# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1236 | 0 | 0.9811 | Molecular characterization of antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Egypt. The aim of this study was to characterize the genetic basis of multidrug resistance in Gram-negative bacteria isolated from bovine mastitis cases in Egypt. Multidrug resistance phenotypes were found in 34 of 112 (30.4%) Gram-negative bacterial isolates, which harbored at least one antimicrobial resistance gene. The most prevalent multidrug-resistant (MDR) species were Enterobacter cloacae (8 isolates, 7.1%), Klebsiella pneumoniae (7 isolates, 6.3%), Klebsiella oxytoca (7 isolates, 6.3%), Escherichia coli (5 isolates, 4.5%), and Citrobacter freundii (3 isolates, 2.7%). The most commonly observed resistance phenotypes were against ampicillin (97.0%), streptomycin (94.1%), tetracycline (91.2%), trimethoprim-sulfamethoxazole (88.2%), nalidixic acid (85.3%), and chloramphenicol (76.5%). Class 1 integrons were detected in 28 (25.0%) isolates. The gene cassettes within class 1 integrons included those encoding resistance to trimethoprim (dfrA1, dfrA5, dfrA7, dfrA12, dfrA15, dfrA17, and dfrA25), aminoglycosides (aadA1, aadA2, aadA5, aadA7, aadA12, aadA22, and aac(3)-Id), chloramphenicol (cmlA), erythromycin (ereA2), and rifampicin (arr-3). Class 2 integrons were identified in 6 isolates (5.4%) with three different profiles. Furthermore, the β-lactamase encoding genes, bla(TEM), bla(SHV), bla(CTX-M), and bla(OXA), the plasmid-mediated quinolone resistance genes, qnr and aac(6)-Ib-cr, and the florfenicol resistance gene, floR, were also identified. To the best of our knowledge, the results identified class 2 integrons, qnr and aac(6)-Ib-cr from cases of mastitis for the first time. This is the first report of molecular characterization for antimicrobial resistance in Gram-negative bacteria isolated from bovine mastitis in Africa. | 2011 | 21338385 |
| 1235 | 1 | 0.9810 | Characterization of integrons and antimicrobial resistance genes in clinical isolates of Gram-negative bacteria from Palestinian hospitals. Sixty Gram-negative bacterial isolates were collected from Palestinian hospitals in 2006. Thirty-two (53.3%) isolates showed multidrug resistance phenotypes. PCR and DNA sequencing were used to characterize integrons and antimicrobial resistance genes. PCR screening showed that 19 (31.7%) and five (8.3%) isolates were positive for class 1 and class 2 integrons, respectively. DNA-sequencing results for the captured antimicrobial resistance gene cassettes within class 1 integrons identified the following genes: dihydrofolate reductases, dfrA1, dfrA5, dfrA7, dfrA12, dfrA17 and dfrA25; aminoglycoside adenyltransferases, aadA1, aadA2, aadA5, aadA12 and aadB; aminoglycoside acetyltransferase, aac(6')-Ib; and chloramphenicol resistance gene, cmlA1. ESBL were identified in 25 (41.7%) isolates. The identified ESBL were bla(CTX-M-15), bla(CTX-M-56), bla(OXA-1), bla(SHV-1), bla(SHV-12), bla(SHV-32) and bla(TEM-1) genes. Moreover, we characterized the plasmid-mediated quinolone resistance genes, aac(6')-Ib-cr and qnrB2, which were detected in seven (11.7%) and two (3.3%) isolates, respectively. In this study various types of antibiotic resistance genes have been identified in Gram-negative bacteria from Palestinian hospitals, many of which are reported in the Middle East area for the first time. | 2009 | 19903259 |
