DESTINATION - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
658500.9717Destination shapes antibiotic resistance gene acquisitions, abundance increases, and diversity changes in Dutch travelers. BACKGROUND: Antimicrobial-resistant bacteria and their antimicrobial resistance (AMR) genes can spread by hitchhiking in human guts. International travel can exacerbate this public health threat when travelers acquire AMR genes endemic to their destinations and bring them back to their home countries. Prior studies have demonstrated travel-related acquisition of specific opportunistic pathogens and AMR genes, but the extent and magnitude of travel's effects on the gut resistome remain largely unknown. METHODS: Using whole metagenomic shotgun sequencing, functional metagenomics, and Dirichlet multinomial mixture models, we investigated the abundance, diversity, function, resistome architecture, and context of AMR genes in the fecal microbiomes of 190 Dutch individuals, before and after travel to diverse international locations. RESULTS: Travel markedly increased the abundance and α-diversity of AMR genes in the travelers' gut resistome, and we determined that 56 unique AMR genes showed significant acquisition following international travel. These acquisition events were biased towards AMR genes with efflux, inactivation, and target replacement resistance mechanisms. Travel-induced shaping of the gut resistome had distinct correlations with geographical destination, so individuals returning to The Netherlands from the same destination country were more likely to have similar resistome features. Finally, we identified and detailed specific acquisition events of high-risk, mobile genetic element-associated AMR genes including qnr fluoroquinolone resistance genes, bla(CTX-M) family extended-spectrum β-lactamases, and the plasmid-borne mcr-1 colistin resistance gene. CONCLUSIONS: Our results show that travel shapes the architecture of the human gut resistome and results in AMR gene acquisition against a variety of antimicrobial drug classes. These broad acquisitions highlight the putative risks that international travel poses to public health by gut resistome perturbation and the global spread of locally endemic AMR genes.202134092249
660910.9715Antimicrobial-resistant bacteria in international travelers. PURPOSE OF REVIEW: Antimicrobial resistance (AMR) in bacteria poses a major risk to global public health, with many factors contributing to the observed increase in AMR. International travel is one recognized contributor. The purpose of this review is to summarize current knowledge regarding the acquisition, carriage and spread of AMR bacteria by international travelers. RECENT FINDINGS: Recent studies have highlighted that travel is an important risk factor for the acquisition of AMR bacteria, with approximately 30% of studied travelers returning with an acquired AMR bacterium. Epidemiological studies have shown there are three major risk factors for acquisition: travel destination, antimicrobial usage and travelers' diarrhea (TD). Analyses have begun to illustrate the AMR genes that are acquired and spread by travelers, risk factors for acquisition and carriage of AMR bacteria, and local transmission of imported AMR organisms. SUMMARY: International travel is a contributor to the acquisition and dissemination of AMR organisms globally. Efforts to reduce the burden of AMR organisms should include a focus on international travelers. Routine genomic surveillance would further elucidate the role of international travel in the global spread of AMR bacteria.202134267046
258920.9708Global Dynamics of Gastrointestinal Colonisations and Antimicrobial Resistance: Insights from International Travellers to Low- and Middle-Income Countries. Gastrointestinal microorganism resistance and dissemination are increasing, partly due to international travel. This study investigated gastrointestinal colonisations and the acquisition of antimicrobial resistance (AMR) genes among international travellers moving between Spain and low- and middle-income countries (Peru and Ethiopia). We analysed 102 stool samples from 51 volunteers collected before and after travel, revealing significantly higher rates of colonisation by both bacteria and protists upon return. Diarrhoeagenic strains of E. coli were the most notable microorganism detected using RT-PCR with the Seegene Allplex™ Gastrointestinal Panel Assays. A striking prevalence of β-lactamase resistance genes, particularly the TEM gene, was observed both before and after travel. No significant differences in AMR genes were found between the different locations. These findings highlight the need for rigorous surveillance and preventive strategies, as travel does not significantly impact AMR gene acquisition but does affect microbial colonisations. This study provides valuable insights into the intersection of gastrointestinal microorganism acquisition and AMR in international travellers, underscoring the need for targeted interventions and increased awareness.202439195620
