# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 8754 | 0 | 0.9712 | Detoxifying bacterial genes for deoxynivalenol epimerization confer durable resistance to Fusarium head blight in wheat. Fusarium head blight (FHB) and the presence of mycotoxin deoxynivalenol (DON) pose serious threats to wheat production and food safety worldwide. DON, as a virulence factor, is crucial for the spread of FHB pathogens on plants. However, germplasm resources that are naturally resistant to DON and DON-producing FHB pathogens are inadequate in plants. Here, detoxifying bacteria genes responsible for DON epimerization were used to enhance the resistance of wheat to mycotoxin DON and FHB pathogens. We characterized the complete pathway and molecular basis leading to the thorough detoxification of DON via epimerization through two sequential reactions in the detoxifying bacterium Devosia sp. D6-9. Epimerization efficiently eliminates the phytotoxicity of DON and neutralizes the effects of DON as a virulence factor. Notably, co-expressing of the genes encoding quinoprotein dehydrogenase (QDDH) for DON oxidation in the first reaction step, and aldo-keto reductase AKR13B2 for 3-keto-DON reduction in the second reaction step significantly reduced the accumulation of DON as virulence factor in wheat after the infection of pathogenic Fusarium, and accordingly conferred increased disease resistance to FHB by restricting the spread of pathogenic Fusarium in the transgenic plants. Stable and improved resistance was observed in greenhouse and field conditions over multiple generations. This successful approach presents a promising avenue for enhancing FHB resistance in crops and reducing mycotoxin contents in grains through detoxification of the virulence factor DON by exogenous resistance genes from microbes. | 2024 | 38593377 |
| 8825 | 1 | 0.9702 | Transcriptome analyses to understand effects of the Fusarium deoxynivalenol and nivalenol mycotoxins on Escherichia coli. Fusarium spp. cause many diseases in farming systems and can produce diverse mycotoxins that can easily impact humans and animals through the ingestion of food and feed. Among these mycotoxins, deoxynivalenol (DON) and nivalenol (NIV) are considered the most important hazards because they can rapidly diffuse into cells and block eukaryotic ribosomes, leading to inhibition of the translation system. Conversely, the effects of DON and NIV mycotoxins on bacteria remain unclear. We employed RNA-seq technology to obtain information regarding the biological responses of bacteria and putative bacterial mechanisms of resistance to DON and NIV mycotoxins. Most differentially expressed genes down-regulated in response to these mycotoxins were commonly involved in phenylalanine metabolism, glyoxylate cycle, and cytochrome o ubiquinol oxidase systems. In addition, we generated an overall network of 1028 up-regulated genes to identify core genes under DON and NIV conditions. The results of our study provide a snapshot view of the transcriptome of Escherichia coli K-12 under DON and NIV conditions. Furthermore, the information provided herein will be useful for development of methods to detect DON and NIV. | 2014 | 25456064 |
| 8824 | 2 | 0.9697 | Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly. The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap "n" collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance. | 2024 | 38618721 |
| 8195 | 3 | 0.9687 | Comparative proteomics reveals essential mechanisms for osmotolerance in Gluconacetobacter diazotrophicus. Plant growth-promoting bacteria are a promising alternative to improve agricultural sustainability. Gluconacetobacter diazotrophicus is an osmotolerant bacterium able to colonize several plant species, including sugarcane, coffee, and rice. Despite its biotechnological potential, the mechanisms controlling such osmotolerance remain unclear. The present study investigated the key mechanisms of resistance to osmotic stress in G. diazotrophicus. The molecular pathways regulated by the stress were investigated by comparative proteomics, and proteins essential for resistance were identified by knock-out mutagenesis. Proteomics analysis led to identify regulatory pathways for osmotic adjustment, de