| 1233 | 2 | 0.9810 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1226 | 3 | 0.9809 | Multi-drug resistant gram-negative enteric bacteria isolated from flies at Chengdu Airport, China. We collected flies from Chengdu Shuangliu International Airport to examine for the presence of bacteria and to determine the sensitivity patterns of those bacteria. A total of 1,228 flies were collected from 6 sites around Chengdu Shuangliu International Airport from April to September 2011. The predominant species was Chrysomya megacephala (n=276, 22.5%). Antimicrobial-resistant gram-negative enteric bacteria (n=48) were isolated from flies using MacConkey agar supplemented with cephalothin (20 microg/ml). These were identified as Escherichia coli (n=37), Klebsiella pneumoniae (n=6), Pseudomonas aeruginosa (n=3) and Aeromonas hydrophila (n=2). All isolated bacteria were tested for resistance to 21 commonly used antimicrobials: amoxicillin (100%), ticarcillin (100%), cephalothin (100%), cefuroxime (100%), ceftazidime 1 (93.8%), piperacillin (93.8%), cefotaxime (89.6%), ticarcillin-clavulanate (81.3%), trimethoprim-sulfamethoxazole (62.5%), ciprofloxacin (54.2%), gentamicin (45.8%), cefepime (39.6%), tobramycin (39.6%), ceftazidime (22.9%), cefoxitin (16.7%), amikacin (16.7%), netilmicin (14.6%), amoxicillin-clavulanate (6.3%) and piperacillin-tazobactam (2.1%). No resistance to meropenem or imipenem was observed. Antibiotic resistance genes among the isolated bacteria were analyzed for by polymerase chain reaction. Thirty of the 48 bacteria with resistance (62.5%) possessed the blaTEM gene. | 2013 | 24450236 |
| 1232 | 4 | 0.9804 | Monitoring of Non-β-Lactam Antibiotic Resistance-Associated Genes in ESBL Producing Enterobacterales Isolates. Genetic context of extended spectrum β-Lactamase (ESBL) producing Enterobacterales and its association with plasmid mediated quinolone resistance (PMQR), aminoglycoside modifying enzymes (AME) and Trimethoprim/Sulfamethoxazole (TMP-SMX) resistance is little known from North India. Therefore, the current study was aimed to investigate the frequency of Non-β-Lactam antibiotic resistance associated genes in extended spectrum β-Lactamase producing Enterobacterales. For this study, Non-Duplicate phenotypically confirmed ESBL producing Enterobacterales isolates (N = 186) were analyzed for ESBLs, PMQRs, AMEs and TMP-SMX resistance genes using polymerase chain reaction (PCR). PCR detected presence of PMQR genes in 81.29% (N = 139) of ESBL isolates (N = 171), AME genes in 60.82% and TMP-SMX resistance genes in 63.74% of the isolates. Molecular characterization of ESBL producing Enterobacterales showed 84.79% bla(TEM) followed by 73.68% bla(CTX-M), 43.86% bla(SHV), 19.88% bla(PER) and 9.94% bla(VEB), respectively. Analysis of PMQR genes revealed 77.7% aac(6')-lb-cr the most commonly detected gene followed by 67.63% oqxB, 62.59% oqxA, 43.17% qnrB, 19.42% qnrD, 18.7% qnrS, 9.35% qnrA, 3.6% qepA and 2.88% qnrC, respectively. Analysis of AMEs gene profile demonstrated 81.73% aac(6')-Ib, the most frequently encountered gene followed by 46.15% aph(3')-Ia, 44.23% ant(3")-Ia, respectively. A 100% prevalence of sul1, followed by dfrA (54.63%) and sul2 (15.74%) was observed. In summary, prevalence of ESBL-Producing genes (particularly bla(TEM) and bla(CTX-M)) along with PMQR, AMEs, and TMP-SMX resistant genes may potentially aid in the transfer of antimicrobial resistance among these strains. | 2020 | 33317078 |
| 1223 | 5 | 0.9798 | Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. BACKGROUND: Calf diarrhea is a major economic concern in bovine industry all around the world. This study was carried out in order to investigate distribution of virulence genes, pathotypes, serogroups and antibiotic resistance properties of Escherichia coli isolated from diarrheic calves. RESULTS: Totally, 76.45% of 824 diarrheic fecal samples collected from Isfahan, Chaharmahal, Fars and Khuzestan provinces, Iran were positive for E. coli and all of them were also positive for cnf2, hlyA, cdtIII, f17c, lt, st, stx1, eae, ehly, stx2 and cnf1 virulence genes. Chaharmahal had the highest prevalence of STEC (84.61%), while Isfahan had the lowest (71.95%). E. coli serogroups had the highest frequency in 1-7 days old calves and winter season. Distribution of ETEC, EHEC, AEEC and NTEC pathotypes among E. coli isolates