# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1457 | 0 | 0.9977 | Detection of TEM and CTX-M Genes in Escherichia coli Isolated from Clinical Specimens at Tertiary Care Heart Hospital, Kathmandu, Nepal. BACKGROUND: Antimicrobial resistance (AMR) among Gram-negative pathogens, predominantly ESBL-producing clinical isolates, are increasing worldwide. The main aim of this study was to determine the prevalence of ESBL-producing clinical isolates, their antibiogram, and the frequency of ESBL genes (bla(TEM) and bla(CTX-M)) in the clinical samples from patients. METHODS: A total of 1065 clinical specimens from patients suspected of heart infections were collected between February and August 2019. Bacterial isolates were identified on colony morphology and biochemical properties. Thus, obtained clinical isolates were screened for antimicrobial susceptibility testing (AST) using modified Kirby-Bauer disk diffusion method, while ESBL producers were identified by using a combination disk diffusion method. ESBL positive isolates were further assessed using conventional polymerase chain reaction (PCR) to detect the ESBL genes bla(TEM) and bla(CTX-M). RESULTS: Out of 1065 clinical specimens, 17.8% (190/1065) showed bacterial growth. Among 190 bacterial isolates, 57.4% (109/190) were Gram-negative bacteria. Among 109 Gram-negative bacteria, 40.3% (44/109) were E. coli, and 30.2% (33/109) were K. pneumoniae. In AST, 57.7% (n = 63) Gram-negative bacterial isolates were resistant to ampicillin and 47.7% (n = 52) were resistant to nalidixic acid. Over half of the isolates (51.3%; 56/109) were multidrug resistant (MDR). Of 44 E. coli, 27.3% (12/44) were ESBL producers. Among ESBL producer E. coli isolates, 58.4% (7/12) tested positive for the bla(CTX-M) gene and 41.6% (5/12) tested positive for the bla(TEM) gene. CONCLUSION: Half of the Gram-negative bacteria in our study were MDR. Routine identification of an infectious agent followed by AST is critical to optimize the treatment and prevent antimicrobial resistance. | 2021 | 33562276 |
| 1467 | 1 | 0.9976 | Detection of bla (CTX-M15) and bla (OXA-48) genes in Gram-negative isolates from neonatal sepsis in central of Iran. BACKGROUND AND OBJECTIVES: The aim of this study was to determine the prevalence of neonatal sepsis with a focus on antibiotic resistance and the frequency of the bla (CTX-M-15) and bla (OXA-48) genes in Gram-negative isolates. MATERIALS AND METHODS: A total of 108 Umbilical Cord Blood (UCB) and 153 peripheral blood samples were cultured via BACTEC from May 2017 to June 2018. The bacterial isolates were identified using phenotypic and genotypic analyses. The antibiotic susceptibility profile of the isolates was determined by disk diffusion. PCR was used to determine the frequency of β-lactamase genes. RESULTS: Among the 153 infants, 21 (13.7%) proved positive for sepsis. Escherichia coli, Staphylococcus epidermidis and Klebsiella pneumoniae were the most frequent isolates in the peripheral blood cultures. E. coli and Stenotrophomonas maltophilia were isolated from two UCB cultures. The highest resistance among the Gram-positive strains was to cefixime, ceftriaxone, cefotaxime and clindamycin. In the Gram-negative bacteria the highest rates of resistance were to ampicillin (91.7%). The frequency of bla (OXA-48) and bla (CTX-M-15) genes was 25% and 50%, respectively. CONCLUSION: The high antibiotic resistance among the isolates reveals the importance of monitoring antibiotic consumption and improving control standards in the health care system, especially in neonatal wards. | 2019 | 31719958 |
| 1418 | 2 | 0.9976 | Nosocomial infections and antimicrobial susceptibility patterns among patients admitted to intensive care unit of Imam Khomeini hospital in Ilam, Iran. INTRODUCTION: Nosocomial infections (NIs) are a major challenge worldwide. Identification of antibiotic resistance pattern extended spectrum beta-lactamases (ESBLs) and carbapenem-resistant Enterobacteriaceae (CRE) were the objectives of this study. METHODS: In this cross-sectional study, the antimicrobial susceptibility pattern of bacterial isolates collected from patients with NIs in ICU was determined. Overall, 42 Escherichia coli and Klebsiella pneumoniae isolates from different infection sites were used to determine phenotypic tests of ESBLs, Metallo-β-lactamases (MBLs) and CRE. Detection of ESBLs, MBLs and CRE genes were performed by the polymerase chain reaction (PCR) method. RESULTS: From 71 patients with NIs, 103 different bacterial strains were isolated. The most frequently isolated bacteria were E. coli (n = 29; 28.16%), Acinetobacter baumannii (n = 15; 14.56%), and K. pneumoniae (n = 13; 12.26%). Also, the rate of multidrug-resistant (MDR) isolates was 58.25% (60/103). Based on phenotypic confirmation tests, 32 (76.19%) isolates of E. coli and K. pneumoniae produced ESBLs, and 6 (14.28%) isolates were identified as CRE producers. PCR showed the high prevalence of the bla(CTX-M) (n = 29; 90.62%) in ESBL genes. In addition, bla(NDM) was detected in 4 (66.66%), bla(OXA-23) in 3 (50%), and bla(OXA-48) gene in 1 (16.66%) isolates. The bla(VIM), bla(KPC), and bla(IMP) genes were not detected in any of the isolates. CONCLUSION: The Gram-negative bacteria E. coli, A. baumannii, and K. pneumoniae with high resistance levels were the most common bacteria causing NIs in the ICU. This study for the first time identified bla(OXA-11), bla(OXA-23), and bla(NDM-1) genes in E. coli and K. pneumoniae in Ilam city of Iran. | 2023 | 37155016 |
