DEVOID - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
55800.9919Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria.200516356850
813910.9919TAL effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Transcription activator-like (TAL) effectors are transcription factors injected into plant cells by pathogenic bacteria of the genus Xanthomonas. They function as virulence factors by activating host genes important for disease, or as avirulence factors by turning on genes that provide resistance. DNA-binding specificity is encoded by polymorphic repeats in each protein that correspond one-to-one with different nucleotides. This code has facilitated target identification and opened new avenues for engineering disease resistance. It has also enabled TAL effector customization for targeted gene control, genome editing, and other applications. This article reviews the structural basis for TAL effector-DNA specificity, the impact of the TAL effector-DNA code on plant pathology and engineered resistance, and recent accomplishments and future challenges in TAL effector-based DNA targeting.201323707478
814520.9917Emerging role for RNA-based regulation in plant immunity. Infection by phytopathogenic bacteria triggers massive changes in plant gene expression, which are thought to be mostly a result of transcriptional reprogramming. However, evidence is accumulating that plants additionally use post-transcriptional regulation of immune-responsive mRNAs as a strategic weapon to shape the defense-related transcriptome. Cellular RNA-binding proteins regulate RNA stability, splicing or mRNA export of immune-response transcripts. In particular, mutants defective in alternative splicing of resistance genes exhibit compromised disease resistance. Furthermore, detection of bacterial pathogens induces the differential expression of small non-coding RNAs including microRNAs that impact the host defense transcriptome. Phytopathogenic bacteria in turn have evolved effector proteins to inhibit biogenesis and/or activity of cellular microRNAs. Whereas RNA silencing has long been known as an antiviral defense response, recent findings also reveal a major role of this process in antibacterial defense. Here we review the function of RNA-binding proteins and small RNA-directed post-transcriptional regulation in antibacterial defense. We mainly focus on studies that used the model system Arabidopsis thaliana and also discuss selected examples from other plants.201323163405
814030.9917Engineering plant disease resistance based on TAL effectors. Transcription activator-like (TAL) effectors are encoded by plant-pathogenic bacteria and induce expression of plant host genes. TAL effectors bind DNA on the basis of a unique code that specifies binding of amino acid residues in repeat units to particular DNA bases in a one-to-one correspondence. This code can be used to predict binding sites of natural TAL effectors and to design novel synthetic DNA-binding domains for targeted genome manipulation. Natural mechanisms of resistance in plants against TAL effector-containing pathogens have given insights into new strategies for disease control.201323725472
54540.9916Characterization of the organic hydroperoxide resistance system of Brucella abortus 2308. The organic hydroperoxide resistance protein Ohr has been identified in numerous bacteria where it functions in the detoxification of organic hydroperoxides, and expression of ohr is often regulated by a MarR-type regulator called OhrR. The genes annotated as BAB2_0350 and BAB2_0351 in the Brucella abortus 2308 genome sequence are predicted to encode OhrR and Ohr orthologs, respectively. Using isogenic ohr and ohrR mutants and lacZ promoter fusions, it was determined that Ohr contributes to resistance to organic hydroperoxide, but not hydrogen peroxide, in B. abortus 2308 and that OhrR represses the transcription of both ohr and ohrR in this strain. Moreover, electrophoretic mobility shift assays and DNase I footprinting revealed that OhrR binds directly to a specific region in the intergenic region between ohr and ohrR that shares extensive nucleotide sequence similarity with so-called "OhrR boxes" described in other bacteria. While Ohr plays a prominent role in protecting B. abortus 2308 from organic hydroperoxide stress in in vitro assays, this protein is not required for the wild-type virulence of this strain in cultured murine macrophages or experimentally infected mice.201222821968
813750.9914Modulation of Bacterial Fitness and Virulence Through Antisense RNAs. Regulatory RNAs contribute to gene expression control in bacteria. Antisense RNAs (asRNA) are a class of regulatory RNAs that are transcribed from opposite strands of their target genes. Typically, these untranslated transcripts bind to cognate mRNAs and rapidly regulate gene expression at the post-transcriptional level. In this article, we review asRNAs that modulate bacterial fitness and increase virulence. We chose examples that underscore the variety observed in nature including, plasmid- and chromosome-encoded asRNAs, a riboswitch-regulated asRNA, and asRNAs that require other RNAs or RNA-binding proteins for stability and activity. We explore how asRNAs improve bacterial fitness and virulence by modulating plasmid acquisition and maintenance, regulating transposon mobility, increasing resistance against bacteriophages, controlling flagellar production, and regulating nutrient acquisition. We conclude with a brief discussion on how this knowledge is helping to inform current efforts to develop new therapeutics.202033747974
