# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 6180 | 0 | 0.9834 | Mab2780c, a TetV-like efflux pump, confers high-level spectinomycin resistance in mycobacterium abscessus. Mycobacterium abscessus is highly resistant to spectinomycin (SPC) thereby making it unavailable for therapeutic use. Sublethal exposure to SPC strongly induces whiB7 and its regulon, and a ΔMab_whiB7 strain is SPC sensitive suggesting that the determinants of SPC resistance are included within its regulon. In the present study we have determined the transcriptomic changes that occur in M. abscessus upon SPC exposure and have evaluated the involvement of 11 genes, that are both strongly SPC induced and whiB7 dependent, in SPC resistance. Of these we show that MAB_2780c can complement SPC sensitivity of ΔMab_whiB7 and that a ΔMab_2780c strain is ∼150 fold more SPC sensitive than wildtype bacteria, but not to tetracycline (TET) or other aminoglycosides. This is in contrast to its homologues, TetV from M. smegmatis and Tap from M. tuberculosis, that confer low-level resistance to TET, SPC and other aminoglycosides. We also show that the addition of the efflux pump inhibitor (EPI), verapamil results in >100-fold decrease in MIC of SPC in bacteria expressing Mab2780c to the levels observed for ΔMab_2780c; moreover a deletion of MAB_2780c results in a decreased efflux of the drug into the cell supernatant. Together our data suggest that Mab2780c is an SPC antiporter. Finally, molecular docking of SPC and TET on models of TetV(Ms) and Mab2780c confirmed our antibacterial susceptibility findings that the Mab2780c pump preferentially effluxes SPC over TET. To our knowledge, this is the first report of an efflux pump that confers high-level drug resistance in M. abscessus. The identification of Mab2780c in SPC resistance opens up prospects for repurposing this relatively well-tolerated antibiotic as a combination therapy with verapamil or its analogs against M. abscessus infections. | 2023 | 36584486 |
| 6211 | 1 | 0.9826 | Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. Determinations of 50% lethal dose (LD50) values in H-2 congenic B10 lines showed that late-emerging resistance (postimmune response phase) to salmonellae of intermediate virulence was less in H-2b and H-2d than in H-2a, H-2k, and H-2f mice. Association of resistance to H-2 was confirmed by backcross analysis, and LD50 determinations on H-2 recombinant haplotype strains showed that resistance maps to the I-E subregion. Bacterial growth curves in liver and spleen showed that susceptible mice carried bacteria for longer in the reticuloendothelial system than did resistant mice and that susceptible mice showed greater splenomegaly. Association of resistance and susceptibility to H-2 was not different when sister transductant salmonellae expressing somatic antigens O4 and O9 were used. Thus a gene(s) within the major histocompatibility complex controls natural resistance to salmonellae in mice by influencing the ability to clear bacteria from the reticuloendothelial system in the later phase of the infection, and the immunodominant O antigen cannot be solely involved. | 1985 | 2413142 |
| 553 | 2 | 0.9825 | Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. The vanB gene cluster confers resistance to vancomycin but not to the related antibiotic teicoplanin, as the VanRB SB two-component regulatory system triggers expression of the glycopeptide resistance genes only in response to vancomycin. The VanRB regulator activates promoters PRB and PYB for transcription of the regulatory (vanRB SB) and resistance (vanYB WHB BXB) genes respectively. The gfpmut1 gene encoding a green fluorescent protein was fused to PYB to analyse promoter activation in single cells by fluorescence microscopy and flow cytometry. Characterization of 17 teicoplanin-resistant mutants indicated that amino acid substitutions on either side of the VanSB autophosphorylation site led to a constitutive phenotype. Substitutions in the membrane-associated domain resulted in a gain of function, as they allowed induction by teicoplanin. A vanSB null mutant expressed gfpmut1 at various levels under non-inducing conditions, and the majority of the bacteria were not fluorescent. Bacteria grown in the presence of vancomycin or teicoplanin were homogeneously fluorescent. The increase in the number of fluorescent bacteria resulted from induction in negative cells rather than from selection of a resistant subpopulation, indicating that VanRB was activated by cross-talk. Transglycosylase inhibition was probably the stimulus for the heterologous kinase, as moenomycin was also an inducer. | 1999 | 10216856 |