| 1466 | 3 | 0.9976 | Antibiotic resistance and genotype of beta-lactamase producing Escherichia coli in nosocomial infections in Cotonou, Benin. BACKGROUND: Beta lactams are the most commonly used group of antimicrobials worldwide. The presence of extended-spectrum lactamases (ESBL) affects significantly the treatment of infections due to multidrug resistant strains of gram-negative bacilli. The aim of this study was to characterize the beta-lactamase resistance genes in Escherichia coli isolated from nosocomial infections in Cotonou, Benin. METHODS: Escherichia coli strains were isolated from various biological samples such as urine, pus, vaginal swab, sperm, blood, spinal fluid and catheter. Isolated bacteria were submitted to eleven usual antibiotics, using disc diffusion method according to NCCLS criteria, for resistance analysis. Beta-lactamase production was determined by an acidimetric method with benzylpenicillin. Microbiological characterization of ESBL enzymes was done by double disc synergy test and the resistance genes TEM and SHV were screened by specific PCR. RESULTS: ESBL phenotype was detected in 29 isolates (35.5%). The most active antibiotic was imipenem (96.4% as susceptibility rate) followed by ceftriaxone (58.3%) and gentamicin (54.8%). High resistance rates were observed with amoxicillin (92.8%), ampicillin (94%) and trimethoprim/sulfamethoxazole (85.7%). The genotype TEM was predominant in ESBL and non ESBL isolates with respectively 72.4% and 80%. SHV-type beta-lactamase genes occurred in 24.1% ESBL strains and in 18.1% of non ESBL isolates. CONCLUSION: This study revealed the presence of ESBL producing Eschericiha coli in Cotonou. It demonstrated also high resistance rate to antibiotics commonly used for infections treatment. Continuous monitoring and judicious antibiotic usage are required. | 2015 | 25595314 |
| 1472 | 4 | 0.9976 | Incidence and antibiotic susceptibility profile of uropathogenic Escherichia coli positive for extended spectrum β-lactamase among HIV/AIDS patients in Awka metropolis, Nigeria. BACKGROUND AND OBJECTIVES: This study investigated the incidence and antibiotic susceptibility profile of extended spectrum β-lactamase (ESBL) producing uropathogenic Escherichia coli recovered from HIV/AIDS patients in Awka metropolis, Nigeria. MATERIALS AND METHODS: A total of 363 urine samples were bacteriologically analyzed for the isolation of E. coli isolates which were further characterized using standard microbiology techniques. The isolated uropathogenic E. coli was tested for susceptibility to a range of clinically important antibiotics using the modified disk diffusion technique. All E. coli isolates were phenotypically screened for ESBL production using the combined disk technique, and strains which were positive were further confirmed for the presence of ESBL genes using PCR technique. RESULTS: A total 160 (44.1%) non-duplicate isolates were bacteriologically confirmed to be uropathogenic E. coli (UPEC). The E. coli isolates showed reduced susceptibility to important antibiotics including ceftazidime (76.88%), cefuroxime (77.5%), cefixime (61.88%), amoxicillin-clavulanic (32.5%) and ciprofloxacin (34.38%). Twenty-seven of the UPEC isolates were phenotypically confirmed to be ESBL producers. PCR test confirmed some important genes mediating ESBL production in Gram negative bacteria including bla (TEM) (5.0%) and bla (CTX-M-15) (6.9%) genes. CONCLUSION: We report a high prevalence of ESBL producers among HIV/AIDS patients in Awka, Nigeria. This result is important as antibiotic resistance (ABR) particularly those mediated by multidrug resistant bacteria as reported in this current study could complicate treatment outcome, worsen the individual's health, and even increase cost of treatment and hospitalization. It is therefore important to lookout for ESBL positive UPEC amongst HIV/AIDS patients in Nigeria. | 2022 | 37124857 |
