# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 498 | 0 | 0.9429 | Noncanonical vancomycin resistance cluster from Desulfitobacterium hafniense Y51. The glycopeptide vancomycin is a drug of last resort for infection with gram-positive organisms, and three genes are vital to resistance: vanH, vanA, and vanX. These genes are found in a vanHAX cluster, which is conserved across pathogenic bacteria, glycopeptide antibiotic producers, and other environmental bacteria. The genome sequence of the anaerobic, gram-positive, dehalogenating bacterium Desulfitobacterium hafniense Y51 revealed a predicted vanA homolog; however, it exists in a vanAWK-murFX cluster, unlike those of other vancomycin-resistant organisms. Using purified recombinant VanA from D. hafniense Y51, we determined its substrate specificity and found it to have a 42-fold preference for D-lactate over D-alanine, confirming its activity as a D-Ala-D-Lac ligase and its annotation as VanA. Furthermore, we showed that D. hafniense Y51 is highly resistant to vancomycin, with a MIC for growth of 64 microg/ml. Finally, vanA(Dh) is expressed during growth in vancomycin, as demonstrated by reverse transcription-PCR. This finding represents a new glycopeptide antibiotic resistance gene cluster and expands the genetic diversity of resistance to this important class of antibiotic. | 2009 | 19414574 |
| 497 | 1 | 0.9403 | vanI: a novel D-Ala-D-Lac vancomycin resistance gene cluster found in Desulfitobacterium hafniense. The glycopeptide vancomycin was until recently considered a drug of last resort against Gram-positive bacteria. Increasing numbers of bacteria, however, are found to carry genes that confer resistance to this antibiotic. So far, 10 different vancomycin resistance clusters have been described. A chromosomal vancomycin resistance gene cluster was previously described for the anaerobic Desulfitobacterium hafniense Y51. We demonstrate that this gene cluster, characterized by its d-Ala-d-Lac ligase-encoding vanI gene, is present in all strains of D. hafniense, D. chlororespirans and some strains of Desulfosporosinus spp. This gene cluster was not found in vancomycin-sensitive Desulfitobacterium or Desulfosporosinus spp., and we show that this antibiotic resistance can be exploited as an intrinsic selection marker for Desulfitobacterium hafniense and D. chlororespirans. The gene cluster containing vanI is phylogenetically only distantly related with those described from soil and gut bacteria, but clusters instead with vancomycin resistance genes found within the phylum Actinobacteria that include several vancomycin-producing bacteria. It lacks a vanH homologue, encoding a D-lactate dehydrogenase, previously thought to always be present within vancomycin resistance gene clusters. The location of vanH outside the resistance gene cluster likely hinders horizontal gene transfer. Hence, the vancomycin resistance cluster in D. hafniense should be regarded a novel one that we here designated vanI after its unique d-Ala-d-Lac ligase. | 2014 | 25042042 |
| 8747 | 2 | 0.9355 | An endolysin gene from Candidatus Liberibacter asiaticus confers dual resistance to huanglongbing and citrus canker. The most damaging citrus diseases are Huanglongbing (HLB) and citrus canker, which are caused by Candidatus Liberibacter asiaticus (CaLas) and Xanthomonas citri pv. citri (Xcc), respectively. Endolysins from bacteriophages are a possible option for disease resistance in plant breeding. Here, we report improvement of citrus resistance to HLB and citrus canker using the LasLYS1 and LasLYS2 endolysins from CaLas. LasLYS2 demonstrated bactericidal efficacy against several Rhizobiaceae bacteria and Xcc, according to inhibition zone analyses. The two genes, driven by a strong promoter from Cauliflower mosaic virus, 35S, were integrated into Carrizo citrange via Agrobacterium-mediated transformation. More than 2 years of greenhouse testing indicated that LasLYS2 provided substantial and long-lasting resistance to HLB, allowing transgenic plants to retain low CaLas titers and no obvious symptoms while also clearing CaLas from infected plants in the long term. LasLYS2 transgenic plants with improved HLB resistance also showed resistance to Xcc, indicating that LasLYS2 had dual resistance to HLB and citrus canker. A microbiome study of transgenic plants revealed that the endolysins repressed Xanthomonadaceae and Rhizobiaceae populations in roots while increasing Burkholderiaceae and Rhodanobacteraceae populations, which might boost the citrus defense response, according to transcriptome analysis. We also found that Lyz domain 2 is the key bactericidal motif of LasLYS1 and LasLYS2. Four endolysins with potential resistance to HLB and citrus canker were found based on the structures of LasLYS1 and LasLYS2. Overall, the work shed light on the mechanisms of resistance of CaLas-derived endolysins, providing insights for designing endolysins to develop broad-spectrum disease resistance in citrus. | 2023 | 37719271 |