| 576 | 3 | 0.9819 | Caenorhabditis elegans defective-pharynx and constipated mutants are resistant to Orsay virus infection. C. elegans animals with a compromised pharynx accumulate bacteria in their intestinal lumen and activate a transcriptional response that includes anti-bacterial response genes. In this study, we demonstrate that animals with defective pharynxes are resistant to Orsay virus (OrV) infection. This resistance is observed for animals grown on Escherichia coli OP50 and on Comamonas BIGb0172, a bacterium naturally associated with C. elegans . The viral resistance observed in defective-pharynx mutants does not seem to result from constitutive transcriptional immune responses against viruses. OrV resistance is also observed in mutants with defective defecation, which share with the pharynx-defective perturbations in the regulation of their intestinal contents and altered lipid metabolism. The underlying mechanisms of viral resistance in pharynx- and defecation-defective mutants remain elusive. | 2024 | 38590801 |
| 6173 | 4 | 0.9818 | Mutation in crrB encoding a sensor kinase increases expression of the RND-type multidrug efflux pump KexD in Klebsiella pneumoniae. BACKGROUND: RND-type multidrug efflux systems in Gram-negative bacteria protect them against antimicrobial agents. Gram-negative bacteria generally possess several genes which encode such efflux pumps, but these pumps sometimes fail to show expression. Generally, some multidrug efflux pumps are silent or expressed only at low levels. However, genome mutations often increase the expression of such genes, conferring the bacteria with multidrug-resistant phenotypes. We previously reported mutants with increased expression of the multidrug efflux pump KexD. We aimed to identify the cause of KexD overexpression in our isolates. Furthermore, we also examined the colistin resistant levels in our mutants. METHODS: A transposon (Tn) was inserted into the genome of Klebsiella pneumoniae Em16-1, a KexD-overexpressing mutant, to identify the gene(s) responsible for KexD overexpression. RESULTS: Thirty-two strains with decreased kexD expression after Tn insertion were isolated. In 12 of these 32 strains, Tn was identified in crrB, which encodes a sensor kinase of a two-component regulatory system. DNA sequencing of crrB in Em16-1 showed that the 452nd cytosine on crrB was replaced by thymine, and this mutation changed the 151st proline into leucine. The same mutation was found in all other KexD-overexpressing mutants. The expression of crrA increased in the mutant overexpressing kexD, and the strains in which crrA was complemented by a plasmid showed elevated expression of kexD and crrB from the genome. The complementation of the mutant-type crrB also increased the expression of kexD and crrA from the genome, but the complementation of the wild-type crrB did not. Deletion of crrB decreased antibiotic resistance levels and KexD expression. CrrB was reported as a factor of colistin resistance, and the colistin resistance of our strains was tested. However, our mutants and strains carrying kexD on a plasmid did not show increased colistin resistance. CONCLUSION: Mutation in crrB is important for KexD overexpression. Increased CrrA may also be associated with KexD overexpression. | 2023 | 37331490 |