| 1454 | 5 | 0.9976 | OCCURRENCE OF AMINOGLYCOSIDES RESISTANCE GENES ACC(6)-IB AND ACC(3)-II AMONG GRAM-NEGATIVE ISOLATES CAUSING URINARY TRACT INFECTION IN PEDIATRIC PATIENTS, NAJAF, IRAQ. OBJECTIVE: The aim: The aim of the study was to detect the antimicrobial susceptibility patterns and frequency of aminoglycosides resistance genes of Gram-negative bacteria isolated from pediatric patient with UTI. PATIENTS AND METHODS: Materials and methods: The study has been performed with a total of 500 urine specimens collected from pediatric patients under the age of 18 year suspected with UTI, admitted to hospitals in Al-Najaf province/Iraq during the period from November 2018 to March 2019. RESULTS: Results: A total of 500 urine specimens had been tested, 120 (24%) had signifficant bacteriuria, while there 380 (76%) had non-signi!cant bacteriuria. Escherichia coli represent about 70 (68.2%) followed by followed by 23 (22.5%) K. pneumoniae, 5 (4.9%) P. aeruginosa, 2 (1.9%) Proteus spp., 1 (0.9%) Enterobacter spp. and 1 (0.9%) Oligella uratolytic. The antimicrobial susceptibility profile of 102 Gram-negative isolates, revealed that 59 (58%) were multidrug resistant (MDR) and 38(37%) were extensive drug resistant (XDR). The PCR results of aminoglycosides resistance showing that 23 (74.1%) Gram-negative isolates had acc(6')-Ib gene and 12 (38.7%) Gram-negative isolates acc(3')-II gene. CONCLUSION: Conclusions: A high frequency of multi-drug resistance and extensive-drug resistance of isolates were recognized, and an alarming percentage of amino-glycosides resistance to acc(6')-Ib and acc(3')-II. | 2023 | 37010165 |
| 1123 | 6 | 0.9976 | Molecular detection of blaSHV gene in multidrug resistance of Klebsiella pneumoniae isolated from chicken egg shell swab from a traditional market in Surabaya. BACKGROUND: Contamination with Klebsiella pneumoniae in food ingredients, including eggs, causes various dangers because it threatens public health, because it acts as a multidrug resistance (MDR) bacteria, especially the extended-spectrum beta-lactamase (ESBL) strain. The ESBL blaSHV gene is part of a broad-spectrum ESBL that is often found in Gram-negative bacteria. AIM: This study aimed to identify the ESBL blaSHV gene in K. pneumoniae MDR from chicken eggshells. METHODS: This study used 160 samples of chicken eggshell swabs isolated on 1% BPW media from 10 traditional Surabaya markets. Samples were isolated using MCA media and were identified using Gram staining and biochemical tests. Detection of MDR using Muller-Hinton Agar. RESULTS: Confirmation of ESBL in multidrug-resistant (MDR) isolates was performed using polymerase chain reaction to detect ESBL genes. The results showed that the isolation and identification of K. pneumoniae bacteria were 25.62% (41/160). Amoxicillin antibiotics showed the highest level of resistance at a percentage of 100% (41/41), followed by antibiotic resistance to erythromycin (90.24% (37/41), Streptomycin antibiotics were 26.82% (11/41), ciprofloxacin (14.63% (6/41), and Tetracycline antibiotic resistance was 7.31% (3/41). The results of MDR from K. pneumoniae showed 34.14% (14/41) of the isolates were then tested by PCR, which showed positive results for the blaSHV gene of 71.42% (10/14). CONCLUSION: The data from this study confirm the existence of K. pneumoniae bacteria isolated from egg shell swabs carrying the blaSHV gene from MDR isolates. | 2025 | 40557075 |
| 1464 | 7 | 0.9975 | Detection of TEM and CTX-M genes from ciprofloxacin resistant Proteus mirabilis and Escherichia coli isolated on urinary tract infections (UTIs). The multidrug resistant Gram negative bacteria (MDRGNB) is an emerging burden and now represents a daily challenge for the management of antimicrobial therapy in healthcare settings. The present study was aimed to detect the prevalence of TEM and CTX-M type genes from GNB on urinary tract infection (UTIs). The ciprofloxacin resistant uropathogens were detected by HEXA UTI 5 disc diffusion method. The phenotypic detection of uropathogens producing extended spectrum beta lactamases (ESBLs) was confirmed by double disc combination test (DDCT) and phenotype confirmation test (PCT). The prevalence of TEM and CTX-M genes of uropathogens was identified by multiplex PCR analysis. The in vitro antimicrobial susceptibility of E. coli producing ESBL (26), 21 isolates of P. mirabilis, 17 P. aeruginosa, 14 K. pneumoniae and 6 Enterobacter sp. were detected. Based on the extension of the cephalosporin zone edge towards augmentin disc in the DDST method proved 84% of the isolates were ESBL positive. Similar results were obtained in phenotypic confirmatory test (PCT) by the increases of ≥5 mm zone of inhibition in the combination disc when compared with ceftazidime disc alone. The prevalence of TEM and CTX-M genes were determined from multidrug resistance uropathogens (MDU) respectively as 83%, 75%, 71%, 63%, 60%, 55%, 54%, 50%. The most prevalent (TEM + CTX-M) genes were also detected in ciprofloxacin resistant strains P. mirabilis BDUMS1 (KY617768) and E. coli BDUMS3 (KY617770). Due to the increase of ESBL genes in uropathogens, sustained supervision for using favorable antibiotics and decreasing the infection is essential. | 2018 | 29778819 |