novo saturated fatty acids biosynthesis, and uptake of nutrients. The mutagenesis analysis showed that the lack of AccC protein, an essential component of de novo fatty acid biosynthesis, severely affected G. diazotrophicus resistance to osmotic stress. Additionally, knock-out mutants for nutrients uptake (Δtbdr and ΔoprB) and compatible solutes synthesis (ΔmtlK and ΔotsA) became more sensitive to osmotic stress. Together, our results identified specific genes and mechanisms regulated by osmotic stress in an osmotolerant bacterium, shedding light on the essential role of cell envelope and extracytoplasmic proteins for osmotolerance. | 2021 | 33035671 |
| 809 | 4 | 0.9686 | Molecular characterization and expression profiling of two flavohemoglobin genes play essential roles in dissolved oxygen and NO stress in Saitozyma podzolica zwy2-3. Flavohemoglobins (Fhbs) are key enzymes involved in microbial nitrosative stress resistance and nitric oxide degradation. However, the roles of Fhbs in fungi remain largely unknown. In this study, SpFhb1 and SpFhb2, two flavohemoglobin-encoding genes in Saitozyma podzolica zwy2-3 were characterized. Protein structure analysis and molecular docking showed that SpFhbs were conserved in bacteria and fungi. Phylogenetic analysis revealed that SpFhb2 may be acquired through the transfer event of independent horizontal genes from bacteria. The expression levels of SpFhb1 and SpFhb2 showed opposite trend under high/low dissolved oxygen, implying that they may exhibited different functions. Through deletion and overexpression of SpFhbs, we confirmed that SpFhbs were conducive to lipid accumulation under high stress. The sensitivities of ΔFhb mutants to NO stress were significantly increased compared with that in the WT, indicating that they were required for NO detoxification and nitrosative stress resistance in S. podzolica zwy2-3. Furthermore, SpAsg1 was identified that simultaneously regulates SpFhbs, which functions in the lipid accumulation under high/low dissolved oxygen and NO stress in S. podzolica zwy2-3. Overall, two different SpFhbs were identified in this study, providing new insights into the mechanism of lipid accumulation in fungi under high/low dissolved oxygen and NO stress. | 2023 | 37844810 |
| 8142 | 5 | 0.9685 | RNA-seq reveals mechanisms of SlMX1 for enhanced carotenoids and terpenoids accumulation along with stress resistance in tomato. Improving nutritional fruit quality and impacts important agro-traits such as biotic or abiotic stresses are extremely important for human civilization. Our previous study reported that manipulation of SlMX1 gene enhanced carotenoids accumulation and drought resistance in tomato. Here, RNA-Seq analysis proved to be a very useful tool to provide insights into the regulatory mechanisms of SlMX1 involved in stress resistance and enhanced secondary metabolites. Physiological analysis showed that over-expression of SlMX1 results in substantially increased broad-spectrum tolerance to a wide-range of abiotic and biotic (fungus, bacteria, virus and insects) stresses in tomato. This research appears to be of remarkable interest because enhanced terpenoids content has been achieved by increasing trichome density. In addition, we reported two types of trichome which seems to be aberrant types in tomato. This study unravels the mechanism of regulation of SlMX1, which simultaneously modulates resistance and metabolic processes through regulating key structural and regulatory genes of the corresponding pathways. | 2017 | 36659256 |
| 8486 | 6 | 0.9680 | Multidrug-resistant plasmid modulates ammonia oxidation efficiency in Nitrosomonas europaea through cyclic di-guanylate and acyl-homoserine lactones pathways. Antibiotic resistance genes present a major public health challenge and have potential implications for global biogeochemical cycles. However, their impacts on biological nitrogen removal systems remain poorly understood. In the ammonia-oxidizing bacteria Nitrosomonas europaea ATCC 19718 harboring the multidrug-resistant plasmid RP4, a significant decrease in ammonia oxidation efficiency was observed, accompanied by markedly elevated levels of cyclic di-guanylate (c-di-GMP) and acyl-homoserine lactones (AHLs), compared to plasmid-free controls. The results demonstrated that c-di-GMP facilitates the secretion of AHLs, while elevated levels of AHLs inhibit the ammonia oxidation efficiency of Nitrosomonas europaea ATCC 19718. These results revealed that RP4 plasmid significantly impaired ammonia oxidation efficiency through the c-di-GMP and AHLs pathways. Our findings indicate that the multidrug-resistant plasmid RP4 adversely affects the nitrogen metabolism of ammonia-oxidizing bacteria, potentially disrupting the nitrogen biogeochemical cycle and posing substantial ecological and environmental risks. | 2026 | 40945801 |