were 28.41%, 5.07%, 29.52% and 3.49%, respectively. Statistical analyses were significant for presence of bacteria between various seasons and ages. All isolates had the high resistance to penicillin (100%), streptomycin (98.25%) and tetracycline (98.09%) antibiotics. The most commonly detected resistance genes were aadA1, sul1, aac[3]-IV, CITM, and dfrA1. The most prevalent serogroup among STEC was O26. CONCLUSIONS: Our findings should raise awareness about antibiotic resistance in diarrheic calves in Iran. Clinicians should exercise caution when prescribing antibiotics. | 2014 | 25052999 |
| 1240 | 6 | 0.9793 | Prevalence and characterization of quinolone resistance and integrons in clinical Gram-negative isolates from Gaza strip, Palestine. BACKGROUND: Gram-negative bacteria with quinolone resistance and extended-spectrum beta-lactamases (ESBLs) present significant treatment challenges. This study evaluated the prevalence and characteristics of quinolone resistance in Gram-negative strains, investigating the relationship between plasmid-mediated quinolone resistance (PMQR), ESBLs, and integrons. METHODS AND RESULTS: We collected 146 Gram-negative isolates from patients in three Palestinian hospitals. For quinolone resistance isolates, the presence and characterization of PMQR, β-lactamase genes and integrons were studied by PCR and sequencing. Out of 146 clinical isolates, 64 (43.8%) were resistant to quinolones, with 62 (97%) being multidrug-resistant (MDR) and 33 (51.5%) ESBL-producers. PMQR-encoding genes were present in 45 (70.3%) isolates, including aac(6')-Ib-cr (26.6%), qnrA (18.8%), qnrS1 (20.8%), and qnrB (6.4%). Bla(CTX-M) genes were detected in 50% (32/64) of isolates, with bla(CTX-M-15) being the most common. Bla(TEM-1), bla(SHV-1) and bla(VIM) genes were found in 13, 6, and 4 isolates, respectively. Class I integrons were found in 31/64 (48%) of isolates, with 14 containing gene cassettes conferring resistance to trimethoprim (dhfr17, dfrA12, dfrA1) and aminoglycosides resistance genes (aadA1, aadA2, aadA5, and aadA6). CONCLUSIONS: This study found a high rate of quinolone resistance, ESBL and integrons in clinical Gram-negative isolates from our hospitals. Urgent measures are crucial, including implementing an antimicrobial resistance surveillance system, to control and continuously monitor the development of antimicrobial resistance. | 2024 | 39066817 |
| 1295 | 7 | 0.9790 | Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 Giant pandas. To study the prevalence of antimicrobial resistance in faecal bacteria from Giant pandas in China, 59 isolates were recovered from faecal pats of 30 Giant pandas. Antimicrobial susceptibility testing of the isolates was performed by the standardised disk diffusion method (Kirby-Bauer). Of the 59 study isolates, 32.20% were resistant to at least one antimicrobial and 16.95% showed multidrug-resistant phenotypes. Thirteen drug resistance genes [aph(3')-IIa, aac(6')-Ib, ant(3'')-Ia, aac(3)-IIa, sul1, sul2, sul3, tetA, tetC, tetM, cat1, floR and cmlA] were analysed using four primer sets by multiplex polymerase chain reaction (PCR). The detection frequency of the aph(3')-IIa gene was the highest (10.17%), followed by cmlA (8.47%). The genes aac(6')-Ib, sul2 and tetA were not detected. PCR products were confirmed by DNA sequence analysis. The results revealed that multidrug resistance was widely present in bacteria isolated from Giant pandas. | 2009 | 19168331 |