| 1276 | 8 | 0.9975 | Should we leave the paper currency? A microbiological examination. OBJECTIVE: Pathogens can be transmitted to banknotes due to the personal unhygienic habits. The aim of study was to find the possible pathogens on the banknotes circulating in the market and also to present their antibacterial resistance and their various virulence factors using genotypic and phenotypic methods. METHODS: A total of 150 samples of bank-notes were randomly collected between August 2017 and March 2018. VITEK systems were used for identification and antimicrobial susceptibility testing respectively. Antimicrobial resistance genes (mecA, van, extended-spectrum β-lactamase [ESBL] and carbapenemases) and staphyloccoccal virulence genes (staphyloccoccal enterotoxins [SEs], pvl, and tsst-1) were determined using with real-time PCR. RESULTS: Staphylococcus aureus, coagulase-negative staphylococci (CoNS), Enterococcus spp., Gram-negative enteric bacteria, non-fermentative Gram-negative bacteria and Candida spp. were detected 48%, 54.7%, 56%, 21.3%, 18.7%, and 4%, respectively. Methicillin-resistant S. aureus, vancomycin-resistant enterococci and ESBL producing Gram-negative were found 46.8%, 1.3%, and 28.7%, respectively. Pvl, tsst-1, and SEs genes were found in a 2.8/4.9%, 1.4/1.2%, and 100/ 87.8% of the S. aureus/CoNS strains, respectively. The sea gene was found the most common enterotoxigenic gene. blaTEM, blaSHV, blaCTX-M-2, blaCTX-M-1, blaKPC, and blaOXA-48 were found 55.8%, 46.5%, 41.2%, 18.6%, 18.6%, and 18.6%, respectively in Gram-negative strains. CONCLUSIONS: These results is very important to highlight hygienic status of paper currencies. This can be considered as an indication that banknotes may contribute to the spread of pathogens and antimicrobial resistance. Therefore, we may need to start using alternative products instead of banknotes. | 2020 | 32066229 |
| 1231 | 9 | 0.9975 | Prevalence and Molecular Characterization of Plasmid-mediated Extended-Spectrum β-Lactamase Genes (balaTEM, blaCTX and blASHV) Among Urinary Escherichia coli Clinical Isolates in Mashhad, Iran. OBJECTIVES: Extended-spectrum beta-lactamase (ESBL) producing bacteria have an important role in nosocomial infections. Due to the limited availability of information about the molecular epidemiology of ESBL producing bacteria in Mashhad, we decided to investigate about TEM, CTX and SHV ESBLs among urinary Escherichia coli isolates in Mashhad, a city in northeast Iran. MATERIALS AND METHODS: One hundred and eleven clinical isolates of E. coli were diagnosed from hospitalized patients in 2009. After performing antibiogram and phenotypic confirmation test, polymerase chain reaction (PCR) was performed by blaTEM, blaSHV and blaCTX primers and restriction digestion was carried out using PstI and TaqI (Fermentas-Lithuania) for confirmation. RESULTS: ESBL producers of E. coli isolates were 33.3%. Among 37 ESBL-producing isolates, 35 (94.6%), 21 (56.8%) and 5 (13.5%) were shown to have blaCTX, blaTEM and blaSHV, genes respectively. Co-resistance to non-beta lactam antibiotics was observed more with ESBL producers (P < 0.05). CONCLUSION: The results showed that the studied ESBL genes are found with high prevalence and among them blaCTX is more widespread in urine E. coli isolates in Mashhad. | 2012 | 23493415 |
| 1335 | 10 | 0.9975 | Prevalence of virulence factor, antibiotic resistance, and serotype genes of Pasteurella multocida strains isolated from pigs in Vietnam. AIM: The study was conducted to determine the prevalence and characterization of the Pasteurella multocida isolates from suspected pigs in Vietnam. MATERIALS AND METHODS: A total of 83 P. multocida strains were isolated from lung samples and nasal swabs collected from pigs associated with pneumonia, progressive atrophic rhinitis, or reproductive and respiratory symptoms. Isolates were subjected to multiplex polymerase chain reaction (PCR) for capsular typing, detection of virulence-associated genes and antibiotic resistance genes by PCR. The antimicrobial sensitivity profiles of the isolates were tested by disk diffusion method. RESULTS: All the isolates 83/83 (100%) were identified as P. multocida by PCR: serogroup A was obtained from 40/83 (48.19%), serogroup D was detected from 24/83 strains (28.91%), and serogroup B was found in 19/83 (22.35%) isolates. The presence of 14 virulence genes was reported including adhesins group (ptfA - 93.97%, pfhA - 93.97%, and fimA - 90.36%), iron acquisition (exbB - 100%, and exbD - 85.54%), hyaluronidase (pmHAS - 84.33%), and protectins (ompA - 56.62%, ompH 