| 8772 | 7 | 0.9673 | The role of drought response genes and plant growth promoting bacteria on plant growth promotion under sustainable agriculture: A review. Drought is a major stressor that poses significant challenges for agricultural practices. It becomes difficult to meet the global demand for food crops and fodder. Plant physiology, physico-chemistry and morphology changes in plants like decreased photosynthesis and transpiration rate, overproduction of reactive oxygen species, repressed shoot and root shoot growth and modified stress signalling pathways by drought, lead to detrimental impacts on plant development and output. Coping with drought stress requires a variety of adaptations and mitigation techniques. Crop yields could be effectively increased by employing plant growth-promoting rhizobacteria (PGPR), which operate through many mechanisms. These vital microbes colonise the rhizosphere of crops and promote drought resistance by producing exopolysaccharides (EPS), 1-aminocyclopropane-1-carboxylate (ACC) deaminase and phytohormones including volatile compounds. The upregulation or downregulation of stress-responsive genes causes changes in root architecture due to acquiring drought resistance. Further, PGPR induces osmolyte and antioxidant accumulation. Another key feature of microbial communities associated with crops includes induced systemic tolerance and the production of free radical-scavenging enzymes. This review is focused on detailing the role of PGPR in assisting plants to adapt to drought stress. | 2024 | 39002396 |
| 8826 | 8 | 0.9673 | Transcriptome Analysis of Komagataeibacter europaeus CGMCC 20445 Responses to Different Acidity Levels During Acetic Acid Fermentation. In the industrial production of high-acidity vinegar, the initial ethanol and acetic acid concentrations are limiting factors that will affect acetic acid fermentation. In this study, Komagataeibacter europaeus CGMCC 20445 was used for acetic acid shake flask fermentation at an initial ethanol concentration of 4.3% (v/v). We conducted transcriptome analysis of K. europaeus CGMCC 20445 samples under different acidity conditions to elucidate the changes in differentially expressed genes throughout the fermentation process. We also analyzed the expression of genes associated with acid-resistance mechanisms. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the differentially expressed genes were enriched in ribosomes, citrate cycle, butanoate metabolism, oxidative phosphorylation, pentose phosphate, and the fatty acid biosynthetic pathways. In addition, this study found that K. europaeus CGMCC 20445 regulates the gene expression levels of cell envelope proteins and stress-responsive proteins to adapt to the gradual increase in acidity during acetic acid fermentation. This study improved the understanding of the acid resistance mechanism of K. europaeus and provided relevant reference information for the further genetic engineering of this bacterium. | 2021 | 34584524 |