| 540 | 5 | 0.9817 | Effect of ogt expression on mutation induction by methyl-, ethyl- and propylmethanesulphonate in Escherichia coli K12 strains. We have previously reported the isolation of an Escherichia coli K12 mutant that is extremely sensitive to mutagenesis by low doses of ethylating agents. We now show by Southern analysis that the mutation involves a gross deletion covering at least the ogt and fnr genes and that no O6-alkylguanine-DNA-alkyltransferase activity is present in cell-free extracts of an ada::Tn10 derivative of these bacteria. Confirmation that sensitisation to ethylation-induced mutagenesis was attributable to ogt and not to any other loci covered by the deletion was obtained by constructing derivatives. Thus an ogt::kanr disruption mutation was introduced into the parental ogt+ bacteria, and the ogt::kanr mutation was then eliminated by cotransduction of ogt+ with the closely linked Tetr marker (zcj::Tn10). The delta(ogt-fnr) deletion or ogt::kanr disruption mutants were highly sensitive to ethyl methanesulphonate-induced mutagenesis, as measured by the induction of forward mutations to L-arabinose resistance (Arar). Furthermore, the number of Arar mutants increased linearly with dose, unlike the case in ogt+ bacteria, which had a threshold dose below which no mutants accumulated. Differences in mutability were even greater with propyl methanesulphonate. Overproduction of the ogt alkyltransferase from a multicopy plasmid reduced ethylmethanesulphonate-induced mutagenesis in the ogt- mutant strains and also methylmethanesulphonate mutagenesis in ada- bacteria. A sample of AB1157 obtained from the E. coli K12 genetic stock centre also had a deletion covering the ogt and fnr genes. Since such deletions greatly influence the mutagenic responses to alkylating agents, a survey of the presence of the ogt gene in the E. coli K12 strain being used is advisable. | 1994 | 8152424 |
| 659 | 6 | 0.9816 | Generic and specific adaptive responses of Streptococcus pneumoniae to challenge with three distinct antimicrobial peptides, bacitracin, LL-37, and nisin. To investigate the response of Streptococcus pneumoniae to three distinct antimicrobial peptides (AMPs), bacitracin, nisin, and LL-37, transcriptome analysis of challenged bacteria was performed. Only a limited number of genes were found to be up- or downregulated in all cases. Several of these common highly induced genes were chosen for further analysis, i.e., SP0385-SP0387 (SP0385-0387 herein), SP0912-0913, SP0785-0787, SP1714-1715, and the blp gene cluster. Deletion of these genes in combination with MIC determinations showed that several putative transporters, i.e., SP0785-0787 and SP0912-0913, were indeed involved in resistance to lincomycin and LL-37 and to bacitracin, nisin, and lincomycin, respectively. Mutation of the blp bacteriocin immunity genes resulted in an increased sensitivity to LL-37. Interestingly, a putative ABC transporter (SP1715) protected against bacitracin and Hoechst 33342 but conferred sensitivity to LL-37. A GntR-like regulator, SP1714, was identified as a negative regulator of itself and two of the putative transporters. In conclusion, we show that resistance to three different AMPs in S. pneumoniae is mediated by several putative ABC transporters, some of which have not been associated with antimicrobial resistance in this organism before. In addition, a GntR-like regulator that regulates two of these transporters was identified. Our findings extend the understanding of defense mechanisms of this important human pathogen against antimicrobial compounds and point toward novel proteins, i.e., putative ABC transporters, which can be used as targets for the development of new antimicrobials. | 2010 | 19917758 |
| 6159 | 7 | 0.9816 | Gene expression profiling of Cecropin B-resistant Haemophilus parasuis. Synthetically designed antimicrobial peptides (AMPs) present the potential of replacing antibiotics in the treatment of bacterial infections. However, microbial resistance to AMPs has been reported and little is known regarding the underlying mechanism of such resistance. The naturally occurring AMP cecropin B (CB) disrupts the anionic cell membranes of Gram-negative bacteria. In this study, CB resistance (CBR) was induced in Haemophilusparasuis SH0165 by exposing it to a series of CB concentrations. The CB-resistant H.parasuis strains CBR30 and CBR30-50 were obtained. The growth curves of SH0165 and CBR30 showed that CBR30 displayed lower growth rates than SH0165. The result of transmission electron microscopy showed cell membranes of the CB-resistant CBR30 and CBR30-50 were smoother than SH0165. Microarrays detected 257 upregulated and 254 downregulated genes covering 20 