249830.9707Emerging carbapenemases: a global perspective. The celestial rise in antibiotic resistance among Gram-negative bacteria has challenged both the scientific and pharmaceutical sectors. The hallmark of this general increase is the unbridled dissemination of carbapenem resistance genes, namely KPC, OXA and metallo-β-lactamase variants. In particular, the media attention given to the NDM-1 metallo-β-lactamase has highlighted the global consequences of human behaviour on spreading antibiotic resistance.201021129630
374740.970640 years of veterinary papers in JAC - what have we learnt? This review, for the occasion of the 40th anniversary of the Journal of Antimicrobial Chemotherapy (JAC), gives an overview of the manuscripts related to veterinary bacteriology published in the journal in the past 40 years with a focus on 'One Health' aspects. From 1975 to 2000 the number of manuscripts related to veterinary medicine was limited, but thereafter, the number steadily increased. Most manuscripts published were related to food-producing animals, but companion animals and minor species were also covered. Subjects included antimicrobial usage in animals and the consequences for human medicine, new resistance genes and mechanisms, the prevalence and epidemiology of antimicrobial resistance, and the emergence of resistant bacteria in animals with zoonotic potential such as livestock-associated MRSA (LA-MRSA), methicillin-resistant Staphylococcus pseudintermedius (MRSP) and ESBL-producing Enterobacteriaceae. These manuscripts have added to our knowledge on the risks of transmission of resistant bacteria from animals to humans and the importance of the prudent use of antimicrobial agents in veterinary medicine.201627660260
658450.9705Microbiome and Antimicrobial Resistance Gene Dynamics in International Travelers. We used metagenomic next-generation sequencing to longitudinally assess the gut microbiota and antimicrobial resistomes of international travelers to clarify global exchange of resistant organisms. Travel resulted in an increase in antimicrobial resistance genes and a greater proportion of Escherichia species within gut microbial communities without impacting diversity.201931211676
259060.9704Combining stool and stories: exploring antimicrobial resistance among a longitudinal cohort of international health students. BACKGROUND: Antimicrobial resistance (AMR) is a global public health concern that requires transdisciplinary and bio-social approaches. Despite the continuous calls for a transdisciplinary understanding of this problem, there is still a lack of such studies. While microbiology generates knowledge about the biomedical nature of bacteria, social science explores various social practices related to the acquisition and spread of these bacteria. However, the two fields remain disconnected in both methodological and conceptual levels. Focusing on the acquisition of multidrug resistance genes, encoding extended-spectrum betalactamases (CTX-M) and carbapenemases (NDM-1) among a travelling population of health students, this article proposes a methodology of 'stool and stories' that combines methods of microbiology and sociology, thus proposing a way forward to a collaborative understanding of AMR. METHODS: A longitudinal study with 64 health students travelling to India was conducted in 2017. The study included multiple-choice questionnaires (n = 64); a collection of faecal swabs before travel (T0, n = 45), in the first week in India (T1, n = 44), the second week in India (T2, n = 41); and semi-structured interviews (n = 11). Stool samples were analysed by a targeted metagenomic approach. Data from semi-structured interviews were analysed using the method of thematic analysis. RESULTS: The incidence of ESBL- and carbapenemase resistance genes significantly increased during travel indicating it as a potential risk; for CTX-M from 11% before travel to 78% during travel and for NDM-1 from 2% before travel to 11% during travel. The data from semi-structured interviews showed that participants considered AMR mainly in relation to individual antibiotic use or its presence in a clinical environment but not to travelling. CONCLUSION: The microbiological analysis confirmed previous research showing that international human mobility is a risk factor for AMR acquisition. However, sociological methods demonstrated that travellers understand AMR primarily as a clinical problem and do not connect it to travelling. These findings indicate an important gap in understanding AMR as a bio-social problem raising a question about the potential effectiveness of biologically driven AMR stewardship programs among travellers. Further development of the 'stool and stories' approach is important for a transdisciplinary basis of AMR stewardship.202134579656