68.67%, and oma87 - 100%). The dermonecrotoxin toxA had low prevalence (19.28%). The antimicrobial susceptibility testing revealed that cephalexin, cefotaxime, ceftriaxone, ofloxacin, pefloxacin, ciprofloxacin, and enrofloxacin were the drugs most likely active against P. multocida while amoxicillin and tetracycline were inactive. The usage of PCR revealed that 63/83 isolates were carrying at least one of the drug resistance genes. CONCLUSION: Unlike other parts of the word, serotype B was prevalent among Vietnamese porcine P. multocida strains. The high antibiotic resistance detected among these isolates gives us an alert about the current state of imprudent antibiotic usage in controlling the pathogenic bacteria. | 2020 | 32636585 |
| 1233 | 11 | 0.9975 | Prevalence, Antibiogram, and Resistance Profile of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolates from Pig Farms in Luzon, Philippines. This cross-sectional study was conducted to determine the prevalence, antibiogram, and resistance profile of extended-spectrum β-lactamase-producing Escherichia coli (ESBL-EC) isolates from healthy pigs and pig farms in Luzon, Philippines. A total of 162 rectal samples from healthy finisher and breeder pigs and boot swab samples from pig houses were collected from 54 randomly selected pig farms. Bacteria were isolated and screened using MacConkey agar plate supplemented with 1 mg/L cefotaxime. Identification of bacteria and antimicrobial susceptibility test were carried out through Vitek(®) 2 and combined disk test. PCR amplifications were carried out in all isolates targeting bla(CTX-M) and its five major groupings, bla(TEM), and bla(SHV). The farm prevalence of ESBL-EC was 57.41% (95% confidence interval [CI] = 43.21-70.77). A total of 48 (29.63%) ESBL-EC isolates were isolated from samples that showed 14 different phenotypic multidrug resistance patterns. The prevalence of bla(CTX-M) gene was 91.67% (95% CI = 80.02-97.68). All major bla(CTX-M-groups) except bla(CTX-M-25group) were detected. The bla(CTX-M-1) was the most prevalent bla(CTX-M) gene, 75.0% (95% CI = 60.40-86.36). The prevalence of bla(TEM) and bla(SHV) genes was 91.67% (95% CI = 80.02-97.68) and 60.42% (95% CI = 45.27-74.23), respectively. Coexistence of different bla(CTX-M), bla(TEM), and bla(SHV) genes was observed in 44 isolates with 20 different genotypic patterns. High prevalence, diverse antibiogram profile, and genotypic resistance pattern of ESBL-EC isolates from healthy pigs and pig farms were observed in this study that could result in possible transmission to farm workers, susceptible bacteria, and the environment. | 2020 | 31532307 |
| 1416 | 12 | 0.9975 | Prevalence of extended-spectrum β-lactamase (ESBL) and molecular detection of blaTEM, blaSHV and blaCTX-M genotypes among Enterobacteriaceae isolates from patients in Khartoum, Sudan. INTRODUCTION: the emergence of antibiotic resistance pathogens is an important health risk. Usually Gram negative bacteria acquire resistance to beta-lactam antibiotics by beta-lactamase production. The objectives of this study was to assess the prevalence of ESBL and to detect the frequency of blaTEM, blaSHV and blaCTX-M genotypes among ESBL producing Enterobacteriaceae isolates from patients in Khartoum, Sudan. METHODS: a total of 171 isolates of Enterobacteriaceae were recovered from hospitals in Khartoum, Sudan (2014 -2015) were used to detect ESBL production using disc diffusion method. blaTEM, blaSHV and blaCTX-M genes were investigated by PCR based methods using gene-specific primers. RESULTS: the high resistance among Enterobacteriaceae was noticed in ciprofloxacin (72%) and ofloxacin (73%). ESBL production was mainly in Escherichia Coli (38%) and Klebsiella pneumonia (34%). Prevalent genotypes were blaTEM (86%), blaCTX-M (78%) and blaSHV (28%). These were found mainly in Escherichia Coli (38%, 37%, 2%) and K. pneumonia (34%, 31%, 26.1%). The majority of ESBL producing isolates possess more than one ESBL genes. CONCLUSION: the ESBL production in Enterobacteriaceae was high, with blaTEM and blaCTX-M genotypes more prevalent. Public health and laboratory standard of excellence is needed to reducing the spread of resistant pathogens. | 2020 | 33520052 |