clusters of orthologous groups (COGs) of the CB-resistant CBR30 compared with SH0165 (>1.5-fold change, p < 0.05). Sixty genes were affected in CBR30-50 covering 18 COGs, with 28 upregulated and 32 downregulated genes. Under the COG function classification, the majority of affected genes in the CB-resistant CBR30 and CBR30-50 belong to the category of inorganic ion transport, amino acid transport, and metabolism. The microarray results were validated by real-time quantitative reverse transcription PCR. This study may provide useful guidance for understanding the molecular mechanism underlying H.parasuis resistance to CB. | 2014 | 24862339 |
| 8936 | 8 | 0.9816 | Modulation of Iron Import and Metronidazole Resistance in Bacteroides fragilis Harboring a nimA Gene. Bacteroides fragilis is a commensal of the human gut but can also cause severe infections when reaching other body sites, especially after surgery or intestinal trauma. Bacteroides fragilis is an anaerobe innately susceptible to metronidazole, a 5-nitroimidazole drug that is prescribed against the majority of infections caused by anaerobic bacteria. In most of the cases, metronidazole treatment is effective but a fraction of B. fragilis is resistant to even very high doses of metronidazole. Metronidazole resistance is still poorly understood, but the so-called nim genes have been described as resistance determinants. They have been suggested to encode nitroreductases which reduce the nitro group of metronidazole to a non-toxic aminoimidazole. More recent research, however, showed that expression levels of nim genes are widely independent of the degree of resistance observed. In the search for an alternative model for nim-mediated metronidazole resistance, we screened a strain carrying an episomal nimA gene and its parental strain 638R without a nim gene for physiological differences. Indeed, the 638R daughter strain with the nimA gene had a far higher pyruvate-ferredoxin oxidoreductase (PFOR) activity than the parental strain. High PFOR activity was also observed in metronidazole-resistant clinical isolates, either with or without a nim gene. Moreover, the strain carrying a nimA gene fully retained PFOR activity and other enzyme activities such as thioredoxin reductase (TrxR) after resistance had been induced. In the parental strain 638R, these were lost or very strongly downregulated during the development of resistance. Further, after induction of high-level metronidazole resistance, parental strain 638R was highly susceptible to oxygen whereas the daughter strain with a nimA gene was hardly affected. Ensuing RT-qPCR measurements showed that a pathway for iron import via hemin uptake is downregulated in 638R with induced resistance but not in the resistant nimA daughter strain. We propose that nimA primes B. fragilis toward an alternative pathway of metronidazole resistance by enabling the preservation of normal iron levels in the cell. | 2022 | 35756037 |
| 8796 | 9 | 0.9816 | Divergent Roles of Escherichia Coli Encoded Lon Protease in Imparting Resistance to Uncouplers of Oxidative Phosphorylation: Roles of marA, rob, soxS and acrB. Uncouplers of oxidative phosphorylation dissipate the proton gradient, causing lower ATP production. Bacteria encounter several non-classical uncouplers in the environment, leading to stress-induced adaptations. Here, we addressed the molecular mechanisms responsible for the effects of uncouplers in Escherichia coli. The expression and functions of genes involved in phenotypic antibiotic resistance were studied using three compounds: two strong uncouplers, i.e., Carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and 2,4-Dinitrophenol (DNP), and one moderate uncoupler, i.e., Sodium salicylate (NaSal). Quantitative expression studies demonstrated induction of transcripts encoding marA, soxS and acrB with NaSal and DNP, but not CCCP. Since MarA and SoxS are degraded by the Lon protease, we investigated the roles of Lon using a lon-deficient strain (Δlon). Compared to the wild-type strain, Δlon shows compromised growth upon exposure to NaSal or 2, 4-DNP. This sensitivity is dependent on marA but not rob and soxS. On the other hand, the Δlon strain shows enhanced growth in the presence of CCCP, which is dependent on acrB. Interestingly, NaSal and 2,4-DNP, but not CCCP, induce resistance to antibiotics, such as ciprofloxacin and tetracycline. This study addresses the effects of uncouplers and the roles of genes involved during bacterial growth and phenotypic antibiotic resistance. Strong uncouplers are often used to treat wastewater, and these results shed light on the possible mechanisms by which bacteria respond to uncouplers. Also, the rampant usage of some uncouplers to treat wastewater may lead to the development of antibiotic resistance. | 2024 | 38372817 |
