistance Transposon Nested in A Mercury Resistance Transposon of Bacillus sp. MB24. A novel TnMERI1-like transposon designated as TnMARS1 was identified from mercury resistant Bacilli isolated from Minamata Bay sediment. Two adjacent ars operon-like gene clusters, ars1 and ars2, flanked by a pair of 78-bp inverted repeat sequences, which resulted in a 13.8-kbp transposon-like fragment, were found to be sandwiched between two transposable genes of the TnMERI1-like transposon of a mercury resistant bacterium, Bacillus sp. MB24. The presence of a single transcription start site in each cluster determined by 5'-RACE suggested that both are operons. Quantitative real time RT-PCR showed that the transcription of the arsR genes contained in each operon was induced by arsenite, while arsR2 responded to arsenite more sensitively and strikingly than arsR1 did. Further, arsenic resistance complementary experiments showed that the ars2 operon conferred arsenate and arsenite resistance to an arsB-knocked out Bacillus host, while the ars1 operon only raised arsenite resistance slightly. This transposon nested in TnMARS1 was designated as TnARS1. Multi-gene cluster blast against bacteria and Bacilli whole genome sequence databases suggested that TnMARS1 is the first case of a TnMERI1-like transposon combined with an arsenic resistance transposon. The findings of this study suggested that TnMERI1-like transposons could recruit other mobile elements into its genetic structure, and subsequently cause horizontal dissemination of both mercury and arsenic resistances among Bacilli in Minamata Bay.201931744069
415100.7914Mobilization of plasmid-borne drug resistance determinants for transfer from Pseudomonas aeruginosa to Escherichia coli. RSU2, a plasmid transmissible between strains of P. aeruginosa but not to Escherichia coli can be mobilized by R751. Conjugatants receive a single plasmid composed of DNA from both R751 and RSU2 which has the compatibility properties of a member of group P (like R751). Study of this fusion plasmid suggests that the failure of RSU2 to transfer into enterobacteria is due to an inability to replicate in these bacteria. The fusion plasmid replicates using the genes of R751.1975127114
538110.7914The biochemical and genetic basis for high frequency thiomethyl galactoside resistance in lambda,lambdadg lysogens of Escherichia coli. In a culture of Escherichia coli K12 gal (lambdadg), cells which form large colonies on agar plates containing galactose and thiomethyl beta-D-galactoside (TMG) appear at high frequency. These clones are resistant to growth inhibition by TMG on galactose minimal medium. Biochemical studies of the steady-state levels of galactokinase and UDPgalactose 4-epimerase suggest that the resistant clones have extra copies of the genes for the galactose-metabolizing enzymes. The mutation for TMG resistance is not located in either the bacterial or the bacteriophage genome, but is probably due to an aberrant association between cell and prophage DNA. Mapping the TMG-resistant characteristic by phage P1 indicates that TMG-resistant bacteria posses at least two GAL+ OPERONS, ONE OF WHICH IS COTRANSDUCIBLe with bio+. In addition, TMG-resistant bacteria behave like lambdadg polylysogens when challenged with the phage lambdaI90c17. From these genetic experiments we conclude that TMG-resistant bacteria arise by duplication of the lambdadg prophage. Finally, gal+ bacteria which carry a single, additional, lambdadg prophage are TMG-resistant. TMG resistance is probably a gal+ gene dosage effect.1978344832
3061120.7913Tetracycline-resistance encoding plasmids from Paenibacillus larvae, the causal agent of American foulbrood disease, isolated from commercial honeys. Paenibacillus larvae, the causal agent of American foulbrood disease in honeybees, acquires tetracycline-resistance via native plasmids carrying known tetracycline-resistance determinants. From three P. larvae tetracycline-resistant strains isolated from honeys, 5-kb-circular plasmids with almost identical sequences, designated pPL373 in strain PL373, pPL374 in strain PL374, and pPL395 in strain PL395, were isolated. These plasmids were highly similar (99%) to small tetracycline-encoding plasmids (pMA67, pBHS24, pBSDMV46A, pDMV2, pSU1, pAST4, and pLS55) that replicate by the rolling circle mechanism. Nucleotide sequences comparisons showed that pPL373, pPL374, and pPL395 mainly differed from the previously reported P. larvae plasmid pMA67 in the oriT region and mob genes. These differences suggest alternative mobilization and/or conjugation capacities. Plasmids pPL373, pPL374, and pPL395 were individually transferred by electroporation and stably maintained in tetracycline-susceptible P. larvae NRRL B-14154, in which they autonomously replicated. The presence of nearly identical plasmids in five different genera of gram-positive bacteria, i.e., Bhargavaea, Bacillus, Lactobacillus, Paenibacillus, and Sporosarcina, inhabiting diverse ecological niches provides further evidence of the genetic transfer of tetracycline resistance among environmental bacteria from soils, food, and marine habitats and from pathogenic bacteria such as P. larvae.201425296446
2999130.7912Integrative and conjugative elements in streptococci can act as vectors for plasmids and translocatable units integrated via IS1216E. Mobile genetic elements (MGEs), such as integrative and conjugative elements (ICEs), plasmids and translocatable units (TUs), are important drivers for the spread of antibiotic resistance. Although ICEs have been reported to support the spread of plasmids among different bacteria, their role in mobilizing resistance plasmids and TUs has not yet been fully explored. In this study, a novel TU bearing optrA, a novel non-conjugative plasmid p5303-cfrD carrying cfr(D) and a new member of the ICESa2603 family, ICESg5301 were identified in streptococci. Polymerase chain reaction (PCR) assays revealed that three different types of cointegrates can be formed by IS1216E-mediated cointegration between the three different MGEs, including ICESg5301::p5303-cfrD::TU, ICESg5301::p5303-cfrD, and ICESg5301::TU. Conjugation assays showed that ICEs carrying p5303-cfrD and/or TU successfully transferred into recipient strains, thereby confirming that ICEs can serve as vectors for other non-conjugative MGEs, such as TUs and p5303-cfrD. As neither the TU nor plasmid p5303-cfrD can spread on their own between different bacteria, their integration into an ICE via IS1216E-mediated cointegrate formation not only increases the plasticity of ICEs, but also furthers the dissemination of plasmids and TUs carrying oxazolidinone resistance genes.202336933870