| 1415 | 13 | 0.9975 | Antibiogram and Molecular Characterization of AmpC and ESBL-Producing Gram-Negative Bacteria from Poultry and Abattoir Samples. BACKGROUND AND OBJECTIVE: The global antibiotic resistance threat posed by ESBL and AmpC-producing Gram-Negative Bacteria (GNB) is a public health menace that rolls back the gains of 'One Health'. This study investigated the antibiogram and prevalence of AmpC and ESBL genes in Escherichia coli, Klebsiella spp. and Pseudomonas spp. from poultry and abattoir milieus in Enugu and Ebonyi States, Nigeria. MATERIALS AND METHODS: Isolation, identification and characterization of GNB from samples (150 abattoirs and 300 poultry) were done using standard microbiological techniques. Antimicrobial Susceptibility Testing (AST), as well as phenotypic screening for ESBL and AmpC enzymes, was performed using the Kirby-Bauer disc diffusion technique. PCR technique was used to screen isolated GNB for AmpC and ESBL genes. RESULTS: Exactly 42 E. coli and 8 Klebsiella spp. isolate from poultry samples and another 5 P. aeruginosa isolates from abattoir samples were phenotypically confirmed to be ESBL-producers. AmpC enzymes were phenotypically detected in 8 E. coli and 13 P. aeruginosa isolates from poultry samples. All ESBL and AmpC-positive bacteria exhibited high resistance frequencies to tested antibiotics, especially to the carbapenems and cephalosporins. ESBL genes (CTX-M, SHV-1, TEM) and AmpC genes (ACC-M, MOX-M, DHA-M) were harbored by the isolated GNB in this study. Overall, the DHA-M and CTX-M genes, mediating AmpC and ESBL production respectively were the most prevalent genes harbored by the tested GNB. CONCLUSION: This study reported that AmpC and ESBL genes are harbored by Gram-negative bacteria (E. coli, Klebsiella species and P. aeruginosa) that emanated from poultry and abattoir milieus. | 2021 | 33683048 |
| 1460 | 14 | 0.9975 | Emergence of Multidrug Resistance and Metallo-beta-lactamase Producing Acinetobacter baumannii Isolated from Patients in Shiraz, Iran. BACKGROUND: Metallo-beta-lactamase (MβL) enzymes production is one of the most important resistance mechanisms against carbapenems in some bacteria including Acinetobacter baumannii. AIMS: This study was aimed to determine the antimicrobial susceptibility and the prevalence of MβL among carbapenem-resistant isolates of A. baumannii. MATERIALS AND METHODS: In this cross-sectional study from October 2012 to April 2013, 98 isolates were identified as A. baumannii using Microgen™ kits and confirmed by molecular method. These isolates were tested for antimicrobial susceptibilities by disk diffusion method according to the Clinical and Laboratory Standards Institute guidelines. Carbapenem-resistant isolates were further detected phenotypically by MβL minimal inhibitory concentration (MIC)-test strips, and subsequently positive MβL isolates were confirmed by polymerase chain reaction (PCR). RESULTS: Overall, 98% (96/98) of A. baumannii isolates were detected as carbapenem-resistant by MIC test. Highest sensitivity to the tested antibiotic with 42.9% (42/98) was observed to colistin. Of 96 carbapenem-resistant isolates, 43 were phenotypically positive for MβL; out of 43 isolates, 37 were confirmed for the presence of MβL genes by PCR. CONCLUSION: The frequency of drug resistance among the clinical samples of A. baumannii isolated in our study against most of the antibiotics was very high. Moreover, all MβL producing isolates were multidrug resistance. Therefore, systematic surveillance to detect MβL producing bacteria and rational prescription and use of carbapenems could be helpful to prevent the spread of carbapenem resistance. | 2016 | 27398247 |
| 1470 | 15 | 0.9975 | Occurrence of extended-spectrum beta-lactamase (ESBL) in Gram-negative bacterial isolates from high vaginal swabs in a teaching hospital in Nigeria. OBJECTIVE: This study aims to determine the antibiotic susceptibility pattern and incidence of extended-spectrum beta-lactamase (ESBL) genes in isolates from vaginal discharge of symptomatic female patients. STUDY DESIGN: Cross-sectional study. PARTICIPANT: Pregnant and non-pregnant women between 18 and 50 years who presented with genital tract infection and had not received antimicrobial therapy in the two weeks prior. INTERVENTIONS: The study determines the prevalence of bacteria in the vaginal discharge of female patients of reproductive age, the antibiotic susceptibility pattern of the isolates and the incidence of ESBL genes in Gram-negative isolates from the sample. RESULTS: Bacteria were found in 74 (80.4%) and 88 (81.5%) samples from pregnant and non-pregnant women, respectively. Escherichia coli (n=48; 27.6%) occurred mostly in the samples, followed by Staphylococcus aureus (n=38; 21.8%). Among the Gram-positive, all Streptococcus. pneumoniae and Staphylococcus. epidermidis were sensitive to imipenem and meropenem (100%). S. aureus was the most resistant to cephalexin (71.4%), cefoxitin (60.5%) carbenicillin (60.5%) and ceftazidime (57.9%). Escherichia coli was highly resistant to carbenicillin (85.4%), cephalexin (64.6%) and cefotaxime (56.3%). Klebsiella pneumoniae showed the highest level of imipenem resistance (31.6%), followed by E. coli (29.2%). The prevalence of ESBL genes in Gram-negative isolates from pregnant women was 25.6% (11/43), compared to 30.3% (23/76) in non-pregnant women. Both bla (TEM) and bla (SHV) had the highest occurrence of 14.3% (17/119) of the isolates. CONCLUSION: This study found Gram-negative pathogens isolated from the vaginal tract of both pregnant and non-pregnant women to be resistant to multiple antibiotics and have ESBL genes. FUNDING: None declared. | 2024 | 40585516 |