| 1238 | 8 | 0.9789 | Lineages, Virulence Gene Associated and Integrons among Extended Spectrum β-Lactamase (ESBL) and CMY-2 Producing Enterobacteriaceae from Bovine Mastitis, in Tunisia. Extended Spectrum Beta-Lactamase (ESBL) Enterobacteriaceae are becoming widespread enzymes in food-producing animals worldwide. Escherichia coli and Klebseilla pneumoniae are two of the most significant pathogens causing mastitis. Our study focused on the characterization of the genetic support of ESBL/pAmpC and antibiotic resistance mechanisms in cefotaxime-resistant (CTXR) and susceptible (CTXS) Enterobacteriaceae isolates, recovered from bovine mastitis in Tunisia, as well as the analyses of their clonal lineage and virulence-associated genes. The study was carried out on 17 ESBL/pAmpC E. coli and K. pneumoniae and 50 CTXS E. coli. Detection of resistance genes and clonal diversity was performed by PCR amplification and sequencing. The following β-lactamase genes were detected: blaCTX-M-15 (n = 6), blaCTX-M-15 + blaOXA-1 (2), bla CTX-M-15 + blaOXA-1 + blaTEM-1b (2), blaCTX-M-15 + blaTEM-1b (4), blaCMY-2 (3). The MLST showed the following STs: ST405 (n = 4 strains); ST58 (n = 3); ST155 (n = 3); ST471 (n = 2); and ST101 (n = 2). ST399 (n = 1) and ST617 (n = 1) were identified in p(AmpC) E. coli producer strains. The phylogroups A and B1 were the most detected ones, followed by the pathogenic phylogroup B2 that harbored the shigatoxin genes stx1/stx2, associated with the cnf, fimA, and aer virulence factors. The qnrA/qnrB, aac(6′)-Ib-cr genes and integrons class 1 with different gene cassettes were detected amongst these CTXR/S isolated strains. The presence of different genetic lineages, associated with resistance and virulence genes in pathogenic bacteria in dairy farms, may complicate antibiotic therapies and pose a potential risk to public health. | 2022 | 36015067 |
| 1409 | 9 | 0.9788 | Detection of diverse carbapenem and multidrug resistance genes and high-risk strain types among carbapenem non-susceptible clinical isolates of target gram-negative bacteria in Kenya. Carbapenem-resistant gram-negative bacteria are an increasingly significant clinical threat globally. This risk may be underestimated in Kenya as only four carbapenemase genes in three bacterial species have been described. The study aimed to understand the antibiotic resistance profiles, genes, sequence types, and distribution of carbapenem-resistant gram-negative bacteria from patients in six hospitals across five Kenyan counties by bacterial culture, antibiotic susceptibility testing, and whole-genome sequence analysis. Forty-eight, non-duplicate, carbapenem non-susceptible, clinical isolates were identified across the five counties (predominantly in Nairobi and Kisii): twenty-seven Acinetobacter baumannii, fourteen Pseudomonas aeruginosa, three Escherichia coli, two Enterobacter cloacae, and two Klebsiella pneumoniae. All isolates were non-susceptible to β-lactam drugs with variable susceptibility to tigecycline (66%), minocycline (52.9%), tetracycline (29.4%), and levofloxacin (22.9%). Thirteen P. aeruginosa isolates were resistant to all antibiotics tested. Eleven carbapenemase genes were identified: blaNDM-1, blaOXA-23, -58, -66, -69, and -91 in A. baumannii (STs 1, 2, 164 and a novel ST1475), blaNDM-1 in E. cloacae (STs 25,182), blaNDM-1, blaVIM-1and -6, blaOXA-50 in P. aeruginosa (STs 316, 357, 654, and1203), blaOXA-181, blaNDM-1 in K. pneumoniae (STs 147 and 219), and blaNDM-5 in E. coli (ST164). Five A. baumannii isolates had two carbapenemases, blaNDM-1, and either blaOXA-23 (4) or blaOXA-58 (1). AmpC genes were detected in A. baumannii (blaADC-25), E. cloacae (blaDHA-1 and blaACT-6, 16), and K. pneumoniae (blaCMY). Significant multiple-drug resistant genes were the pan-aminoglycoside resistance16srRNA methyltransferase armA, rmtB, rmtC, and rmtF genes. This study is the first to report blaOXA-420, -58, -181, VIM-6, and blaNDM-5 in Kenyan isolates. High-risk STs of A. baumannii (ST1475, ST2), E. cloacae ST182, K. pneumoniae ST147, P. aeruginosa (ST357, 654), and E. coli ST167, ST648 were identified which present considerable therapeutic danger. The study recommends urgent carbapenem use regulation and containment of high-risk carbapenem-resistant bacteria. | 2021 | 33617559 |