181770.9703A study at the wildlife-livestock interface unveils the potential of feral swine as a reservoir for extended-spectrum β-lactamase-producing Escherichia coli. Wildlife is known to serve as carriers and sources of antimicrobial resistance (AMR). Due to their unrestricted movements and behaviors, they can spread antimicrobial resistant bacteria among livestock, humans, and the environment, thereby accelerating the dissemination of AMR. Extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of major concerns threatening human and animal health, yet transmission mechanisms at the wildlife-livestock interface are not well understood. Here, we investigated the mechanisms of ESBL-producing bacteria spreading across various hosts, including cattle, feral swine, and coyotes in the same habitat range, as well as from environmental samples over a two-year period. We report a notable prevalence and clonal dissemination of ESBL-producing E. coli in feral swine and coyotes, suggesting their persistence and adaptation within wildlife hosts. In addition, in silico studies showed that horizontal gene transfer, mediated by conjugative plasmids and insertion sequences elements, may play a key role in spreading the ESBL genes among these bacteria. Furthermore, the shared gut resistome of cattle and feral swine suggests the dissemination of antibiotic resistance genes at the wildlife-livestock interface. Taken together, our results suggest that feral swine may serve as a reservoir of ESBL-producing E. coli.202438788585
174880.9703Detection of multidrug-resistant Gram-negative bacteria from imported reptile and amphibian meats. AIMS: The food supply is a potential source of antimicrobial resistance. Current surveillance programmes targeting food are limited to beef, pork and poultry and do not capture niche products. In this study, imported reptile and amphibian products were screened for antimicrobial-resistant bacteria. METHODS AND RESULTS: In all, 53 items including soft shell turtles, frog legs, geckos, snakes and a turtle carapace were purchased from specialty markets in Vancouver and Saskatoon, Canada. Samples were selectively cultured for Salmonella sp., Escherichia coli, extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae and meropenem-resistant organisms. Salmonella, all pan-susceptible, were grown from six dried geckos. Escherichia coli were isolated from 19 samples, including ESBL producers from six items. One multidrug-resistant E. coli possessed both the bla(CTX-M-55) and mcr-1 genes. An NDM-1-producing Acinetobacter sp. was also isolated from a dried turtle carapace. CONCLUSIONS: Our results suggest that imported reptile and amphibian meats are an underappreciated source of resistant bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: The international trade of food may play a role in the dissemination of resistant bacteria. The presence of these bacteria in niche market foods represents a risk of unknown magnitude to public health and a gap in current national resistance surveillance programmes.202032259384
906390.9697Role of Oral Bacteria in Mediating Gemcitabine Resistance in Pancreatic Cancer. Oral microbiota have been implicated in pancreatic ductal adenocarcinoma (PDAC) and may contribute to chemotherapy resistance. While previous studies attributed bacteria-induced resistance to indirect host modulation, recent findings suggest a direct mechanism. Escherichia coli expressing long-form cytidine deaminase (CDD(L)) can degrade gemcitabine, a chemotherapeutic agent, into a non-toxic form, leading to resistance. In contrast, bacteria carrying short form (CDD(S)) or lacking CDD did not induce resistance. This study investigates whether oral bacteria can cause gemcitabine resistance in PDAC cells through CDD-mediated degradation. Oral microbes associated with PDAC were selected based on CDD isoforms: Aggregatibacter actinomycetemcomitans carrying CDD(L), Enterococcus faecalis, Streptococcus mutans, Porphyromonas gingivalis, all carrying CDD(S), and Fusobacterium nucleatum lacking CDD. The selected microbes, along with wild-type and CDD-deficient E. coli, were co-incubated with gemcitabine to assess its degradation and PDAC cell proliferation. A. actinomycetemcomitans fully degraded gemcitabine and induced resistance. Surprisingly, CDD(S)-expressing oral bacteria partially degraded gemcitabine in a strain-dependent manner. Expressing either CDD(L) or CDD(S) in CDD-deficient E. coli resulted in equivalent gemcitabine degradation and resistance, indicating that CDD function is independent of isoform length. These findings highlight the role of oral bacteria in gemcitabine resistance and the need for strategies to mitigate microbial-driven resistance in PDAC treatment.202540723890
