# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8740 | 0 | 0.9733 | Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Sulphate-reducing bacteria (SRB) can be inhibited by nitrate-reducing, sulphide-oxidizing bacteria (NR-SOB), despite the fact that these two groups are interdependent in many anaerobic environments. Practical applications of this inhibition include the reduction of sulphide concentrations in oil fields by nitrate injection. The NR-SOB Thiomicrospira sp. strain CVO was found to oxidize up to 15 mM sulphide, considerably more than three other NR-SOB strains that were tested. Sulphide oxidation increased the environmental redox potential (Eh) from -400 to +100 mV and gave 0.6 nitrite per nitrate reduced. Within the genus Desulfovibrio, strains Lac3 and Lac6 were inhibited by strain CVO and nitrate for the duration of the experiment, whereas inhibition of strains Lac15 and D. vulgaris Hildenborough was transient. The latter had very high nitrite reductase (Nrf) activity. Southern blotting with D. vulgaris nrf genes as a probe indicated the absence of homologous nrf genes from strains Lac3 and Lac6 and their presence in strain Lac15. With respect to SRB from other genera, inhibition of the known nitrite reducer Desulfobulbus propionicus by strain CVO and nitrate was transient, whereas inhibition of Desulfobacterium autotrophicum and Desulfobacter postgatei was long-lasting. The results indicate that inhibition of SRB by NR-SOB is caused by nitrite production. Nrf-containing SRB can overcome this inhibition by further reducing nitrite to ammonia, preventing a stalling of the favourable metabolic interactions between these two bacterial groups. Nrf, which is widely distributed in SRB, can thus be regarded as a resistance factor that prevents the inhibition of dissimilatory sulphate reduction by nitrite. | 2003 | 12823193 |
| 3062 | 1 | 0.9707 | Characterization of organotin-resistant bacteria from boston harbor sediments. Organotins are widely used in agriculture and industry. They are toxic to a variety of organisms including bacteria, although little is known of their physiology and ecology. Bacteria resistant to six organotins-tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and monophenyltin (MPT)-were isolated from Boston Harbor sediments, Massachusetts, USA. Bacteria resistant to each of the organotins, except DPT, were isolated directly from estuarine sediments. Viability of the organotin-resistant bacteria on serial transfer in the laboratory ranged from 80 to 91%. Each isolate was screened for resistance to the other organotins. All of 250 isolates were resistant to at least two organotins. No DPT-resistant isolates were found on initial isolation on DPT, although there was DPT resistance among the other organotin-resistant bacteria. Eighty percent of TBT-resistant bacteria were TPT-resistant, suggesting that antifouling paints containing TPT will not be a suitable substitute for TBT in paints designed to inhibit microbial biofilms. Debutylation reduced toxicity in some cases while dephenylation did not. Thus, even though trisubstituted organotins are generally believed to be more toxic than di- or monosubstituted organotins, this may not always be the case, and more than one mechanism of resistance may be involved. All the bacteria were resistant to at least six of eight heavy metals tested, suggesting that resistance to heavy metals may be associated with resistance to organotins. | 1998 | 9732471 |
| 6146 | 2 | 0.9704 | Arsenic resistance genes of As-resistant purple nonsulfur bacteria isolated from As-contaminated sites for bioremediation application. This study aimed to identify arsenic resistant mechanisms in As-resistant purple nonsulfur bacteria (PNSB) by screening them for presence of As-resistance genes and related enzymes. Resistance to As(III) and As(V) of four As-resistant PNSB determined in terms of median inhibition concentration (IC(50) values) were in the order of strains Rhodopseudomonas palustris C1 > R. palustris AB3 > Rubrivivax benzoatilyticus C31 > R. palustris L28 which corresponded to the presence of