5873140.7911pDB2011, a 7.6 kb multidrug resistance plasmid from Listeria innocua replicating in Gram-positive and Gram-negative hosts. pDB2011, a multidrug resistance plasmid isolated from the foodborne Listeria innocua strain TTS-2011 was sequenced and characterized. Sequence analysis revealed that pDB2011 had a length of 7641 bp and contained seven coding DNA sequences of which two were annotated as replication proteins, one as a recombination/mobilization protein and one as a transposase. Furthermore, pDB2011 harbored the trimethoprim, spectinomycin and macrolide-lincosamide-streptogramin B resistance genes dfrD, spc and erm(A), respectively. However, pDB2011 was only associated with trimethoprim and spectinomycin resistance phenotypes and not with phenotypic resistance to erythromycin. A region of the plasmid encoding the resistance genes spc and erm(A) plus the transposase was highly similar to Staphylococcus aureus transposon Tn554. The dfrD gene was 100% identical to dfrD found in a number of Listeria monocytogenes isolates. Additionally, assessment of the potential host range of pDB2011 revealed that the plasmid was able to replicate in Lactococcus lactis subsp. cremoris MG1363 as well as in Escherichia coli MC1061 and DH5α. This study reports the first multidrug resistance plasmid in L. innocua. A large potential for dissemination of pDB2011 is indicated by its host range of both Gram-positive and Gram-negative bacteria.201323774482
503150.7904Interaction of the chromosomal Tn 551 with two thermosensitive derivatives, pS1 and p delta D, of the plasmid pI9789 in Staphylococcus aureus. The plasmid pI9789::Tn552 carries genes conferring resistance to penicillins and to cadmium, mercury and arsenate ions. The presence of Tn551 at one location in the chromosome of Staphylococcus aureus enhances the frequency of suppression of thermosensitivity of replication of the plasmids pS1 and p delta D which are derivatives of pI9789::Tn552. Bacteriophage propagated on the bacteria in which thermosensitivity of replication had been suppressed was used to transduce cadmium resistance to S. aureus PS80N. The cadmium-resistant transductants obtained carried plasmid pS1 or p delta D with a copy of Tn551 inserted into a specific site on pS1 but into several different sites on p delta D. The possible mechanisms of the suppression are discussed.19957758929
509160.7903A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn-degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn-quenching regulation of bacteria, demonstrating that the LysR-type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn-degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn) -quenching regulatory system mimics the ToxR(Txn) -mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn-quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn.202134009736
6131170.7902Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance.201728705984
5173180.7902Screening of genes involved in phage-resistance of Escherichia coli and effects of substances interacting with primosomal protein A on the resistant bacteria. AIMS: The study was to identify the genes involved in phage resistance and to develop an effective biocontrol method to improve the lytic activity of phages against foodborne pathogens. METHODS AND RESULTS: A total of 3,909 single gene-deletion mutants of Escherichia coli BW25113 from the Keio collection were individually screened for genes involved in phage resistance. Phage S127BCL3 isolated from chicken liver, infecting both E. coli BW25113 and O157: H7, was characterized and used for screening. The 10 gene-deletion mutants showed increased susceptibility to phage S127BCL3. Among them, priA gene-deletion mutant strain showed significant susceptibility to the phages S127BCL3 and T7. Furthermore, we investigated the substances that have been reported to inhibit the function of primosomal protein A (PriA) and were used to confirm increased phage susceptibility in E. coli BW25113 (Parent strain) and O157: H7. CONCLUSION: PriA inhibitors at a low concentration showed combined effects with phage against E. coli O157: H7 and delayed the regrowth rate of phage-resistant cells.202438142224
359190.7901Construction of shuttle cloning vectors for Bacteroides fragilis and use in assaying foreign tetracycline resistance gene expression. Shuttle vectors capable of replication in both Escherichia coli and Bacteroides fragilis have been developed. Conjugal transfer of these plasmids from E. coli to B. fragilis is facilitated by inclusion of the origin of transfer of the IncP plasmid RK2. The vectors pDK1 and pDK2 provide unique sites for cloning selectable markers in Bacteroides. pOA10 is a cosmid vector containing the replication region of pCP1 necessary for maintenance in Bacteroides. pDK3, pDK4.1, and pDK4.2 contain the Bacteroides clindamycin resistance gene allowing selection and maintenance in B. fragilis of plasmids containing inserted DNA fragments. pDK3 was used to test the expression in B. fragilis of five foreign tetracycline resistance (TcR) genes. The tetA, -B, and -C markers from facultative gram-negative bacteria, as well as a TcR determinant from Clostridium perfringens, did not express TcR in B. fragilis. The tetM gene, originally described in streptococci, encoded a small but reproducible increase of TcR in Bacteroides. These studies demonstrate the utility of shuttle vectors for introducing cloned genes into Bacteroides and underscore the differences in gene expression in these anaerobes.19883071818