| 1114 | 10 | 0.9788 | Third-Generation Cephalosporin Resistance in Intrinsic Colistin-Resistant Enterobacterales Isolated from Retail Meat. Consumption of retail meat contaminated with antimicrobial-resistant (AMR) bacteria is a common route for transmitting clinically relevant resistant bacteria to humans. Here, we investigated the genotypic and phenotypic resistance profiles of intrinsic colistin-resistant (ICR) Enterobacterales isolated from retail meats. ICR Enterobacterales were isolated from 103 samples of chicken, 103 samples of pork, and 104 samples of beef purchased from retail shops in Japan, using colistin-containing media, and their antimicrobial susceptibility was examined. Serratia spp. (440 isolates) showed resistance to cefotaxime (19 isolates, 4.3%), tetracycline (15 isolates, 3.4%), and other antimicrobials (<1%). Hafnia spp. (136) showed resistance to cefotaxime (12 isolates, 8.6%), ceftazidime (four isolates, 2.9%), and tetracycline (two isolates, 1.4%). Proteus spp. (39) showed resistance to chloramphenicol (four isolates, 10.3%), sulfamethoxazole-trimethoprim (four isolates, 10.3%), cefotaxime (two isolates, 5.1%), kanamycin (two isolates, 5.1%), and gentamicin (one isolate, 2.6%). Cedecea spp. (22) were resistant to tetracycline (two isolates, 9.1%) whereas Morganella spp. (11) were resistant to tetracycline (four isolates, 36.4%) and chloramphenicol (one isolate, 9.2%). The resistance genes bla(fonA), bla(ACC), and bla(DHA) were detected in cefotaxime-resistant Serratia spp., Hafnia spp., and Morganella spp. isolates, respectively. This emergence of antimicrobial resistance in ICR Enterobacterales may pose a public health risk. | 2021 | 34943649 |
| 1231 | 11 | 0.9788 | Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad. | 2012 | 23493415 |
| 1375 | 12 | 0.9787 | Characterization of integrons and their cassettes in Escherichia coli and Salmonella isolates from poultry in Korea. Ninety-nine Escherichia coli and 33 Salmonella isolates were assessed for antimicrobial susceptibility (disc diffusion test). Sulfonamide and tetracycline resistance genes were identified through PCR, and class 1 and class 2 integrons with resistance gene cassettes were identified with PCR followed by sequencing. Salmonella (63.6%) and E. coli (85.8%) isolates were multidrug resistant (resistance to 3 or more antimicrobials), and the highest incidences of resistance were observed for tetracycline, nalidixic acid, and sulfamethoxazole. The sul1, sul2, tetA, and tetB resistance determinant genes were predominant in E. coli, whereas only sul2 and tetA were identified in Salmonella isolates. In the E. coli isolates, 54 (54.5%) class 1 integrons, 6 (6.1%) class 2 integrons, and 5 (5.1%) class 1 and class 2 integrons together were detected, whereas only 3 (9.1%) integrons were found in the Salmonella serovars. Around 87% of the integrons in E. coli harbored resistance gene cassettes conferring resistance to streptomycin/spectinomycin (aadA, aminoglycoside resistance gene), trimethoprim (dfrA, dihydrofolate reductase gene), streptothricin [sat1 and sat2 (streptothricin acetyltransferase), and estX (putative esterases)]. The most common gene cassettes were aadA1+dfrA1 and dfrA1+sat2+aadA1 in class 1 and class 2 integrons, respectively. Other cassettes including aadA5+dfrA7, dfrA12+aadA2, aadA2+aadA1+dfrA12, and aadA5+aadA2/dfrA7 were also identified. Among the Salmonella serovars, Salmonella Malmoe harbored aadA1+dfrA1 and dfrA12+sat2+aadA1 genes. The aadA1, aadA2, sat2, and dfrA1 had wide variation in similarity among themselves and from previously reported genes worldwide. The diverse gene cassettes could be responsible for the prominent resistance profiles observed and a potential source for dissemination of antimicrobial resistance determinants to other bacteria. | 2013 | 24135609 |