As-resistance genes in these bacteria. The strain C1 showed all As-marker genes; arsC, arsM, aioA, and acr3, while aioA was not detected in strain AB3. Strains C31 and L28 had only Arsenite-transporter gene, acr3. Translation of all these detected gene sequences of strain C1 to amino acid sequences showed that these proteins have vicinal cysteine; Cys126, Cys105, and Cys178 of Acr3, ArsC, AioA, respectively. Tertiary structure of proteins Acr3, ArsC, AioA, and ArsM showed strain C1 exhibits the high activities of arsenite oxidase and arsenate reductase enzymes that are encoded by aioA and arsC genes, respectively. Moreover, strain C1 with arsM gene produced volatile-methylated As-compounds; monomethylarsonic acid (MMA), dimethylarsenic acid (DMA), and arsenobetaine (AsB) in the presence of either As(III) or As(V). In conclusion, the strain C1 has great potential for its application in bioremediation of As-contaminated sites. | 2017 | 28054716 |
| 522 | 3 | 0.9701 | Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination. | 2024 | 39382695 |
| 6147 | 4 | 0.9701 | Cadmium accumulation and DNA homology with metal resistance genes in sulfate-reducing bacteria. Cadmium resistance (0.1 to 1.0 mM) was studied in four pure and one mixed culture of sulfate-reducing bacteria (SRB). The growth of the bacteria was monitored with respect to carbon source (lactate) oxidation and sulfate reduction in the presence of various concentrations of cadmium chloride. Two strains Desulfovibrio desulfuricans DSM 1926 and Desulfococcus multivorans DSM 2059 showed the highest resistance to cadmium (0.5 mM). Transmission electron microscopy of the two strains showed intracellular and periplasmic accumulation of cadmium. Dot blot DNA hybridization using the probes for the smtAB, cadAC, and cadD genes indicated the presence of similar genetic determinants of heavy metal resistance in the SRB tested. DNA sequencing of the amplified DNA showed strong nucleotide homology in all the SRB strains with the known smtAB genes encoding synechococcal metallothioneins. Protein homology with the known heavy metal-translocating ATPases was also detected in the cloned amplified DNA of Desulfomicrobium norvegicum I1 and Desulfovibrio desulfuricans DSM 1926, suggesting the presence of multiple genetic mechanisms of metal resistance in the two strains. | 2005 | 16085855 |
| 6149 | 5 | 0.9681 | Characterization and whole-genome sequencing of an extreme arsenic-tolerant Citrobacter freundii SRS1 strain isolated from Savar area in Bangladesh. Citrobacter freundii SRS1, gram-negative bacteria, were isolated from Savar, Bangladesh. The strain could tolerate up to 80 mmol L(-1) sodium arsenite, 400 mmol L(-1) sodium arsenate, 5 mmol L(-1) manganese sulfate, 3 mmol L(-1) lead nitrate, 2.5 mmol L(-1) cobalt chloride, 2.5 mmol L(-1) cadmium acetate, and 2.5 mmol L(-1) chromium chloride. The whole-genome sequencing revealed that the genome size of C. freundii SRS1 is estimated to be 5.4 Mb long, and the G + C content is 51.7%. The genome of C. freundii SRS1 contains arsA, arsB, arsC, arsD, arsH, arsR, and acr3 genes for arsenic resistance; czcA, czcD, cbiN, and cbiM genes for cobalt resistance; chrA and chrB genes for chromium resistance; mntH, sitA, sitB, sitC, and sitD genes for manganese resistance; and zntA gene for lead and cadmium resistance. This novel acr3 gene has never previously been reported in any C. freundii strain except SRS1. A set of 130 completely sequenced strains of C. freundii was selected for phylogenomic analysis. The phylogenetic tree showed that the SRS1 strain is closely related to the C. freundii 62 strain. Further analyses of the genes involved in metal and metalloid resistance might facilitate identifying the mechanisms and pathways involved in high metal resistance in the C. freundii SRS1 strain. | 2023 | 36332226 |