| 8768 | 9 | 0.9672 | Selective regulation of endophytic bacteria and gene expression in soybean by water-soluble humic materials. BACKGROUND: As part of the plant microbiome, endophytic bacteria play an essential role in plant growth and resistance to stress. Water-soluble humic materials (WSHM) is widely used in sustainable agriculture as a natural and non-polluting plant growth regulator to promote the growth of plants and beneficial bacteria. However, the mechanisms of WSHM to promote plant growth and the evidence for commensal endophytic bacteria interaction with their host remain largely unknown. Here, 16S rRNA gene sequencing, transcriptomic analysis, and culture-based methods were used to reveal the underlying mechanisms. RESULTS: WSHM reduced the alpha diversity of soybean endophytic bacteria, but increased the bacterial interactions and further selectively enriched the potentially beneficial bacteria. Meanwhile, WSHM regulated the expression of various genes related to the MAPK signaling pathway, plant-pathogen interaction, hormone signal transduction, and synthetic pathways in soybean root. Omics integration analysis showed that Sphingobium was the genus closest to the significantly changed genes in WSHM treatment. The inoculation of endophytic Sphingobium sp. TBBS4 isolated from soybean significantly improved soybean nodulation and growth by increasing della gene expression and reducing ethylene release. CONCLUSION: All the results revealed that WSHM promotes soybean nodulation and growth by selectively regulating soybean gene expression and regulating the endophytic bacterial community, Sphingobium was the key bacterium involved in plant-microbe interaction. These findings refined our understanding of the mechanism of WSHM promoting soybean nodulation and growth and provided novel evidence for plant-endophyte interaction. | 2024 | 38178261 |
| 234 | 10 | 0.9671 | HGT in the human and skin commensal Malassezia: A bacterially derived flavohemoglobin is required for NO resistance and host interaction. The skin of humans and animals is colonized by commensal and pathogenic fungi and bacteria that share this ecological niche and have established microbial interactions. Malassezia are the most abundant fungal skin inhabitant of warm-blooded animals and have been implicated in skin diseases and systemic disorders, including Crohn's disease and pancreatic cancer. Flavohemoglobin is a key enzyme involved in microbial nitrosative stress resistance and nitric oxide degradation. Comparative genomics and phylogenetic analyses within the Malassezia genus revealed that flavohemoglobin-encoding genes were acquired through independent horizontal gene transfer events from different donor bacteria that are part of the mammalian microbiome. Through targeted gene deletion and functional complementation in Malassezia sympodialis, we demonstrated that bacterially derived flavohemoglobins are cytoplasmic proteins required for nitric oxide detoxification and nitrosative stress resistance under aerobic conditions. RNA-sequencing analysis revealed that endogenous accumulation of nitric oxide resulted in up-regulation of genes involved in stress response and down-regulation of the MalaS7 allergen-encoding genes. Solution of the high-resolution X-ray crystal structure of Malassezia flavohemoglobin revealed features conserved with both bacterial and fungal flavohemoglobins. In vivo pathogenesis is independent of Malassezia flavohemoglobin. Lastly, we identified an additional 30 genus- and species-specific horizontal gene transfer candidates that might have contributed to the evolution of this genus as the most common inhabitants of animal skin. | 2020 | 32576698 |
| 8487 | 11 | 0.9671 | Mechanisms of nano zero-valent iron in enhancing dibenzofuran degradation by a Rhodococcus sp.: Trade-offs between ATP production and protection against reactive oxygen species. Nano zero-valent iron (nZVI) can enhance pollutants biodegradation, but it displays toxicity towards microorganisms. Gram-positive (G(+)) bacteria exhibit greater resistance to nZVI than Gram-negative bacteria. However, mechanisms of nZVI accelerating pollutants degradation by G(+) bacteria remain unclear. Herein, we explored effects of nZVI on a G(+) bacterium, Rhodococcus sp. strain p52, and mechanisms by which nZVI accelerates biodegradation of dibenzofuran, a typical polycyclic aromatic compound. Electron microscopy and energy dispersive spectroscopy analysis revealed that nZVI could penetrate cell membranes, which caused damage and growth inhibition. nZVI promoted dibenzofuran biodegradation at certain concentrations, while higher concentration functioned later due to the delayed reactive oxygen species (ROS) mitigation. Transcriptomic analysis revealed that cells adopted response mechanisms to handle the elevated ROS induced by nZVI. ATP production was enhanced by accelerated dibenzofuran degradation, providing energy for protein synthesis related to antioxidant stress and damage repair. Meanwhile, electron transport chain (ETC) was adjusted to mitigate ROS accumulation, which involved downregulating expression of ETC complex I-related genes, as well as upregulating expression of the genes for the ROS-scavenging cytochrome bd complex and ETC complex II. These findings revealed the mechanisms underlying nZVI-enhanced biodegradation by G(+) bacteria, offering insights into optimizing bioremediation strategies involving nZVI. | 2025 | 39549579 |