| 500 | 3 | 0.9354 | An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Erythromycin A, a clinically important polyketide antibiotic, is produced by the Gram-positive bacterium Saccharopolyspora erythraea. In an arrangement that seems to be generally true of antibiotic biosynthetic genes in Streptomyces and related bacteria like S. erythraea, the ery genes encoding the biosynthetic pathway to erythromycin are clustered around the gene (ermE) that confers self-resistance on S. erythraea. The aglycone core of erythromycin A is derived from one propionyl-CoA and six methylmalonyl-CoA units, which are incorporated head-to-tail into the growing polyketide chain, in a process similar to that of fatty-acid biosynthesis, to generate a macrolide intermediate, 6-deoxyerythronolide B. 6-Deoxyerythronolide B is converted into erythromycin A through the action of specific hydroxylases, glycosyltransferases and a methyltransferase. We report here the analysis of about 10 kilobases of DNA from S. erythraea, cloned by chromosome 'walking' outwards from the erythromycin-resistance determinant ermE, and previously shown to be essential for erythromycin biosynthesis. Partial sequencing of this region indicates that it encodes the synthase. Our results confirm this, and reveal a novel organization of the erythromycin-producing polyketide synthase, which provides further insight into the mechanism of chain assembly. | 1990 | 2234082 |
| 527 | 4 | 0.9353 | Characterization of the bagremycin biosynthetic gene cluster in Streptomyces sp. Tü 4128. Bagremycin A and bagremycin B isolated from Streptomyces sp. Tü 4128 have activities against Gram-positive bacteria, fungi and also have a weak antitumor activity, which make them have great potential for development of novel antibiotics. Here, we report a draft genome 8,424,112 bp in length of S. sp. Tü 4128 by Illumina Hiseq2000, and identify the bagremycins biosynthetic gene cluster (BGC) by bioinformatics analysis. The putative bagremycins BGC includes 16 open reading frames (ORFs) with the functions of biosynthesis, resistance and regulation. Disruptions of relative genes and HPLC analysis of bagremycins production demonstrated that not all the genes within the BGC are responsible for the biosynthesis of bagremycins. In addition, the biosynthetic pathways of bagremycins are proposed for deeper inquiries into their intriguing biosynthetic mechanism. | 2019 | 30526412 |
| 558 | 5 | 0.9350 | Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Thiamine metabolism genes are regulated in numerous bacteria by a riboswitch class that binds the coenzyme thiamine pyrophosphate (TPP). We demonstrate that the antimicrobial action of the thiamine analog pyrithiamine (PT) is mediated by interaction with TPP riboswitches in bacteria and fungi. For example, pyrithiamine pyrophosphate (PTPP) binds the TPP riboswitch controlling the tenA operon in Bacillus subtilis. Expression of a TPP riboswitch-regulated reporter gene is reduced in transgenic B. subtilis or Escherichia coli when grown in the presence of thiamine or PT, while mutant riboswitches in these organisms are unresponsive to these ligands. Bacteria selected for PT resistance bear specific mutations that disrupt ligand binding to TPP riboswitches and derepress certain TPP metabolic genes. Our findings demonstrate that riboswitches can serve as antimicrobial drug targets and expand our understanding of thiamine metabolism in bacteria. | 2005 | 16356850 |
| 8420 | 6 | 0.9350 | Horizontal Gene Transfer of Phytochelatin Synthases from Bacteria to Extremophilic Green Algae. Transcriptomic sequencing together with bioinformatic analyses and an automated annotation process led us to identify novel phytochelatin synthase (PCS) genes from two extremophilic green algae (Chlamydomonas acidophila and Dunaliella acidophila). These genes are of intermediate length compared to known PCS genes from eukaryotes and PCS-like genes from prokaryotes. A detailed phylogenetic analysis gives new insight into the complicated evolutionary history of PCS genes and provides evidence for multiple horizontal gene transfer events from bacteria to eukaryotes within the gene family. A separate subgroup containing PCS-like genes within the PCS gene family is not supported since the PCS genes are monophyletic only when the PCS-like genes are included. The presence and functionality of the novel genes in the organisms were verified by genomic sequencing and qRT-PCR. Furthermore, the novel PCS gene in Chlamydomonas acidophila showed very strong induction by cadmium. Cloning and expression of the gene in Escherichia coli clearly improves its cadmium resistance. The gene in Dunaliella was not induced, most likely due to gene duplication. | 2017 | 27592346 |