813660.9913Recent progress in CRISPR/Cas9-based genome editing for enhancing plant disease resistance. Nowadays, agricultural production is strongly affected by both climate change and pathogen attacks which seriously threaten global food security. For a long time, researchers have been waiting for a tool allowing DNA/RNA manipulation to tailor genes and their expression. Some earlier genetic manipulation methods such as meganucleases (MNs), zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) allowed site directed modification but their successful rate was limited due to lack of flexibility when targeting a 'site-specific nucleic acid'. The discovery of clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system has revolutionized genome editing domain in different living organisms during the past 9 years. Based on RNA-guided DNA/RNA recognition, CRISPR/Cas9 optimizations have offered an unrecorded scientific opportunity to engineer plants resistant to diverse pathogens. In this report, we describe the main characteristics of the primary reported-genome editing tools ((MNs, ZFNs, TALENs) and evaluate the different CRISPR/Cas9 methods and achievements in developing crop plants resistant to viruses, fungi and bacteria.202336871676
54770.9913Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter.200717586628
6980.9912Interfering TAL effectors of Xanthomonas oryzae neutralize R-gene-mediated plant disease resistance. Plant pathogenic bacteria of the genus Xanthomonas possess transcription activator-like effectors (TALEs) that activate transcription of disease susceptibility genes in the host, inducing a state of disease. Here we report that some isolates of the rice pathogen Xanthomonas oryzae use truncated versions of TALEs (which we term interfering TALEs, or iTALEs) to overcome disease resistance. In comparison with typical TALEs, iTALEs lack a transcription activation domain but retain nuclear localization motifs and are expressed from genes that were previously considered pseudogenes. We show that the rice gene Xa1, encoding a nucleotide-binding leucine-rich repeat protein, confers resistance against X. oryzae isolates by recognizing multiple TALEs. However, the iTALEs present in many isolates interfere with the otherwise broad-spectrum resistance conferred by Xa1. Our findings illustrate how bacterial effectors that trigger disease resistance in the host can evolve to interfere with the resistance process and, thus, promote disease.201627811915
54690.9912Resistance to organic hydroperoxides requires ohr and ohrR genes in Sinorhizobium meliloti. BACKGROUND: Sinorhizobium meliloti is a symbiotic nitrogen-fixing bacterium that elicits nodules on roots of host plants Medicago sativa. During nodule formation bacteria have to withstand oxygen radicals produced by the plant. Resistance to H2O2 and superoxides has been extensively studied in S. meliloti. In contrast resistance to organic peroxides has not been investigated while S. meliloti genome encodes putative organic peroxidases. Organic peroxides are produced by plants and are highly toxic. The resistance to these oxygen radicals has been studied in various bacteria but never in plant nodulating bacteria. RESULTS: In this study we report the characterisation of organic hydroperoxide resistance gene ohr and its regulator ohrR in S. meliloti. The inactivation of ohr affects resistance to cumene and ter-butyl hydroperoxides but not to hydrogen peroxide or menadione in vitro. The expression of ohr and ohrR genes is specifically induced by organic peroxides. OhrR binds to the intergenic region between the divergent genes ohr and ohrR. Two binding sites were characterised. Binding to the operator is prevented by OhrR oxidation that promotes OhrR dimerisation. The inactivation of ohr did not affect symbiosis and nitrogen fixation, suggesting that redundant enzymatic activity exists in this strain. Both ohr and ohrR are expressed in nodules suggesting that they play a role during nitrogen fixation. CONCLUSIONS: This report demonstrates the significant role Ohr and OhrR proteins play in bacterial stress resistance against organic peroxides in S. meliloti. The ohr and ohrR genes are expressed in nodule-inhabiting bacteroids suggesting a role during nodulation.201121569462
725100.9912The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.201121856855
599110.9912RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria.202337823424