| 31 | 12 | 0.9670 | miR395-regulated sulfate metabolism exploits pathogen sensitivity to sulfate to boost immunity in rice. MicroRNAs (miRNAs) play important roles in plant physiological activities. However, their roles and molecular mechanisms in boosting plant immunity, especially through the modulation of macronutrient metabolism in response to pathogens, are largely unknown. Here, we report that an evolutionarily conserved miRNA, miR395, promotes resistance to Xanthomonas oryzae pv. oryzae (Xoo) and X. oryzae pv. oryzicola (Xoc), two destructive bacterial pathogens, by regulating sulfate accumulation and distribution in rice. Specifically, miR395 targets and suppresses the expression of the ATP sulfurylase gene OsAPS1, which functions in sulfate assimilation, and two sulfate transporter genes, OsSULTR2;1 and OsSULTR2;2, which function in sulfate translocation, to promote sulfate accumulation, resulting in broad-spectrum resistance to bacterial pathogens in miR395-overexpressing plants. Genetic analysis revealed that miR395-triggered resistance is involved in both pathogen-associated molecular pattern-triggered immunity and R gene-mediated resistance. Moreover, we found that accumulated sulfate but not S-metabolites inhibits proliferation of pathogenic bacteria, revealing a sulfate-mediated antibacterial defense mechanism that differs from sulfur-induced resistance. Furthermore, compared with other bacteria, Xoo and Xoc, which lack the sulfate transporter CysZ, are sensitive to high levels of extracellular sulfate. Accordingly, miR395-regulated sulfate accumulation impaired the virulence of Xoo and Xoc by decreasing extracellular polysaccharide production and biofilm formation. Taken together, these results suggest that rice miR395 modulates sulfate metabolism to exploit pathogen sensitivity to sulfate and thereby promotes broad-spectrum resistance. | 2022 | 34968734 |
| 8767 | 13 | 0.9669 | Poly-γ-glutamic acid enhanced the drought resistance of maize by improving photosynthesis and affecting the rhizosphere microbial community. BACKGROUND: Compared with other abiotic stresses, drought stress causes serious crop yield reductions. Poly-γ-glutamic acid (γ-PGA), as an environmentally friendly biomacromolecule, plays an important role in plant growth and regulation. RESULTS: In this project, the effect of exogenous application of γ-PGA on drought tolerance of maize (Zea mays. L) and its mechanism were studied. Drought dramatically inhibited the growth and development of maize, but the exogenous application of γ-PGA significantly increased the dry weight of maize, the contents of ABA, soluble sugar, proline, and chlorophyll, and the photosynthetic rate under severe drought stress. RNA-seq data showed that γ-PGA may enhance drought resistance in maize by affecting the expression of ABA biosynthesis, signal transduction, and photosynthesis-related genes and other stress-responsive genes, which was also confirmed by RT-PCR and promoter motif analysis. In addition, diversity and structure analysis of the rhizosphere soil bacterial community demonstrated that γ-PGA enriched plant growth promoting bacteria such as Actinobacteria, Chloroflexi, Firmicutes, Alphaproteobacteria and Deltaproteobacteria. Moreover, γ-PGA significantly improved root development, urease activity and the ABA contents of maize rhizospheric soil under drought stress. This study emphasized the possibility of using γ-PGA to improve crop drought resistance and the soil environment under drought conditions and revealed its preliminary mechanism. CONCLUSIONS: Exogenous application of poly-γ-glutamic acid could significantly enhance the drought resistance of maize by improving photosynthesis, and root development and affecting the rhizosphere microbial community. | 2022 | 34979944 |