| 6012 | 6 | 0.9681 | Metal resistance-related genes are differently expressed in response to copper and zinc ion in six Acidithiobacillus ferrooxidans strains. Metal resistance of acidophilic bacteria is very significant during bioleaching of copper ores since high concentration of metal is harmful to the growth of microorganisms. The resistance levels of six Acidithiobacillus ferrooxidans strains to 0.15 M copper and 0.2 M zinc were investigated, and eight metal resistance-related genes (afe-0022, afe-0326, afe-0329, afe-1143, afe-0602, afe-0603, afe-0604, and afe-1788) were sequenced and analyzed. The transcriptional expression levels of eight possible metal tolerance genes in six A. ferrooxidans strains exposed to 0.15 M Cu(2+) and 0.2 M Zn(2+) were determined by real-time quantitative PCR (RT-qPCR), respectively. The copper resistance levels of six A. ferrooxidans strains declined followed by DY26, DX5, DY15, GD-B, GD-0, and YTW. The zinc tolerance levels of six A. ferrooxidans strains exposed to 0.2 M Zn(2+) from high to low were YTW > GD-B > DY26 > GD-0 > DX5 > DY15. Seven metal tolerance-related genes all presented in the genome of six strains, except afe-0604. The metal resistance-related genes showed different transcriptional expression patterns in six A. ferrooxidans strains. The expression of gene afe-0326 and afe-0022 in six A. ferrooxidans strains in response to 0.15 M Cu(2+) showed the same trend with the resistance levels. The expression levels of genes afe-0602, afe-0603, afe-0604, and afe-1788 in six strains response to 0.2 M Zn(2+) did not show a clear correlation between the zinc tolerance levels of six strains. According to the results of RT-qPCR and bioinformatics analysis, the proteins encoded by afe-0022, afe-0326, afe-0329, and afe-1143 were related to Cu(2+) transport of A. ferrooxidans strains. | 2014 | 25023638 |
| 6144 | 7 | 0.9679 | Efficient arsenate reduction by As-resistant bacterium Bacillus sp. strain PVR-YHB1-1: Characterization and genome analysis. Arsenate (AsV) reduction in bacteria is essential to alleviate their arsenic (As) toxicity. We isolated a Bacillus strain PVR-YHB1-1 from the roots of As-hyperaccumulator Pteris vittata. The strain was efficient in reducing AsV to arsenite (AsIII), but the associated mechanisms were unclear. Here, we investigated its As resistance and reduction behaviors and associated genes at genome level. Results showed that the strain tolerated up to 20 mM AsV. When grown in 1 mM AsV, 96% AsV was reduced to AsIII in 48 h, with its AsV reduction ability being positively correlated to bacterial biomass. Two ars operons arsRacr3arsCDA and arsRKacr3arsC for As metabolisms were identified based on draft genome sequencing and gene annotations. Our data suggested that both operons might have attributed to efficient As resistance and AsV reduction in PVR-YHB1-1, providing clues to better understand As transformation in bacteria and their roles in As transformation in the environment. | 2019 | 30609485 |
| 8441 | 8 | 0.9675 | Genomic and phenotypic attributes of novel salinivibrios from stromatolites, sediment and water from a high altitude lake. BACKGROUND: Salinivibrios are moderately halophilic bacteria found in salted meats, brines and hypersaline environments. We obtained three novel conspecific Salinivibrio strains closely related to S. costicola, from Socompa Lake, a high altitude hypersaline Andean lake (approx. 3,570 meters above the sea level). RESULTS: The three novel Salinivibrio spp. were extremely resistant to arsenic (up to 200 mM HAsO42-), NaCl (up to 15%), and UV-B radiation (19 KJ/m2, corresponding to 240 minutes of exposure) by means of phenotypic tests. Our subsequent draft genome ionsequencing and RAST-based genome annotation revealed the presence of genes related to arsenic, NaCl, and UV radiation resistance. The three novel Salinivibrio genomes also had the xanthorhodopsin gene cluster phylogenetically related to Marinobacter and Spiribacter. The genomic taxonomy analysis, including multilocus sequence analysis, average amino acid identity, and genome-to-genome distance revealed that the three novel strains belong to a new Salinivibrio species. CONCLUSIONS: Arsenic resistance genes, genes involved in DNA repair, resistance to extreme environmental conditions and the possible light-based energy production, may represent important attributes of the novel salinivibrios, allowing these microbes to thrive in the Socompa Lake. | 2014 | 24927949 |