| 1237 | 13 | 0.9785 | Characterization of Gene Families Encoding Beta-Lactamases of Gram-Negative Rods Isolated from Ready-to-Eat Vegetables in Mexico City. Beta-lactam resistant bacteria, which are commonly resident in tertiary hospitals, have emerged as a worldwide health problem because of ready-to-eat vegetable intake. We aimed to characterize the genes that provide resistance to beta-lactam antibiotics in Enterobacteriaceae, isolated from five commercial salad brands for human consumption in Mexico City. In total, twenty-five samples were collected, grown in blood agar plates, and the bacteria were biochemistry identified and antimicrobial susceptibility testing was done. The carried family genes were identified by endpoint PCR and the specific genes were confirmed with whole genome sequencing (WGS) by Next Generation Sequencing (NGS). Twelve positive cultures were identified and their microbiological distribution was as follows: 8.3% for Enterobacter aerogene (n = 1), 8.3% for Serratia fonticola (n = 1), 16.7% for Serratia marcesens (n = 2), 16.7% for Klebsiella pneumoniae (n = 2), and 50% (n = 6) for Enterobacter cloacae. The endpoint PCR results showed 11 colonies positive for blaBIL (91.7%), 11 for blaSHV (91.7%), 11 for blaCTX (97.7%), 12 for blaDHA (100%), four for blaVIM (33.3%), two for blaOXA (16.7%), two for blaIMP (16.7%), one for blaKPC (8.3%), and one for blaTEM (8.3%) gen; all samples were negative for blaROB, blaCMY, blaP, blaCFX and blaLAP gene. The sequencing analysis revealed a specific genotype for Enterobacter cloacae (blaSHV-12, blaCTX-M-15, blaDHA-1, blaKPC-2); Serratia marcescens (blaSHV-1, blaCTX-M-3, blaDHA-1, blaVIM-2); Klebsiella pneumoniae (blaSHV-12, blaCTX-M-15, blaDHA-1); Serratia fonticola (blaSHV-12, blaVIM-1, blaDHA-1); and, Enterobacter aerogene (blaSHV-1, blaCTX-M-1, blaDHA-1, blaVIM-2, blaOXA-9). Our results indicate that beta-lactam-resistant bacteria have acquired integrons with a different number of genes that provide pan-resistance to beta-lactam antibiotics, including penicillins, oxacillins, cefalosporins, monobactams, carbapenems, and imipenems. | 2018 | 30477153 |
| 1229 | 14 | 0.9785 | Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (bla(AmpC)) and extended-spectrum β-lactamase (ESBL) genes (bla(CTX-M,)bla(SHV,)bla(TEM)). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were bla(CTX-M-3,)bla(TEM-236) and bla(SHV-12). Variants of the bla(AmpC)β-lactamase gene i.e., bla(ACT-24), bla(ACT-2), bla(ACT-17), bla(DHA-4) and bla(CMY-37), were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (bla(ACT-2+TEM-236+SHV-12), and bla(CTX-M-3+ACT-24+TEM-236)). | 2021 | 33513540 |
| 1234 | 15 | 0.9785 | Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers. Severe diabetic foot ulcers (DFUs) patients visiting Sir Sunderlal Hospital, Banaras Hindu University, Varanasi, were selected for this study. Bacteria were isolated from swab and deep tissue of 42 patients, for examining their prevalence and antibiotic sensitivity. DFUs of majority of the patients were found infected with Enterococcus spp. (47.61%), Escherichia coli (35.71%), Staphylococcus spp. (33.33%), Alcaligenes spp. (30.95%), Pseudomonas spp. (30.95%), and Stenotrophomonas spp. (30.95%). Antibiotic susceptibility assay of 142 bacteria with 16 antibiotics belonging to eight classes showed the presence of 38 (26.76%) isolates with multidrug resistance (MDR) phenotypes. MDR character appeared to be governed by integrons as class 1 integrons were detected in 26 (68.42%) isolates. Altogether six different arrays of genes (aadA1, aadB, aadAV, dhfrV, dhfrXII, and dhfrXVII) were found within class 1 integron. Gene cassette dhfrAXVII-aadAV (1.6 kb) was present in 12 (3 Gram positive and 9 Gram negative) isolates and was conserved across all the isolates as evident from RFLP analysis. In addition to the presence of class 1 integron, six β-lactamase resistance encoding genes namely bla