| 54 | 14 | 0.9669 | Strigolactones Modulate Salicylic Acid-Mediated Disease Resistance in Arabidopsis thaliana. Strigolactones are low-molecular-weight phytohormones that play several roles in plants, such as regulation of shoot branching and interactions with arbuscular mycorrhizal fungi and parasitic weeds. Recently, strigolactones have been shown to be involved in plant responses to abiotic and biotic stress conditions. Herein, we analyzed the effects of strigolactones on systemic acquired resistance induced through salicylic acid-mediated signaling. We observed that the systemic acquired resistance inducer enhanced disease resistance in strigolactone-signaling and biosynthesis-deficient mutants. However, the amount of endogenous salicylic acid and the expression levels of salicylic acid-responsive genes were lower in strigolactone signaling-deficient max2 mutants than in wildtype plants. In both the wildtype and strigolactone biosynthesis-deficient mutants, the strigolactone analog GR24 enhanced disease resistance, whereas treatment with a strigolactone biosynthesis inhibitor suppressed disease resistance in the wildtype. Before inoculation of wildtype plants with pathogenic bacteria, treatment with GR24 did not induce defense-related genes; however, salicylic acid-responsive defense genes were rapidly induced after pathogenic infection. These findings suggest that strigolactones have a priming effect on Arabidopsis thaliana by inducing salicylic acid-mediated disease resistance. | 2022 | 35563637 |
| 514 | 15 | 0.9667 | The organoarsenical biocycle and the primordial antibiotic methylarsenite. Arsenic is the most pervasive environmental toxic substance. As a consequence of its ubiquity, nearly every organism has genes for resistance to inorganic arsenic. In bacteria these genes are found largely in bacterial arsenic resistance (ars) operons. Recently a parallel pathway for synthesis and degradation of methylated arsenicals has been identified. The arsM gene product encodes the ArsM (AS3MT in animals) As(iii) S-adenosylmethionine methyltransferase that methylates inorganic trivalent arsenite in three sequential steps to methylarsenite MAs(iii), dimethylarsenite (DMAs(iii) and trimethylarsenite (TMAs(iii)). MAs(iii) is considerably more toxic than As(iii), and we have proposed that MAs(iii) was a primordial antibiotic. Under aerobic conditions these products are oxidized to nontoxic pentavalent arsenicals, so that methylation became a detoxifying pathway after the atmosphere became oxidizing. Other microbes have acquired the ability to regenerate MAs(v) by reduction, transforming it again into toxic MAs(iii). Under this environmental pressure, MAs(iii) resistances evolved, including the arsI, arsH and arsP genes. ArsI is a C-As bond lyase that demethylates MAs(iii) back to less toxic As(iii). ArsH re-oxidizes MAs(iii) to MAs(v). ArsP actively extrudes MAs(iii) from cells. These proteins confer resistance to this primitive antibiotic. This oscillation between MAs(iii) synthesis and detoxification is an essential component of the arsenic biogeocycle. | 2016 | 27730229 |
| 8484 | 16 | 0.9667 | Deciphering the acidophilia and acid resistance in Acetilactobacillus jinshanensis dominating baijiu fermentation through multi-omics analysis. Lactic acid bacteria (LAB) are pivotal in constructing the intricate bio-catalytic networks underlying traditional fermented foods such as Baijiu. However, LAB and their metabolic mechanisms are partially understood in Moutai flavor Baijiu fermentation. Here, we found that Acetilactobacillus jinshanensis became the· dominant species with relative abundance reaching 92%, where the acid accumulated rapidly and peaked at almost 30 g/kg in Moutai flavor Baijiu. After separation, purification, and cultivation, A. jinshanensis exhibited pronounced acidophilia and higher acid resistance compared to other LAB. Further integrated multi-omics analysis revealed that fatty acid synthesis, cell membrane integrity, pHi and redox homeostasis maintenance, protein and amide syntheses were possibly crucial acid-resistant mechanisms in A. jinshanensis. Structural proteomics indicated that the surfaces of A. jinshanensis proteases contained more positively charged amino acid residues to maintain protein stability in acidic environments. The genes HSP20 and acpP were identified as acid-resistant genes for A. jinshanensis by heterologous expression analysis. These findings not only enhance our understanding of LAB in Baijiu, providing a scientific basis for acid regulation for production process, but also offer valuable insights for studying core species in other fermentation systems. | 2025 | 39448165 |