| 543 | 7 | 0.9348 | OxyR2 Modulates OxyR1 Activity and Vibrio cholerae Oxidative Stress Response. Bacteria have developed capacities to deal with different stresses and adapt to different environmental niches. The human pathogen Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, utilizes the transcriptional regulator OxyR to activate genes related to oxidative stress resistance, including peroxiredoxin PrxA, in response to hydrogen peroxide. In this study, we identified another OxyR homolog in V. cholerae, which we named OxyR2, and we renamed the previous OxyR OxyR1. We found that OxyR2 is required to activate its divergently transcribed gene ahpC, encoding an alkylhydroperoxide reductase, independently of H(2)O(2) A conserved cysteine residue in OxyR2 is critical for this function. Mutation of either oxyR2 or ahpC rendered V. cholerae more resistant to H(2)O(2) RNA sequencing analyses indicated that OxyR1-activated oxidative stress-resistant genes were highly expressed in oxyR2 mutants even in the absence of H(2)O(2) Further genetic analyses suggest that OxyR2-activated AhpC modulates OxyR1 activity by maintaining low intracellular concentrations of H(2)O(2) Furthermore, we showed that ΔoxyR2 and ΔahpC mutants were less fit when anaerobically grown bacteria were exposed to low levels of H(2)O(2) or incubated in seawater. These results suggest that OxyR2 and AhpC play important roles in the V. cholerae oxidative stress response. | 2017 | 28138024 |
| 605 | 8 | 0.9348 | Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species. | 2017 | 28397370 |
| 460 | 9 | 0.9347 | Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. A 37-kb photosynthesis gene cluster was sequenced in a photosynthetic bacterium belonging to the beta subclass of purple bacteria (Proteobacteria), Rubrivivax gelatinosus. The cluster contained 12 bacteriochlorophyll biosynthesis genes (bch), 7 carotenoid biosynthesis genes (crt), structural genes for photosynthetic apparatuses (puf and puh), and some other related genes. The gene arrangement was markedly different from those of other purple photosynthetic bacteria, while two superoperonal structures, crtEF-bchCXYZ-puf and bchFNBHLM-lhaA-puhA, were conserved. Molecular phylogenetic analyses of these photosynthesis genes showed that the photosynthesis gene cluster of Rvi. gelatinosus was originated from those of the species belonging to the alpha subclass of purple bacteria. It was concluded that a horizontal transfer of the photosynthesis gene cluster from an ancestral species belonging to the alpha subclass to that of the beta subclass of purple bacteria had occurred and was followed by rearrangements of the operons in this cluster. | 2001 | 11343129 |
| 823 | 10 | 0.9345 | Characterization of the prtA and prtB genes of Erwinia chrysanthemi EC16. Two tandem metalloprotease-encoding structural genes, prtA and prtB, were sequenced from Erwinia chrysanthemi EC16. These were highly homologous to previously reported genes from the same bacteria, as well as to three other metalloprotease-encoding genes from enteric bacteria. The three tandem prt structural genes from strain EC16 were closely linked to a cluster of genes previously found to be essential for extracellular secretion of the metalloproteases. | 1993 | 8224883 |
| 534 | 11 | 0.9343 | Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium. | 1990 | 2148164 |
| 509 | 12 | 0.9342 | A novel toxoflavin-quenching regulation in bacteria and its application to resistance cultivars. The toxoflavin (Txn), broad host range phytotoxin produced by a variety of bacteria, including Burkholderia glumae, is a key pathogenicity factor of B. glumae in rice and field crops. Two bacteria exhibiting Txn-degrading activity were isolated from healthy rice seeds and identified as Sphingomonas adhaesiva and Agrobacterium sp. respectively. The genes stdR and stdA, encoding proteins responsible for Txn degradation of both bacterial isolates, were identical, indicating that horizontal gene transfer occurred between microbial communities in the same ecosystem. We identified a novel Txn-quenching regulation of bacteria, demonstrating that the LysR-type transcriptional regulator (LTTR) StdR induces the expression of the stdA, which encodes a Txn-degrading enzyme, in the presence of Txn as a coinducer. Here we show that the bacterial StdR(Txn) -quenching regulatory system mimics the ToxR(Txn) -mediated biosynthetic regulation of B. glumae. Substrate specificity investigations revealed that Txn is the only coinducer of StdR and that StdA has a high degree of specificity for Txn. Rice plants expressing StdA showed Txn resistance. Collectively, bacteria mimic the mechanism of Txn biosynthesis regulation, employ it in the development of a Txn-quenching regulatory system and share it with neighbouring bacteria for survival in rice environments full of Txn. | 2021 | 34009736 |
| 547 | 13 | 0.9342 | Dual role of OhrR as a repressor and an activator in response to organic hydroperoxides in Streptomyces coelicolor. Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. | 2007 | 17586628 |