TEM, bla SHV, bla OXA, bla CTX-M-gp1, bla CTX-M-gp2, and bla CTX-M-gp9 and two methicillin resistance genes namely mecA and femA and vancomycin resistance encoding genes (vanA and vanB) were identified in different isolates. Majority of the MDR isolates were positive for bla TEM (89.47%), bla OXA (52.63%), and bla CTX-M-gp1 (34.21%). To our knowledge, this is the first report of molecular characterization of antibiotic resistance in bacteria isolated from DFUs from North India. In conclusion, findings of this study suggest that class-1 integrons and β-lactamase genes contributed to the MDR in above bacteria. | 2015 | 26779134 |
| 1440 | 16 | 0.9784 | High prevalence of carbapenem-resistant Escherichia coli ST410 from clinical isolates in Weifang, China. The objective of our work is to identify antimicrobial-resistance genes and to analyze clonality of carbapenem-resistant Escherichia coli. A total of 75 carbapenem-resistant E. coli (CREco) strains were isolated in a Chinese hospital from January 2021 to May 2023. The antibiotic susceptibility testing was conducted by BD PhoenixTM M50 System and Kirby-Bauer disk diffusion method. Whole-genome sequencing was performed on Illumina NovaSeq 6000 platform. Antimicrobial resistance genes were identified based on NCBI with ABRicate 0.8. Multilocus sequence typing (MLST) analysis for CREco was performed. Among the 75 CREco strains in this study, the most of them were isolated from urine samples (n = 20, 26.67%) at the intensive care unit (n = 14, 18.67%). Among the detected carbapenem resistance genes, blaNDM-5 was the most prevalent (n = 57, 76.00%), followed by blaNDM-4 (n = 3, 4.00%), blaNDM-9 (n = 3, 4.00%), and blaNDM-1 (n = 2, 2.67%). In addition, the colistin resistance gene mcr-1.1 (n = 11, 14.67%) and the tigecycline resistance gene tetX4 (n = 2, 2.67%) were also detected. The results of MLST revealed 25 sequence types (STs), and ST410 (n = 17) was the dominant clone. Other major STs included ST167 (n = 12), ST156 (n = 10), ST361 (n = 5), and ST101 (n = 4). Overall, CREco strains exhibited a high-level resistance rate to commonly used antimicrobial agents, and the most of them carried various NDM-coding genes, with blaNDM-5 being the predominant type. In this study, we demonstrated the diversity of carbapenem-resistant E. coli; however, the major clone was ST410. These results also show the dissemination of different clones of carbapenem-resistant E. coli. | 2025 | 40531574 |
| 1088 | 17 | 0.9784 | Detection and Molecular Characterization of Escherichia coli Strains Producers of Extended-Spectrum and CMY-2 Type Beta-Lactamases, Isolated from Turtles in Mexico. Multidrug-resistant bacteria are a growing problem in different environments and hosts, but scarce information exists about their prevalence in reptiles. The aim of this study was to analyze the resistance mechanisms, molecular typing, and plasmid content of cefotaxime-resistant (CTX(R)) Escherichia coli isolates recovered from cloacal samples of 71 turtles sheltered in a herpetarium in Mexico. CTX(R)-E. coli were recovered in 11 of 71 samples (15.5%), and one isolate/sample was characterized. Extended-spectrum β-lactamase (ESBL)-producing E. coli isolates were detected in four samples (5.6%): two strains carried the blaCTX-M-2 gene (phylogroup D and ST2732) and two contained the blaCTX-M-15 gene (phylogroup B1 and lineages ST58 and ST156). The blaCMY-2 gene was detected by PCR in E. coli isolates of eight samples (9.8%) (one of them also carried blaCTX-M-2); these isolates were distributed into phylogroups A (n = 1), B1 (n = 6), and D (n = 1) and typed as ST155, ST156, ST2329, and ST2732. Plasmid-mediated quinolone resistance (PMQR) genes were detected in five isolates [aac(6')Ib-cr, qnrA, qnrB19, and oqxB]. From three to five replicon plasmids were detected among the strains, being IncFIB, IncI1, IncFrep, and IncK the most