| 6150 | 9 | 0.9674 | Redox biotransformation of arsenic along with plant growth promotion by multi-metal resistance Pseudomonas sp. MX6. Remediation of toxic metal-polluted sites by microorganisms is an environment-friendly remediation technique. Multi-metal-resistant bacteria were isolated from a wastewater treatment plant showing resistance against As(III), As(V), Cr, Co, Cu, Cd, Hg, Ni, Pb, Se and Zn. Maximum resistance against all metals was shown by the bacterial isolate MX-6 (As 20mM, Cd 30mM, Cr 5.0mM, Co 25mM, Cu 25mM, Ni 20mM, Zn 30mM, Pb 15mM, Se 20mM and Hg 2.5mM), which was identified as Pseudomonas sp. through 16S rDNA sequencing. Pseudomonas sp. MX-6 reduced 506μM As(V) and also oxidized 160μM As(III). The genes for As, Cd, Se and Zn resistance in Pseudomonas sp. MX-6 were found to be plasmid borne, as indicated by transformation. Pseudomonas sp. MX-6 produced 49.37μg·mL(-1) IAA and was also positive for HCN production and phosphate solubilisation. The bacterial isolate also supported Vigna radiata growth, both in the absence and presence of the aforementioned metals. Such bacteria can be used as biofertilizers to reclaim the polluted lands and to enhance crop production in metal-contaminated soils. | 2017 | 28684222 |
| 7752 | 10 | 0.9673 | Nitrogen removal bacterial strains, MSNA-1 and MSD4, with wide ranges of salinity and pH resistances. Nitrogenous wastewater is difficult to treat using conventional microorganisms in high salinity and acidic/alkaline environments. Two halotolerant bacteria, heterotrophic nitrifying Stenotrophomonas sp. MSNA-1 and aerobic denitrifying Pseudomonas sp. MSD4, were isolated, and the amplification of functional genes provided the evidences of nitrogen removal performance. The results regarding salinity and pH resistance showed that strain MSNA-1 is robust at salinities of 0-15% and pH of 3-10. It can remove 51.2% of NH(4)(+)-N (180 mg/L) at salinity of 10% (pH: 7) and 49.2% of NH(4)(+)-N under pH 4 (salinity: 3%). For strain MSD4, it is robust at salinities of 0-10% and pH of 5-11. It can remove 62.4% of TN (100 mg/L) at salinity of 7% (pH: 7) and 72.2% of TN under pH 9 (salinity: 3%). Their excellent salinity and pH resistances make them promising candidates for treating nitrogenous wastewaters under extreme conditions with low operational cost. | 2020 | 32344242 |
| 6151 | 11 | 0.9666 | Novel arsenic hyper-resistant bacteria from an extreme environment, Crven Dol mine, Allchar, North Macedonia. Novel hyper-resistant bacteria were isolated from the Crven Dol mine (Allchar, North Macedonia), arsenic-rich extreme environment. Bacteria were recovered from a secondary mineral mixture, an alteration of hydrothermal realgar rich in arsenates (pharmacolite, hornesite, and talmessite). The sample was recovered from the dark part of the mine at 28 m depth. Three bacterial strains and a bacterial consortium were isolated for their capacity to survive exposure to 32 g/L (209 mM) of arsenite, and 176 g/L (564 mM) of arsenate. The 16S rRNA gene analysis identified bacterial isolates as Stenotrophomonas sp. and two Microbacterium spp. This analysis also revealed that bacterial consortium comprise two Bacteriodetes exhibiting similarity to Olivibacter ginsengisoli and to uncultured bacterium, and one γ-proteobacteria with similarity to Luteimonas sp. Among all isolates Stenotrophomonas sp. exhibited the highest tolerance to As compound as well as the capacity to accumulate As inside the cells. Analysis of genes involved in As-resistance showed that recovered isolates possess the genes encoding the ArsB, Acr3(1) and Acr3(2) proteins, indicating that at least a part of their resistance could be ascribed to As-efflux systems described in isolates obtained from human-polluted environments. | 2021 | 32712355 |