564120.9912Mycobacterium tuberculosis possesses an unusual tmRNA rescue system. Trans-translation is a key process in bacteria which recycles stalled ribosomes and tags incomplete nascent proteins for degradation. This ensures the availability of ribosomes for protein synthesis and prevents the accumulation of dysfunctional proteins. The tmRNA, ssrA, is responsible for both recovering stalled ribosomes and encodes the degradation tag; ssrA associates and functions with accessory proteins such as SmpB. Although ssrA and smpB are ubiquitous in bacteria, they are not essential for the viability of many species. The Mycobacterium tuberculosis genome has homologues of both ssrA and smpB. We demonstrated that ssrA is essential in M. tuberculosis, since the chromosomal copy of the gene could only be deleted in the presence of a functional copy integrated elsewhere. However, we were able to delete the proteolytic tagging function by constructing strains carrying a mutant allele (ssrADD). This demonstrates that ribosome rescue by ssrA is the essential function in M. tuberculosis, SmpB was not required for aerobic growth, since we were able to construct a deletion strain. However, the smpBΔ strain was more sensitive to antibiotics targeting the ribosome. Strains with deletion of smpB or mutations in ssrA did not show increased sensitivity (or resistance) to pyrazinamide suggesting that this antibiotic does not directly target these components of the tmRNA tagging system.201424145139
68130.9912Designer TALEs enable discovery of cell death-inducer genes. Transcription activator-like effectors (TALEs) in plant-pathogenic Xanthomonas bacteria activate expression of plant genes and support infection or cause a resistance response. PthA4AT is a TALE with a particularly short DNA-binding domain harboring only 7.5 repeats which triggers cell death in Nicotiana benthamiana; however, the genetic basis for this remains unknown. To identify possible target genes of PthA4AT that mediate cell death in N. benthamiana, we exploited the modularity of TALEs to stepwise enhance their specificity and reduce potential target sites. Substitutions of individual repeats suggested that PthA4AT-dependent cell death is sequence specific. Stepwise addition of repeats to the C-terminal or N-terminal end of the repeat region narrowed the sequence requirements in promoters of target genes. Transcriptome profiling and in silico target prediction allowed the isolation of two cell death inducer genes, which encode a patatin-like protein and a bifunctional monodehydroascorbate reductase/carbonic anhydrase protein. These two proteins are not linked to known TALE-dependent resistance genes. Our results show that the aberrant expression of different endogenous plant genes can cause a cell death reaction, which supports the hypothesis that TALE-dependent executor resistance genes can originate from various plant processes. Our strategy further demonstrates the use of TALEs to scan genomes for genes triggering cell death and other relevant phenotypes.202438723194
713140.9911OxyR-activated expression of Dps is important for Vibrio cholerae oxidative stress resistance and pathogenesis. Vibrio cholerae is the causative agent of cholera, a dehydrating diarrheal disease. This Gram-negative pathogen is able to modulate its gene expression in order to combat stresses encountered in both aquatic and host environments, including stress posed by reactive oxygen species (ROS). In order to further the understanding of V. cholerae's transcriptional response to ROS, we performed an RNA sequencing analysis to determine the transcriptional profile of V. cholerae when exposed to hydrogen hydroperoxide. Of 135 differentially expressed genes, VC0139 was amongst the genes with the largest induction. VC0139 encodes a protein homologous to the DPS (DNA-binding protein from starved cells) protein family, which are widely conserved and are implicated in ROS resistance in other bacteria. Using a promoter reporter assay, we show that during exponential growth, dps is induced by H2O2 in a manner dependent on the ROS-sensing transcriptional regulator, OxyR. Upon entry into stationary phase, the major stationary phase regulator RpoS is required to transcribe dps. Deletion of dps impaired V. cholerae resistance to both inorganic and organic hydroperoxides. Furthermore, we show that Dps is involved in resistance to multiple environmental stresses. Finally, we found that Dps is important for V. cholerae adult mouse colonization, but becomes dispensable in the presence of antioxidants. Taken together, our results suggest that Dps plays vital roles in both V. cholerae stress resistance and pathogenesis.201728151956
8236150.9911Recurrent acquisition of nuclease-protease pairs in antiviral immunity. Antiviral immune systems diversify by integrating new genes into existing pathways, creating new mechanisms of viral resistance. We identified genes encoding a predicted nuclease paired with a trypsin-like protease repeatedly acquired by multiple, otherwise unrelated antiviral immune systems in bacteria. Cell-based and biochemical assays revealed the nuclease is a proenzyme that cleaves DNA only after activation by its partner protease. Phylogenetic analysis showed that two distinct immune systems, Hachiman and AVAST, use the same mechanism of proteolytic activation despite their independent evolutionary origins. Examination of nuclease-protease inheritance patterns identified caspase-nuclease (canu) genomic loci that confer antiviral defense in a pathway reminiscent of eukaryotic caspase activation. These results uncover the coordinated activities of pronucleases and their activating proteases within different immune systems and show how coevolution enables defense system innovation.202540766668