prevalent. ESBL or pAmpC genes were transferred by conjugation in four strains, and the blaCTX-M-15 and blaCMY-2 genes were localized in IncFIB or IncI1 plasmids by Southern blot hybridization assays. Class 1 and/or class 2 integrons were detected in eight strains with six different structures of gene cassette arrays. Nine pulsed-field gel electrophoresis patterns were found among the 11 studied strains. To our knowledge, this is the first detection of ESBL, CMY-2, PMQR, and mobile determinants of antimicrobial resistance in E. coli of turtle origin, highlighting the potential dissemination of multidrug-resistant bacteria from these animals to other environments and hosts, including humans. | 2016 | 27482752 |
| 1388 | 18 | 0.9784 | Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy. Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, bla(CTX-M1,15,55), bla(CMY-2), gyrA/parC/parE, ampC and pmrB). Twenty-two class 1 integron arrangements in 34 strains were characterized and 11 ARGs were designated as intI1 related gene cassettes (aadA1, aadA2, aadA5, aad23, ant2_Ia, dfrA1, dfrA7, dfrA14, dfrA12, dfrA17, cmlA1). Notably, most intI1 positive strains belonged to rabbit (38%) and poultry (24%) sources. Three rabbit samples carried the mcr-1 colistin resistance gene in association with IS6 family insertion elements. Poultry meat harbored some of the most prominent ExPEC STs, including ST131, ST69, ST10, ST23, and ST117. Wildlife showed a high average number of virulence-associated genes (VAGs) (mean = 10), mostly associated with an ExPEC pathotype and some predominant ExPEC lineages (ST23, ST117, ST648) were identified. | 2020 | 33172096 |
| 1311 | 19 | 0.9783 | Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. The goal of this study was to examine antimicrobial resistance and characterize the implicated genes in 222 isolates of Escherichia coli from 187 samples of raw milk and the two most popular cheeses in Egypt. E. coli isolates were tested for susceptibility to 12 antimicrobials by a disk diffusion method. Among the 222 E. coli isolates, 66 (29.7%) were resistant to one or more antimicrobials, and half of these resistant isolates showed a multidrug resistance phenotype (resistance to at least three different drug classes). The resistance traits were observed to tetracycline (27.5%), ampicillin (18.9%), streptomycin (18.5%), sulfamethoxazole-trimethoprim (11.3%), cefotaxime (4.5%), kanamycin (4.1%), ceftazidime (3.6%), chloramphenicol (2.3%), nalidixic acid (1.8%), and ciprofloxacin (1.4%). No resistance to fosfomycin and imipenem was observed. Tetracycline resistance genes tetA, tetB, and tetD were detected in 53 isolates, 9 isolates, and 1 isolate, respectively, but tetC was not detected. Aminoglycoside resistance genes strA, strB, aadA, and aphA1 were detected in 41, 41, 11, and 9 isolates, respectively. Sulfonamide resistance genes sul1, sul2, and sul3 were detected in 7, 25, and 3 isolates, respectively. Of 42 ampicillin-resistant isolates, bla(TEM), bla(CTX-M), and bla(SHV) were detected in 40, 9, and 3 isolates, respectively, and 10 (23.8%) ampicillin-resistant isolates were found to produce extended-spectrum β-lactamase. Each bla gene of extended-spectrum β-lactamase-producing E. coli was further subtyped to be bla(CTX-M-15), bla(CTX-M-104), bla(TEM-1), and bla(SHV-12). The class 1 integron was also detected in 28 resistant isolates, and three different patterns were obtained by PCR-restriction fragment length polymorphism. Sequencing analysis of the variable region revealed that four isolates had dfrA12/orfF/aadA2, two had aadA22, and one had dfrA1/aadA1. These data suggest that antimicrobial-resistant E. coli are widely distributed in the milk production and processing environment in Egypt and may play a role in dissemination of antimicrobial resistance to other pathogenic and commensal bacteria. | 2018 | 29323530 |