| 3612 | 12 | 0.9666 | Copper resistance in Desulfovibrio strain R2. A sulfate-reducing bacterium, designated as strain R2, was isolated from wastewater of a ball-bearing manufacturing facility in Tomsk, Western Siberia. This isolate was resistant up to 800 mg Cu/l in the growth medium. By comparison, Cu-resistance of reference cultures of sulfate-reducing bacteria ranged from 50 to 75 mg Cu/l. Growth experiments with strain R2 showed that Cu was an essential trace element and, on one hand, enhanced growth at concentrations up to 10 mg/l but, on the other hand, the growth rate decreased and lag-period extended at copper concentrations of >50 mg/l. Phenotypic characteristics and a 1078 bp nucleotide sequence of the 16S rDNA placed strain R2 within the genus Desulfovibrio. Desulfovibrio R2 carried at least one plasmid of approximately of 23.1 kbp. A 636 bp fragment of the pcoR gene of the pco operon that encodes Cu resistance was amplified by PCR from plasmid DNA of strain R2. The pco genes are involved in Cu-resistance in some enteric and aerobic soil bacteria. Desulfovibrio R2 is a prospective strain for bioremediation purposes and for developing a homologous system for transformation of Cu-resistance in sulfate-reducing bacteria. | 2003 | 12755486 |
| 8719 | 13 | 0.9665 | Genomics Insights into Pseudomonas sp. CG01: An Antarctic Cadmium-Resistant Strain Capable of Biosynthesizing CdS Nanoparticles Using Methionine as S-Source. Here, we present the draft genome sequence of Pseudomonas sp. GC01, a cadmium-resistant Antarctic bacterium capable of biosynthesizing CdS fluorescent nanoparticles (quantum dots, QDs) employing a unique mechanism involving the production of methanethiol (MeSH) from methionine (Met). To explore the molecular/metabolic components involved in QDs biosynthesis, we conducted a comparative genomic analysis, searching for the genes related to cadmium resistance and sulfur metabolic pathways. The genome of Pseudomonas sp. GC01 has a 4,706,645 bp size with a 58.61% G+C content. Pseudomonas sp. GC01 possesses five genes related to cadmium transport/resistance, with three P-type ATPases (cadA, zntA, and pbrA) involved in Cd-secretion that could contribute to the extracellular biosynthesis of CdS QDs. Furthermore, it exhibits genes involved in sulfate assimilation, cysteine/methionine synthesis, and volatile sulfur compounds catabolic pathways. Regarding MeSH production from Met, Pseudomonas sp. GC01 lacks the genes E4.4.1.11 and megL for MeSH generation. Interestingly, despite the absence of these genes, Pseudomonas sp. GC01 produces high levels of MeSH. This is probably associated with the metC gene that also produces MeSH from Met in bacteria. This work is the first report of the potential genes involved in Cd resistance, sulfur metabolism, and the process of MeSH-dependent CdS QDs bioproduction in Pseudomonas spp. strains. | 2021 | 33514061 |
| 6153 | 14 | 0.9665 | Isolation and characterization of aerobic, culturable, arsenic-tolerant bacteria from lead-zinc mine tailing in southern China. Bioremediation of arsenic (As) pollution is an important environmental issue. The present investigation was carried out to isolate As-resistant novel bacteria and characterize their As transformation and tolerance ability. A total of 170 As-resistant bacteria were isolated from As-contaminated soils at the Kangjiawan lead-zinc tailing mine, located in Hunan Province, southern China. Thirteen As-resistant isolates were screened by exposure to 260 mM Na(2)HAsO(4)·7H(2)O, most of which showed a very high level of resistance to As(5+) (MIC ≥ 600 mM) and As(3+) (MIC ≥ 10 mM). Sequence analysis of 16S rRNA genes indicated that the 13 isolates tested belong to the phyla Firmicutes, Proteobacteria and Actinobacteria, and these isolates were assigned to eight genera, Bacillus, Williamsia, Citricoccus, Rhodococcus, Arthrobacter, Ochrobactrum, Pseudomonas and Sphingomonas. Genes involved in As resistance were present in 11 of the isolates. All 13 strains transformed As (1 mM); the oxidation and reduction rates were 5-30% and 10-51.2% within 72 h, respectively. The rates of oxidation by Bacillus sp. Tw1 and Pseudomonas spp. Tw224 peaked at 42.48 and 34.94% at 120 h, respectively. For Pseudomonas spp. Tw224 and Bacillus sp. Tw133, the highest reduction rates were 52.01% at 48 h and 48.66% at 144 h, respectively. Our findings will facilitate further research into As metabolism and bioremediation of As pollution by genome sequencing and genes modification. | 2018 | 30446973 |