| 2185 | 16 | 0.9975 | Isolation of multidrug-resistant Escherichia coli, Staphylococcus spp., and Streptococcus spp. from dogs in Chattogram Metropolitan Area, Bangladesh. OBJECTIVES: Antibacterial resistance is a great concern in human and food animal medicine, and it poses a significant concern in pet animals like dogs. This cross-sectional study was conducted to evaluate the antimicrobial resistance pattern of Escherichia coli, Staphylococcus spp., and Streptococcus spp. along with the carryover of some resistance genes in E. coli from dogs in the Chattogram metropolitan area, Bangladesh. MATERIALS AND METHODS: Rectal swab (n = 50), nasal swab (n = 50), and skin swab (n = 50) samples were collected from dogs having respiratory infections, skin infections, and/or enteritis, respectively. Three types of bacteria were identified and isolated by conventional bacteriological techniques and biochemical tests. Antimicrobial susceptibility testing was carried out against 12 antimicrobials by disk diffusion methods. Six resistance genes, namely bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II, were screened for phenotypically resistant E. coli isolates by the polymerase chain reaction. RESULTS: A total of 39 (78%) E. coli, 25 (50%) Staphylococcus spp., and 24 (48%) Streptococcus spp. isolates were isolated from the rectal swab, nasal swab, and skin swab samples, respectively. In the cultural sensitivity test, the E. coli isolates showed resistance to ceftriaxone (79%) and sulfamethoxazole/trimethoprim (64%). Doxycycline (80%) demonstrated the highest resistance among Staphylococcus isolates, followed by sulfamethoxazole/trimethoprim (60%). Streptococcus isolates showed the highest resistance to penicillin (63%), followed by ceftriaxone (54%), while no isolate showed resistance to gentamycin. The prevalence of bla (TEM), bla (CTX-M), tetA, tetB, Sul-I, and Sul-II genes in phenotypically resistant E. coli isolates were 100%, 61.29%, 100%, 8.33%, 56%, and 72%, respectively. CONCLUSIONS: Spillover of such multidrug-resistant bacteria and resistance genes from pet dogs pose a serious public health risk. | 2020 | 33409311 |
| 1161 | 17 | 0.9975 | Detection of extended-spectrum β-lactamase-producing Escherichia coli genes isolated from cat rectal swabs at Surabaya Veterinary Hospital, Indonesia. BACKGROUND AND AIM: Escherichia coli causes a bacterial illness that frequently affects cats. Diseases caused by E. coli are treated using antibiotics. Because of their proximity to humans, cats possess an extremely high risk of contracting antibiotic resistance genes when their owners touch cat feces containing E. coli that harbor resistance genes. This study was conducted to identify multidrug-resistant E. coli and extended-spectrum β-lactamase (ESBL)-producing genes from cat rectal swabs collected at Surabaya City Veterinary Hospital to determine antibiotic sensitivity. MATERIALS AND METHODS: Samples of cat rectal swabs were cultured in Brilliant Green Bile Lactose Broth medium and then streaked on eosin methylene blue agar medium for bacterial isolation, whereas Gram-staining and IMViC tests were conducted to confirm the identification results. The Kirby-Bauer diffusion test was used to determine antibiotic sensitivity, and the double-disk synergy test was used to determine ESBL-producing bacteria. Molecular detection of the genes TEM and CTX-M was performed using a polymerase chain reaction. RESULTS: Based on morphological culture, Gram-staining, and biochemical testing, the results of sample inspection showed that of the 100 cat rectal swab samples isolated, 71 (71%) were positive for E. coli. Furthermore, 23 E. coli isolates (32.39%) demonstrated the highest resistance to ampicillin. Four isolates were confirmed to be multidurg-resistant and ESBL-producing strains. Molecular examination revealed that three E. coli isolates harbored TEM and CTX-M. CONCLUSION: In conclusion, pet owners must be educated on the use of antibiotics to improve their knowledge about the risks of antibiotic resistance. | 2023 | 37859949 |