3668100.9697The presence of pathogens and heavy metals in urban peregrine falcons (Falco peregrinus). BACKGROUND AND AIM: Wild birds raised in urban environments may be exposed to many negative factors, including biological and chemical toxic elements. The aim of the study was to assess the occurrence of bacteria and parasites in wild birds, based on the example of the peregrine falcon (Falco peregrinus) as a potential indicator of bacterial drug resistance genes. Toxicological contamination was also analyzed to determine the impact of urbanized areas on this predatory species, in terms of its health, welfare, and survival in urban environments. MATERIALS AND METHODS: The samples consisted of down feathers and fresh feces obtained from seven falcon chicks (during obligatory veterinary examination) reared in two nests located in the Lublin region (Lublin and Puławy). Bacteria and parasites were isolated directly from feces by classical microbiological methods, polymerase chain reaction, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MS). The down feathers and feces of birds were used for toxicological testing by plasma inductively coupled plasma MS to assess the concentrations of selected heavy metals (cadmium [Cd], lead [Pb], arsenic [As], zinc [Zn], and copper [Cu]). RESULTS: The study revealed the presence of a diverse microbiome in the falcon chicks, among which Escherichia coli, Enterococcus spp., and Staphylococcus spp. bacteria and parasites of the genus Caryospora were dominant. The presence of drug resistance genes was also confirmed among the pathogens. The toxicological analysis found high concentrations of toxic heavy metals, including Cd, Pb, As, and Zn, in the downy feathers and feces of peregrine chicks. CONCLUSION: Predatory free-living birds living in urban environments not only can be infected with various pathogens but may also show contamination with heavy metals, which could influence their natural resistance, condition, and welfare.202134475693
6713110.9697Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.202235947446
2525120.9696Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans. OBJECTIVES: In this review, we describe surveillance programmes reporting antimicrobial resistance (AMR) and resistance genes in bacterial isolates from livestock and meat and compare them with those relevant for human health. METHODS: Publications on AMR in European countries were assessed. PubMed was reviewed and AMR monitoring programmes were identified from reports retrieved by Internet searches and by contacting national authorities in EU/European Economic Area (EEA) member states. RESULTS: Three types of systems were identified: EU programmes, industry-funded supranational programmes and national surveillance systems. The mandatory EU-financed programme has led to some harmonization in national monitoring and provides relevant information on AMR and extended-spectrum β-lactamase/AmpC- and carbapenemase-producing bacteria. At the national level, AMR surveillance systems in livestock apply heterogeneous sampling, testing and reporting modalities, resulting in results that cannot be compared. Most reports are not publicly available or are written in a local language. The industry-funded monitoring systems undertaken by the Centre Européen d'Etudes pour la Santé Animale (CEESA) examines AMR in bacteria in food-producing animals. CONCLUSIONS: Characterization of AMR genes in livestock is applied heterogeneously among countries. Most antibiotics of human interest are included in animal surveillance, although results are difficult to compare as a result of lack of representativeness of animal samples. We suggest that EU/EEA countries provide better uniform AMR monitoring and reporting in livestock and link them better to surveillance systems in humans. Reducing the delay between data collection and publication is also important to allow prompt identification of new resistance patterns.201828970159