| 110 | 10 | 0.9816 | Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. The macrolide antibiotic tylosin has been used extensively in veterinary medicine and exerts potent antimicrobial activity against Gram-positive bacteria. Tylosin-synthesizing strains of the Gram-positive bacterium Streptomyces fradiae protect themselves from their own product by differential expression of four resistance determinants, tlrA, tlrB, tlrC, and tlrD. The tlrB and tlrD genes encode methyltransferases that add single methyl groups at 23S rRNA nucleotides G748 and A2058, respectively. Here we show that methylation by neither TlrB nor TlrD is sufficient on its own to give tylosin resistance, and resistance is conferred by the G748 and A2058 methylations acting together in synergy. This synergistic mechanism of resistance is specific for the macrolides tylosin and mycinamycin that possess sugars extending from the 5- and 14-positions of the macrolactone ring and is not observed for macrolides, such as carbomycin, spiramycin, and erythromycin, that have different constellations of sugars. The manner in which the G748 and A2058 methylations coincide with the glycosylation patterns of tylosin and mycinamycin reflects unambiguously how these macrolides fit into their binding site within the bacterial 50S ribosomal subunit. | 2002 | 12417742 |
| 198 | 11 | 0.9816 | The Drosophila immune defense against gram-negative infection requires the death protein dFADD. Drosophila responds to Gram-negative infections by mounting an immune response that depends on components of the IMD pathway. We recently showed that imd encodes a protein with a death domain with high similarity to that of mammalian RIP. Using a two-hybrid screen in yeast, we have isolated the death protein dFADD as a molecule that associates with IMD. Our data show that loss of dFADD function renders flies highly susceptible to Gram-negative infections without affecting resistance to Gram-positive bacteria. By genetic analysis we show that dFADD acts downstream of IMD in the pathway that controls inducibility of the antibacterial peptide genes. | 2002 | 12433364 |
| 6181 | 12 | 0.9816 | Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Chloramphenicol, florfenicol, and thiamphenicol are used as antibacterial drugs in clinical and veterinary medicine. Two efflux pumps of the major facilitator superfamily encoded by the cmlR1 and cmlR2 genes mediate resistance to these antibiotics in Streptomyces coelicolor, a close relative of Mycobacterium tuberculosis. The transcription of both genes was observed by reverse transcription-PCR. Disruption of cmlR1 decreased the chloramphenicol MIC 1.6-fold, while disruption of cmlR2 lowered the MIC 16-fold. The chloramphenicol MIC of wild-type S. coelicolor decreased fourfold and eightfold in the presence of reserpine and Phe-Arg-beta-naphthylamide, respectively. These compounds are known to potentiate the activity of some antibacterial drugs via efflux pump inhibition. While reserpine is known to potentiate drug activity against gram-positive bacteria, this is the first time that Phe-Arg-beta-naphthylamide has been shown to potentiate drug activity against a gram-positive bacterium. | 2009 | 19687245 |
| 341 | 13 | 0.9816 | UV resistance of E. coli K-12 deficient in cAMP/CRP regulation. Deletion of genes for adenylate cyclase (delta cya) or cAMP receptor protein (delta crp) in E. coli K-12 confers a phenotype that includes resistance to UV radiation (254 nm). Such mutations lead to UV resistance of uvr+, uvrA, lexA and recA strains which could partly be abolished by the addition of cAMP to delta cya but not to delta crp strain culture medium. This effect was not related to either inducibility of major DNA repair genes or growth rate of the bacteria. Enhanced survival was also observed for UV-irradiated lambda bacteriophage indicating that a repair mechanism of UV lesions was involved in this phenomenon. | 1992 | 1379686 |