710160.9911The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Expression of amino acid biosynthesis genes in bacteria is often repressed when abundant supplies of the cognate amino acid are available. Repression of the Bacillus subtilis lysC gene by lysine was previously shown to occur at the level of premature termination of transcription. In this study we show that lysine directly promotes transcription termination during in vitro transcription with B. subtilis RNA polymerase and causes a structural shift in the lysC leader RNA. We find that B. subtilis lysC is a member of a large family of bacterial lysine biosynthesis genes that contain similar leader RNA elements. By analogy with related regulatory systems, we designate this leader RNA pattern the "L box." Genes in the L box family from Gram-negative bacteria appear to be regulated at the level of translation initiation rather than transcription termination. Mutations of B. subtilis lysC that disrupt conserved leader features result in loss of lysine repression in vivo and loss of lysine-dependent transcription termination in vitro. The identification of the L box pattern also provides an explanation for previously described mutations in both B. subtilis and Escherichia coli lysC that result in lysC overexpression and resistance to the lysine analog aminoethylcysteine. The L box regulatory system represents an example of gene regulation using an RNA element that directly senses the intracellular concentration of a small molecule.200314523230
8144170.9910Fungal Priming: Prepare or Perish. Priming (also referred to as acclimation, acquired stress resistance, adaptive response, or cross-protection) is defined as an exposure of an organism to mild stress that leads to the development of a subsequent stronger and more protective response. This memory of a previously encountered stress likely provides a strong survival advantage in a rapidly shifting environment. Priming has been identified in animals, plants, fungi, and bacteria. Examples include innate immune priming and transgenerational epigenetic inheritance in animals and biotic and abiotic stress priming in plants, fungi, and bacteria. Priming mechanisms are diverse and include alterations in the levels of specific mRNAs, proteins, metabolites, and epigenetic changes such as DNA methylation and histone acetylation of target genes.202235628704
573180.9910Termination factor Rho and its cofactors NusA and NusG silence foreign DNA in E. coli. Transcription of the bacterial genome by the RNA polymerase must terminate at specific points. Transcription can be terminated by Rho factor, an essential protein in enterobacteria. We used the antibiotic bicyclomycin, which inhibits Rho, to assess its role on a genome-wide scale. Rho is revealed as a global regulator of gene expression that matches Escherichia coli transcription to translational needs. We also found that genes in E. coli that are most repressed by Rho are prophages and other horizontally acquired portions of the genome. Elimination of these foreign DNA elements increases resistance to bicyclomycin. Although rho remains essential, such reduced-genome bacteria no longer require Rho cofactors NusA and NusG. Deletion of the cryptic rac prophage in wild-type E. coli increases bicyclomycin resistance and permits deletion of nusG. Thus, Rho termination, supported by NusA and NusG, is required to suppress the toxic activity of foreign genes.200818487194
712190.9910Structure, function and regulation of the DNA-binding protein Dps and its role in acid and oxidative stress resistance in Escherichia coli: a review. Dps, the DNA-binding protein from starved cells, is capable of providing protection to cells during exposure to severe environmental assaults; including oxidative stress and nutritional deprivation. The structure and function of Dps have been the subject of numerous studies and have been examined in several bacteria that possess Dps or a structural/functional homologue of the protein. Additionally, the involvement of Dps in stress resistance has been researched extensively as well. The ability of Dps to provide multifaceted protection is based on three intrinsic properties of the protein: DNA binding, iron sequestration, and its ferroxidase activity. These properties also make Dps extremely important in iron and hydrogen peroxide detoxification and acid resistance as well. Regulation of Dps expression in E. coli is complex and partially dependent on the physiological state of the cell. Furthermore, it is proposed that Dps itself plays a role in gene regulation during starvation, ultimately making the cell more resistant to cytotoxic assaults by controlling the expression of genes necessary for (or deleterious to) stress resistance. The current review focuses on the aforementioned properties of Dps in E. coli, its prototypic organism. The consequences of elucidating the protective mechanisms of this protein are far-reaching, as Dps homologues have been identified in over 1000 distantly related bacteria and Archaea. Moreover, the prevalence of Dps and Dps-like proteins in bacteria suggests that protection involving DNA and iron sequestration is crucial and widespread in prokaryotes.201121143355