2521130.9696Insights into antimicrobial resistance among long distance migratory East Canadian High Arctic light-bellied Brent geese (Branta bernicla hrota). BACKGROUND: Antimicrobial resistance (AMR) is the most significant threat to global public health and ascertaining the role wild birds play in the epidemiology of resistance is critically important. This study investigated the prevalence of AMR Gram-negative bacteria among long-distance migratory East Canadian High Arctic (ECHA) light-bellied Brent geese found wintering on the east coast of Ireland. FINDINGS: In this study a number of bacterial species were isolated from cloacal swabs taken from ECHA light-bellied Brent geese. Nucleotide sequence analysis identified five species of Gram-negative bacteria; the dominant isolated species were Pantoea spp. (n = 5) followed by Buttiauxella agrestis (n = 2). Antimicrobial susceptibility disk diffusion results identified four of the Pantoea spp. strains, and one of the Buttiauxella agrestis strains resistant to amoxicillin-clavulanic acid. CONCLUSION: To our knowledge this is the first record of AMR bacteria isolated from long distance migratory ECHA light-bellied Brent geese. This indicates that this species may act as reservoirs and potential disseminators of resistance genes into remote natural ecosystems across their migratory range. This population of geese frequently forage (and defecate) on public amenity areas during the winter months presenting a potential human health risk.201527651892
6387140.9695Insights into the Evolutionary and Ecological Roles of Bathyarchaeia in Arsenic Detoxification. Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in Bathyarchaeia, one of the most abundant archaeal lineages on Earth. Comprehensive genomic analysis of 318 Bathyarchaeia representatives revealed a widespread distribution of arsenic resistance genes, with 60% of genomes harboring genes for arsenate reduction (arsR1 and arsC2), arsenite methylation (arsM), and arsenic transport (acr3, arsP, and arsB). Phylogenetic analysis revealed that these genes are widely distributed across 14 archaeal phyla, including Asgardarchaeota, Thermoproteota, and Thermoplasmatota, with close evolutionary relationships among these archaeal lineages. In situ investigation of sediment columns and laboratory microcosm experiments demonstrated a strong positive correlation between Bathyarchaeia abundance and arsenic concentrations, suggesting their adaptation to arsenic-rich environments. Molecular dating analysis placed the emergence of Bathyarchaeia at approximately 3.01 billion years ago, with the evolution of their arsenic resistance mechanisms closely tracking major geological events, including the Great Oxidation Event (2.4-2.1 Gya), Huronian Glaciation (2.29-2.25 Gya), and Cryogenian Glaciation (∼700 Mya). Our findings highlight the critical role of Archaea in the arsenic cycle and provide insights into the evolutionary history of arsenic resistance associated with paleogeochemical changes in Bathyarchaeia.202540921195
2500150.9695The crisis of carbapenemase-mediated carbapenem resistance across the human-animal-environmental interface in India. Carbapenems are the decision-making antimicrobials used to combat severe Gram-negative bacterial infections in humans. Carbapenem resistance poses a potential public health emergency, especially in developing countries such as India, accounting for high morbidity, mortality, and healthcare cost. Emergence and transmission of plasmid-mediated "big five" carbapenemase genes including KPC, NDM, IMP, VIM and OXA-48-type among Gram-negative bacteria is spiralling the issue. Carbapenemase-producing carbapenem-resistant organisms (CP-CRO) cause multi- or pan-drug resistance by co-harboring several antibiotic resistance determinants. In addition of human origin, animals and even environmental sites are also the reservoir of CROs. Spillage in food-chains compromises food safety and security and increases the chance of cross-border transmission of these superbugs. Metallo-β-lactamases, mainly NDM-1 producing CROs, are commonly shared between human, animal and environmental interfaces worldwide, including in India. Antimicrobial resistance (AMR) surveillance using the One Health approach has been implemented in Europe, the United-Kingdom and the United-States to mitigate the crisis. This concept is still not implemented in most developing countries, including India, where the burden of antibiotic-resistant bacteria is high. Lack of AMR surveillance in animal and environmental sectors underestimates the cumulative burden of carbapenem resistance resulting in the silent spread of these superbugs. In-depth indiscriminate AMR surveillance focusing on carbapenem resistance is urgently required to develop and deploy effective national policies for preserving the efficacy of carbapenems as last-resort antibiotics in India. Tracking and mapping of international high-risk clones are pivotal for containing the global spread of CP-CRO.202336241158