| 6152 | 15 | 0.9663 | Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Bacillus megaterium MNSH1-9K-1 and Microbacterium liquefaciens MNSH2-PHGII-2, 2 nickel- and vanadium-resistant bacteria from mine tailings located in Guanajuato, Mexico, are shown to have the ability to remove 33.1% and 17.8% of Ni, respectively, and 50.8% and 14.0% of V, respectively, from spent petrochemical catalysts containing 428 ± 30 mg·kg(-1) Ni and 2165 ± 77 mg·kg(-1) V. In these strains, several Ni resistance determinants were detected by conventional PCR. The nccA (nickel-cobalt-cadmium resistance) was found for the first time in B. megaterium. In M. liquefaciens, the above gene as well as the czcD gene (cobalt-zinc-cadmium resistance) and a high-affinity nickel transporter were detected for the first time. This study characterizes the resistance of M. liquefaciens and B. megaterium to Ni through the expression of genes conferring metal resistance. | 2016 | 27210016 |
| 6114 | 16 | 0.9662 | Uranium and other heavy metal resistance and accumulation in bacteria isolated from uranium mine wastes. Ten bacterial strains isolated from uranium mine wastes were characterized in terms of their uranium and other metal resistance and accumulation. 16S rRNA gene sequence analysis identified the strains as members of genera Bacillus, Serratia, and Arthrobacter. Strains were able to utilize various carbon sources, particularly aromatic hydrocarbons, grow at broad pH and temperature ranges and produce non specific acid phosphatase relevant for metal phosphate precipitation in contaminated environment. The isolates exhibited high uranium and other heavy metals (Ni, Co, Cu and Cd) resistance and accumulation capacities. Particularly, Arthrobacter sp. J001 and Bacillus sp. J003 were superior in terms of U resistance at low pH (pH 4.0) along with metals and actinides (U and Th) removal with maximum cell loading of 1088 μmol U, 1293 μmol Th, 425 μmol Cu, 305 μmol Cd, 377 μmol Zn, 250 μmol Ni g(-1) cell dry wt. Genes encoding P(1B)-type ATPases (Cu-CPx and Zn-CPx) and ABC transporters (nik) as catalytic tools for maintaining cellular metal homeostasis were detected within several Bacillus spp., with possible incidence of horizontal gene transfer for the later gene showing phylogenetic lineage to α Proteobacteria members. The study provides evidence on intrinsic abilities of indigenous bacteria from U-mine suitable for survival and cleaning up of contaminated mine sites. | 2012 | 22375546 |
| 6118 | 17 | 0.9660 | Integrated genomics and transcriptomics reveal the extreme heavy metal tolerance and adsorption potentiality of Staphylococcus equorum. In this study, we successfully isolated 11 species of cadmium-tolerant bacterium from Pu-erh rhizosphere soil, of which Staphylococcus equorum PU1 showed the highest cadmium tolerance, with a minimum inhibitory concentration (MIC) value of 500 mg/L. The cadmium removal efficiency of PU1 in 400 mg/L cadmium medium reached 58.7 %. Based on the Nanopore PromethION and Illumina NovaSeq platforms, we successfully obtained the complete PU1 genome with a size of 2,705,540 bp, which encoded 2729 genes. We further detected 82 and 44 indel mutations in the PU1 genome compared with the KS1039 and KM1031 genomes from the database. Transcriptional analysis showed that the expression of 11 genes in PU1 increased with increasing cadmium concentrations (from 0 to 200, then to 400 mg/L), which encoded cadmium resistance, cadmium transport, and mercury resistance genes. In addition, some genes showed differential expression patterns with changes in cadmium concentration, including quinone oxidoreductase-like protein, ferrous iron transport protein, and flavohemoprotein. Gene Ontology (GO) functions, including oxidation reduction process and oxidoreductase activity functions, and KEGG pathways, including glycolysis/gluconeogenesis and biosynthesis of secondary metals, were also considered closely related to the extreme cadmium tolerance of PU1. This study provides novel insight into the cadmium tolerance mechanism of bacteria. | 2023 | 36592848 |