| 6201 | 14 | 0.9815 | Overexpression of mfpA Gene Increases Ciprofloxacin Resistance in Mycobacterium smegmatis. Fluoroquinolones (FQs) are antibiotics useful in the treatment of drug-resistant tuberculosis, but FQ-resistant mutants can be selected rapidly. Although mutations in the DNA gyrase are the principal cause of this resistance, pentapeptide proteins have been found to confer low-level FQ resistance in Gram-negative bacteria. MfpA is a pentapeptide repeat protein conserved in mycobacterial chromosomes, where it is adjacent to a group of four highly conserved genes termed a conservon. We wished to characterize the transcriptional regulation of the mfpA gene and relate its expression to ciprofloxacin resistance in M. smegmatis. Reverse transcription PCR showed that mfpA gene is part of an operon containing the conservon genes. Using a transcriptional fusion, we showed that a promoter was located 5' to the mfpEA operon. We determined the promoter activity under different growth conditions and found that the expression of the operon increases slightly in late growth phases in basic pH and in subinhibitory concentrations of ciprofloxacin. Finally, by cloning the mfpA gene in an inducible vector, we showed that induced expression of mfpA increases the ciprofloxacin Minimal Inhibitory Concentration. These results confirm that increased expression of the mfpA gene, which is part of the mfpEA operon, increases ciprofloxacin resistance in M. smegmatis. | 2021 | 33824663 |
| 595 | 15 | 0.9814 | Aerotolerance and peroxide resistance in peroxidase and PerR mutants of Streptococcus pyogenes. Survival in aerobic conditions is critical to the pathogenicity of many bacteria. To investigate the means of aerotolerance and resistance to oxidative stress in the catalase-negative organism Streptococcus pyogenes, we used a genomics-based approach to identify and inactivate homologues of two peroxidase genes, encoding alkyl hydroperoxidase (ahpC) and glutathione peroxidase (gpoA). Single and double mutants survived as well as the wild type under aerobic conditions. However, they were more susceptible than the wild type to growth suppression by paraquat and cumene hydroperoxide. In addition, we show that S. pyogenes demonstrates an inducible peroxide resistance response when treated with sublethal doses of peroxide. This resistance response was intact in ahpC and gpoA mutants but not in mutants lacking PerR, a repressor of several genes including ahpC and catalase (katA) in Bacillus subtilis. Because our data indicate that these peroxidase genes are not essential for aerotolerance or induced resistance to peroxide stress in S. pyogenes, genes for a novel mechanism of managing peroxide stress may be regulated by PerR in streptococci. | 2000 | 10986229 |
| 9031 | 16 | 0.9814 | EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in Chromobacterium violaceum. Chromobacterium violaceum is an environmental Gram-negative bacterium that causes infections in humans. Treatment of C. violaceum infections is difficult and little is known about the mechanisms of antibiotic resistance in this bacterium. In this work, we identified mutations in the MarR family transcription factor EmrR and in the protein GyrA as key determinants of quinolone resistance in C. violaceum, and we defined EmrR as a repressor of the MFS-type efflux pump EmrCAB. Null deletion of emrR caused increased resistance to nalidixic acid, but not to other quinolones or antibiotics of different classes. Moreover, the ΔemrR mutant showed decreased production of the purple pigment violacein. Importantly, we isolated C. violaceum spontaneous nalidixic acid-resistant mutants with a point mutation in the DNA-binding domain of EmrR (R92H), with antibiotic resistance profile similar to that of the ΔemrR mutant. Other spontaneous mutants with high MIC values for nalidixic acid and increased resistance to fluoroquinolones presented point mutations