2526160.9694Antimicrobial resistance in bacteria isolated from peridomestic Rattus species: A scoping literature review. Rattus spp. may acquire and disseminate antimicrobial resistant bacteria or antimicrobial resistance (AMR) genes. We conducted a scoping review to synthesize available research findings on AMR in Rattus spp. and to describe the size and scope of available literature on AMR epidemiology in Rattus spp. The review was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for Scoping Reviews (PRISMA-ScR). The search focused on scientific peer-reviewed publications focusing on AMR in peridomestic Rattus spp. The review was limited to publications in English available in PubMed, Web of Science and Scopus between 2000 and 2021. The results were summarized descriptively. Thirty-four studies conducted in twenty-one countries were included in this scoping review. Twelve bacterial species with AMR were identified with Escherichia coli and Staphylococcus aureus being the two most commonly reported. The resistant bacteria were isolated from species of peridomestic Rattus spp. in which R. norvegicus and R. rattus were the two most commonly studied. Rats were also found to carry multi-drug resistant (MDR) bacteria including extended-spectrum beta (β)-lactamase (ESBL), methicillin-resistant Staphylococcus aureus (MRSA), colistin-resistant Enterobacteriaceae (CoRE), and vancomycin-resistant Enterococci (VRE). This scoping review suggests that peridomestic Rattus spp. can carry multiple antimicrobial resistant bacteria, indicating their potential to serve as reservoirs and spreaders of AMR thus posing a threat to human and animal health.202337363213
4984170.9694Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.202031976793
6666180.9694Antibiotic residues in poultry products and bacterial resistance: A review in developing countries. Antimicrobial resistance (AMR) is a growing global concern, particularly in poultry farming, where antibiotics are widely used for both disease prevention and growth promotion. This review examines the misuse of antibiotics in poultry production, especially in developing countries, and its contribution to the emergence of antibiotic-resistant bacteria. The findings highlight that factors such as increasing demand for poultry protein, the availability of inexpensive antibiotics, and weak regulatory oversight have led to widespread misuse, accelerating the spread of resistance genes. Although evidence links poultry farming to AMR, significant data gaps remain, especially regarding resistance transmission from poultry to humans. The review underscores the urgent need for stronger regulatory frameworks, phased-out use of antimicrobial growth promoters, and enhanced awareness campaigns to address this issue. Improving the capacity of regulatory bodies and developing more robust national data monitoring systems are essential steps to mitigate the threat of AMR in poultry farming and to protect both animal and human health.202439551017
8186190.9694Tumor-infiltrating bacteria disrupt cancer epithelial cell interactions and induce cell-cycle arrest. Tumor-infiltrating bacteria are increasingly recognized as modulators of cancer progression and therapy resistance. We describe a mechanism by which extracellular intratumoral bacteria, including Fusobacterium, modulate cancer epithelial cell behavior. Spatial imaging and single-cell spatial transcriptomics show that these bacteria predominantly localize extracellularly within tumor microniches of colorectal and oral cancers, characterized by reduced cell density, transcriptional activity, and proliferation. In vitro, Fusobacterium nucleatum disrupts epithelial contacts, inducing G0-G1 arrest and transcriptional quiescence. This state confers 5-fluorouracil resistance and remodels the tumor microenvironment. Findings were validated by live-cell imaging, spatial profiling, mouse models, and a 52-patient colorectal cancer cohort. Transcriptomics reveals downregulation of cell cycle, transcription, and antigen presentation genes in bacteria-enriched regions, consistent with a quiescent, immune-evasive phenotype. In an independent rectal cancer cohort, high Fusobacterium burden correlates with reduced therapy response. These results link extracellular bacteria to cancer cell quiescence and chemoresistance, highlighting microbial-tumor interactions as therapeutic targets.202541106380