| 8674 | 18 | 0.9658 | Genetic basis for nitrate resistance in Desulfovibrio strains. Nitrate is an inhibitor of sulfate-reducing bacteria (SRB). In petroleum production sites, amendments of nitrate and nitrite are used to prevent SRB production of sulfide that causes souring of oil wells. A better understanding of nitrate stress responses in the model SRB, Desulfovibrio vulgaris Hildenborough and Desulfovibrio alaskensis G20, will strengthen predictions of environmental outcomes of nitrate application. Nitrate inhibition of SRB has historically been considered to result from the generation of small amounts of nitrite, to which SRB are quite sensitive. Here we explored the possibility that nitrate might inhibit SRB by a mechanism other than through nitrite inhibition. We found that nitrate-stressed D. vulgaris cultures grown in lactate-sulfate conditions eventually grew in the presence of high concentrations of nitrate, and their resistance continued through several subcultures. Nitrate consumption was not detected over the course of the experiment, suggesting adaptation to nitrate. With high-throughput genetic approaches employing TnLE-seq for D. vulgaris and a pooled mutant library of D. alaskensis, we determined the fitness of many transposon mutants of both organisms in nitrate stress conditions. We found that several mutants, including homologs present in both strains, had a greatly increased ability to grow in the presence of nitrate but not nitrite. The mutated genes conferring nitrate resistance included the gene encoding the putative Rex transcriptional regulator (DVU0916/Dde_2702), as well as a cluster of genes (DVU0251-DVU0245/Dde_0597-Dde_0605) that is poorly annotated. Follow-up studies with individual D. vulgaris transposon and deletion mutants confirmed high-throughput results. We conclude that, in D. vulgaris and D. alaskensis, nitrate resistance in wild-type cultures is likely conferred by spontaneous mutations. Furthermore, the mechanisms that confer nitrate resistance may be different from those that confer nitrite resistance. | 2014 | 24795702 |
| 801 | 19 | 0.9657 | Redox-sensitive transcriptional regulator SoxR directly controls antibiotic production, development and thiol-oxidative stress response in Streptomyces avermitilis. The redox-sensitive transcriptional regulator SoxR is conserved in bacteria. Its role in mediating protective response to various oxidative stresses in Escherichia coli and related enteric bacteria has been well established. However, functions and regulatory mechanisms of SoxR in filamentous Streptomyces, which produce half of known antibiotics, are unclear. We report here that SoxR pleiotropically regulates antibiotic production, morphological development, primary metabolism and thiol-oxidative stress response in industrially important species Streptomyces avermitilis. SoxR stimulated avermectin production by directly activating ave structural genes. Four genes (sav_3956, sav_4018, sav_5665 and sav_7218) that are homologous to targets of S. coelicolor SoxR are targeted by S. avermitilis SoxR. A consensus 18-nt SoxR-binding site, 5'-VSYCNVVMHNKVKDGMGB-3', was identified in promoter regions of sav_3956, sav_4018, sav_5665, sav_7218 and target ave genes, leading to prediction of the SoxR regulon and confirmation of 11 new targets involved in development (ftsH), oligomycin A biosynthesis (olmRI), primary metabolism (metB, sav_1623, plcA, nirB, thiG, ndh2), transport (smoE) and regulatory function (sig57, sav_7278). SoxR also directly activated three key developmental genes (amfC, whiB and ftsZ) and promoted resistance of S. avermitilis to thiol-oxidative stress through activation of target trx and msh genes. Overexpression of soxR notably enhanced antibiotic production in S. avermitilis and S. coelicolor. Our findings expand our limited knowledge of SoxR and will facilitate improvement of methods for antibiotic overproduction in Streptomyces species. | 2022 | 33951287 |