in the gene gyrA. Using DNA microarray, Northern blot and EMSA assays, we demonstrated that EmrR represses directly a few dozen genes, including the emrCAB operon and other genes related to transport, oxidative stress and virulence. This EmrR repression on emrCAB was relieved by salicylate. Although mutation of the C. violaceum emrCAB operon had no effect in antibiotic susceptibility or violacein production, deletion of emrCAB in an emrR mutant background restored antibiotic susceptibility and violacein production in the ΔemrR mutant. Using a biosensor reporter strain, we demonstrated that the lack of pigment production in ΔemrR correlates with the accumulation of quorum-sensing molecules in the cell supernatant of this mutant strain. Therefore, our data revealed that overexpression of the efflux pump EmrCAB via mutation and/or derepression of EmrR confers quinolone resistance and alters quorum-sensing signaling in C. violaceum, and that point mutation in emrR can contribute to emergence of antibiotic resistance in bacteria. | 2018 | 30498484 |
| 6009 | 17 | 0.9814 | Efflux pump inhibitor chlorpromazine effectively increases the susceptibility of Escherichia coli to antimicrobial peptide Brevinin-2CE. Aim: The response of E. coli ATCC8739 to Brevinin-2CE (B2CE) was evaluated as a strategy to prevent the development of antimicrobial peptide (AMP)-resistant bacteria. Methods: Gene expression levels were detected by transcriptome sequencing and RT-PCR. Target genes were knocked out using CRISPR-Cas9. MIC was measured to evaluate strain resistance. Results: Expression of acrZ and sugE were increased with B2CE stimulation. ATCC8739ΔacrZ and ATCC8739ΔsugE showed twofold and fourfold increased sensitivity, respectively. The survival rate of ATCC8739 was reduced in the presence of B2CE/chlorpromazine (CPZ). Combinations of other AMPs with CPZ also showed antibacterial effects. Conclusion: The results indicate that combinations of AMPs/efflux pump inhibitors (EPIs) may be a potential approach to combat resistant bacteria. | 2024 | 38683168 |
| 601 | 18 | 0.9813 | Translation attenuation regulation of chloramphenicol resistance in bacteria--a review. The chloramphenicol (Cm)-inducible cat and cmlA genes are regulated by translation attenuation, a regulatory device that modulates mRNA translation. In this form of gene regulation, translation of the CmR coding sequence is prevented by mRNA secondary structure that sequesters its ribosome-binding site (RBS). A translated leader of nine codons precedes the secondary structure, and induction results when a ribosome becomes stalled at a specific site in the leader. Here we demonstrate that the site of ribosome stalling in the leader is selected by a cis effect of the nascent leader peptide on its translating ribosome. | 1996 | 8955642 |
| 239 | 19 | 0.9812 | Extensive differences in antifungal immune response in two Drosophila species revealed by comparative transcriptome analysis. The innate immune system of Drosophila is activated by ingestion of microorganisms. D. melanogaster breeds on fruits fermented by Saccharomyces cerevisiae, whereas D. virilis breeds on slime flux and decaying bark of tree housing a variety of bacteria, yeasts, and molds. In this study, it is shown that D. virilis has a higher resistance to oral infection of a species of filamentous fungi belonging to the genus Penicillium compared to D. melanogaster. In response to the fungal infection, a transcriptome profile of immune-related genes was considerably different between D. melanogaster and D. virilis: the genes encoding antifungal peptides, Drosomycin and Metchnikowin, were highly expressed in D. melanogaster whereas, the genes encoding Diptericin and Defensin were highly expressed in D. virilis. On the other hand, the immune-induced molecule (IM) genes showed contrary expression patterns between the two species: they were induced by the fungal infection in D. melanogaster but tended to be suppressed in D. virilis. Our transcriptome analysis also showed newly predicted immune-related genes in D. virilis. These results suggest that the innate immune system has been extensively differentiated during the evolution of these Drosophila species. | 2013 | 24151578 |