| 6010 | 14 | 0.9341 | The role of two families of bacterial enzymes in putrescine synthesis from agmatine via agmatine deiminase. Putrescine, one of the main biogenic amines associated to microbial food spoilage, can be formed by bacteria from arginine via ornithine decarboxylase (ODC), or from agmatine via agmatine deiminase (AgDI). This study aims to correlate putrescine production from agmatine to the pathway involving N-carbamoylputrescine formation via AdDI (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), or putrescine carbamoyltransferase (the ptcA product) in bacteria. PCR methods were developed to detect the two genes involved in putrescine production from agmatine. Putrescine production from agmatine could be linked to the aguA and ptcA genes in Lactobacillus hilgardii X1B, Enterococcus faecalis ATCC 11700, and Bacillus cereus ATCC 14579. By contrast Lactobacillus sakei 23K was unable to produce putrescine, and although a fragment of DNA corresponding to the gene aguA was amplified, no amplification was observed for the ptcA gene. Pseudomonas aeruginosa PAO1 produces putrescine and is reported to harbour aguA and aguB genes, responsible for agmatine deiminase and N-carbamoylputrescine amidohydrolase activities. The enzyme from P. aeruginosa PAO1 that converts N-carbamoylputrescine to putrescine (the aguB product) is different from other microorganisms studied (the ptcA product). Therefore, the aguB gene from P. aeruginosa PAO1 could not be amplified with ptcA-specific primers. The aguB and ptcA genes have frequently been erroneously annotated in the past, as in fact these two enzymes are neither homologous nor analogous. Furthermore, the aguA, aguB and ptcA sequences available from GenBank were subjected to phylogenetic analysis, revealing that gram-positive bacteria harboured ptcA, whereas gram-negative bacteria harbour aguB. This paper also discusses the role of the agmatine deiminase system (AgDS) in acid stress resistance. | 2010 | 21404211 |
| 369 | 15 | 0.9336 | A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae. | 1988 | 2853096 |
| 599 | 16 | 0.9335 | RNase III participates in control of quorum sensing, pigmentation and oxidative stress resistance in Rhodobacter sphaeroides. RNase III is a dsRNA-specific endoribonuclease, highly conserved in bacteria and eukarya. In this study, we analysed the effects of inactivation of RNase III on the transcriptome and the phenotype of the facultative phototrophic α-proteobacterium Rhodobacter sphaeroides. RNA-seq revealed an unexpectedly high amount of genes with increased expression located directly downstream to the rRNA operons. Chromosomal insertion of additional transcription terminators restored wild type-like expression of the downstream genes, indicating that RNase III may modulate the rRNA transcription termination in R. sphaeroides. Furthermore, we identified RNase III as a major regulator of quorum-sensing autoinducer synthesis in R. sphaeroides. It negatively controls the expression of the autoinducer synthase CerI by reducing cerI mRNA stability. In addition, RNase III inactivation caused altered resistance against oxidative stress and impaired formation of photosynthetically active pigment-protein complexes. We also observed an increase in the CcsR small RNAs that were previously shown to promote resistance to oxidative stress. Taken together, our data present interesting insights into RNase III-mediated regulation and expand the knowledge on the function of this important enzyme in bacteria. | 2023 | 37823424 |
| 9990 | 17 | 0.9334 | Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria. | 2003 | 12603745 |
| 132 | 18 | 0.9333 | Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Large-scale industrial use of chromium (Cr) resulted in widespread environmental contamination with hexavalent chromium (Cr(VI)). The ability of microorganisms to survive in these environments and detoxify chromate requires the presence of specific resistance systems. Several Cr(VI) resistant species, belonging to a variety of genera, have been isolated in recent years. Ochrobactrum tritici strain 5bvl1 is a model for a highly Cr(VI)-resistant and reducing microorganism, with different strategies to cope with chromium. The strain contains the transposon-located (TnOtChr) chromate resistance genes chrB, chrA, chrC, chrF. The chrB and chrA genes were found to be essential for the establishment of high resistance but not chrC or chrF genes. Other mechanisms involved in chromium resistance in this strain were related to strategies such as specific or unspecific Cr(VI) reduction, free-radical detoxifying activities, and repairing DNA damage. Expression of the chrB, chrC or chrF genes was related to increased resistance to superoxide-generating agents. Genetic analyses also showed that, the ruvB gene is related to chromium resistance in O. tritici 5bvl1. The RuvABC complex probably does not form when ruvB gene is interrupted, and the repair of DNA damage induced by chromium is prevented. Aerobic or anaerobic chromate reductase activity and other unspecific mechanisms for chromium reduction have been identified in different bacteria. In the strain O. tritici 5bvl1, several unspecific mechanisms were found. Dichromate and chromate have different effects on the physiology of the chromium resistant strains and dichromate seems to be more toxic. Toxicity of Cr(VI) was evaluated by following growth, reduction, respiration, glucose uptake assays and by comparing cell morphology. | 2011 | 21472416 |
| 185 | 19 | 0.9332 | The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. | 2000 | 10788346 |