| 1239 | 18 | 0.9974 | Fluoroquinolone resistance among fecal extended spectrum βeta lactamases positive Enterobacterales isolates from children in Dar es Salaam, Tanzania. BACKGROUND: Fluoroquinolones have been, and continue to be, routinely used for treatment of many bacterial infections. In recent years, most parts of the world have reported an increasing trend of fluoroquinolone resistant (FQR) Gram-negative bacteria. METHODS: A cross-sectional study was conducted between March 2017 and July 2018 among children admitted due to fever to referral hospitals in Dar es Salaam, Tanzania. Rectal swabs were used to screen for carriage of extended-spectrum β-lactamase-producing Enterobacterales (ESBL-PE). ESBL-PE isolates were tested for quinolone resistance by disk diffusion method. Randomly selected fluroquinolone resistant isolates were characterized by using whole genome sequencing. RESULTS: A total of 142 ESBL-PE archived isolates were tested for fluoroquinolone resistance. Overall phenotypic resistance to ciprofloxacin, levofloxacin and moxifloxacin was found in 68% (97/142). The highest resistance rate was seen among Citrobacter spp. (100%, 5/5), followed by Klebsiella. pneumoniae (76.1%; 35/46), Escherichia coli (65.6%; 42/64) and Enterobacter spp. (31.9%; 15/47). Whole genome sequencing (WGS) was performed on 42 fluoroquinolone resistant-ESBL producing isolates and revealed that 38/42; or 90.5%, of the isolates carried one or more plasmid mediated quinolone resistance (PMQR) genes. The most frequent PMQR genes were aac(6')-lb-cr (74%; 31/42), followed by qnrB1 (40%; 17/42), oqx, qnrB6 and qnS1. Chromosomal mutations in gyrA, parC and parE were detected among 19/42 isolates, and all were in E. coli. Most of the E. coli isolates (17/20) had high MIC values of > 32 µg/ml for fluoroquinolones. In these strains, multiple chromosomal mutations were detected, and all except three strains had additional PMQR genes. Sequence types, ST131 and ST617 predominated among E. coli isolates, while ST607 was more common out of 12 sequence types detected among the K. pneumoniae. Fluoroquinolone resistance genes were mostly associated with the IncF plasmids. CONCLUSION: The ESBL-PE isolates showed high rates of phenotypic resistance towards fluoroquinolones likely mediated by both chromosomal mutations and PMQR genes. Chromosomal mutations with or without the presence of PMQR were associated with high MIC values in these bacteria strains. We also found a diversity of PMQR genes, sequence types, virulence genes, and plasmid located antimicrobial resistance (AMR) genes towards other antimicrobial agents. | 2023 | 36882712 |
| 1115 | 19 | 0.9974 | Prevalence of extended spectrum beta lactamase and plasmid mediated quinolone resistant genes in strains of Klebsiella pneumonia, Morganella morganii, Leclercia adecarboxylata and Citrobacter freundii isolated from poultry in South Western Nigeria. A serious concern is arising on the coexistence of extended-spectrum beta-lactamase (ESBL) and plasmid mediated quinolone resistance (PMQR) producing bacteria in animal husbandry, which could be transferred to humans, especially in strains that may not be routinely screened for resistance. This study therefore tested the prevalence of ESBL and PMQR genes in selected bacteria isolated from poultry faeces. Faecal droppings of birds were collected from 11 farms in five states in South Western Nigeria. Bacteria were isolated from the samples on cefotaxime supplemented plates and identified with MALDI-TOF. The MIC was determined using VITEK system and resistance genes were detected with PCR. A total of 350 strains were isolated from different samples and selected strains were identified as 23 Klebsiella pneumonia, 12 Morganella morganii, seven Leclercia adecarboxylata and one Citrobacter freundii. All the species were resistant to gentamycin, trimethoprim/sulphamethaxole, tobramycin, piperacillin, cefotaxime and aztreonam (except Morganella morganii strains which were mostly susceptible to aztreonam). All the tested strains were susceptible to imipenem, meropenem and amikacin. All Leclercia adecarboxylata strains were resistant to ceftazidime, cefepime and fosfomycin while all Morganella morganii strains were resistant to fosfomycin, moxifloxacin and ciprofloxacin. All tested species were generally sensitive to ciprofloxacin except Morganella morganii strains which were resistant to ciprofloxacin. The resistance to ciprofloxacin, ceftazidime, cefepime, tigercylin, colistin and fosfomycin were 65%, 40%, 23%,, 7%, 33%, 48% respectively while the prevalence of SHV, TEM and CTX genes were 42%, 63%, 35% respectively. 9.3% of the isolates had the three ESBL genes, 2.33% had qnrA gene, 4.65% had qnr B gene while none had qnrS gene. The most prevalent PMQR gene is Oqxb (25.58%) while 6.98% had the qep gene. Klebsiella pneumoniae generally had both ESBL and PMQR genes. The high prevalence of extended spectrum beta-lactamase genes in the studied strains calls for caution in the use of beta lactam antibiotics in poultry feeds. This is the first report of the occurrence of extended spectrum beta-lactamase and plasmid mediated quinolone resistance genes in Morganella morganii and Leclercia adecarboxylata strains isolated from poultry faeces. | 2018 | 29942700 |