| 20 | 17 | 0.9667 | Paraburkholderia phytofirmans PsJN triggers local and systemic transcriptional reprogramming in Arabidopsis thaliana and increases resistance against Botrytis cinerea. Fungal pathogens are one of the main causes of yield losses in many crops, severely affecting agricultural production worldwide. Among the various approaches to alleviate this problem, beneficial microorganisms emerge as an environmentally friendly and sustainable alternative. In addition to direct biocontrol action against pathogens, certain plant growth-promoting bacteria (PGPB) enhance the plant immune defense to control diseases through induced systemic resistance (ISR). Paraburkholderia phytofirmans PsJN has been shown as an efficient biocontrol agent against diseases. However, the specific mechanisms underlying these beneficial effects at both local and systemic level remain largely unknown. In this study, we investigated the transcriptional response of Arabidopsis thaliana at above- and below-ground levels upon interaction with P. phytofirmans PsJN, and after Botrytis cinerea infection. Our data clearly support the protective effect of P. phytofirmans PsJN through ISR against B. cinerea in plants grown in both soil and hydroponic conditions. The comparative transcriptome analysis of the mRNA and miRNA sequences revealed that PsJN modulates the expression of genes involved in abiotic stress responses, microbe-plant interactions and ISR, with ethylene signaling pathway genes standing out. In roots, PsJN predominantly downregulated the expression of genes related to microbe perception, signaling and immune response, indicating that PsJN locally provoked attenuation of defense responses to facilitate and support colonization and the maintenance of mutualistic relationship. In leaves, the increased expression of defense-related genes prior to infection in combination with the protective effect of PsJN observed in later stages of infection suggests that bacterial inoculation primes plants for enhanced systemic immune response after subsequent pathogen attack. | 2025 | 40530279 |
| 735 | 18 | 0.9667 | The Pseudomonas aeruginosa flagellum confers resistance to pulmonary surfactant protein-A by impacting the production of exoproteases through quorum-sensing. Surfactant protein-A (SP-A) is an important antimicrobial protein that opsonizes and permeabilizes membranes of microbial pathogens in mammalian lungs. Previously, we have shown that Pseudomonas aeruginosa flagellum-deficient mutants are preferentially cleared in the lungs of wild-type mice by SP-A-mediated membrane permeabilization, and not by opsonization. In this study, we report a flagellum-mediated mechanism of P. aeruginosa resistance to SP-A. We discovered that flagellum-deficient (ΔfliC) bacteria are unable to produce adequate amounts of exoproteases to degrade SP-A in vitro and in vivo, leading to its preferential clearance in the lungs of SP-A(+/+) mice. In addition, ΔfliC bacteria failed to degrade another important lung antimicrobial protein lysozyme. Detailed analyses showed that ΔfliC bacteria are unable to upregulate the transcription of lasI and rhlI genes, impairing the production of homoserine lactones necessary for quorum-sensing, an important virulence process that regulates the production of multiple exoproteases. Thus, reduced ability of ΔfliC bacteria to quorum-sense attenuates production of exoproteases and limits degradation of SP-A, thereby conferring susceptibility to this major pulmonary host defence protein. | 2011 | 21205009 |
| 36 | 19 | 0.9666 | Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different. | 2021 | 35055983 |