DENITRIFICANS - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
782800.9739Simultaneous elimination of antibiotic-resistant bacteria and antibiotic resistance genes by different Fe-N co-doped biochars activating peroxymonosulfate: The key role of pyridine-N and Fe-N sites. The coexistence of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in the environment poses a potential threat to public health. In our study, we have developed a novel advanced oxidation process for simultaneously removing ARGs and ARB by two types of iron and nitrogen-doped biochar derived from rice straw (FeN-RBC) and sludge (FeN-SBC). All viable ARB (approximately 10(8) CFU mL(-1)) was inactivated in the FeN-RBC/ peroxymonosulfate (PMS) system within 40 min and did not regrow after 48 h even in real water samples. Flow cytometry identified 96.7 % of dead cells in the FeN-RBC/PMS system, which verified the complete inactivation of ARB. Thorough disinfection of ARB was associated with the disruption of cell membranes and intracellular enzymes related to the antioxidant system. Whereas live bacteria (approximately 200 CFU mL(-1)) remained after FeN-SBC/PMS treatment. Intracellular and extracellular ARGs (tetA and tetB) were efficiently degraded in the FeN-RBC/PMS system. The production of active species, primarily •OH, SO(4)(•-) and Fe (IV), as well as electron transfer, were essential to the effective disinfection of FeN-RBC/PMS. In comparison with FeN-SBC, the better catalytic performance of FeN-RBC was mainly ascribed to its higher amount of pyridine-N and Fe(0), and more reactive active sites (such as CO group and Fe-N sites). Density functional theory calculations indicated the greater adsorption energy and Bader charge, more stable Fe-O bond, more easily broken OO bond in FeN-RBC/PMS, which demonstrated the stronger electron transfer capacity between FeN-RBC and PMS. To encapsulate, our study provided an efficient and dependable method for the simultaneous elimination of ARGs and ARB in water.202438669989
509710.9735Comparing Graph Sample and Aggregation (SAGE) and Graph Attention Networks in the Prediction of Drug-Gene Associations of Extended-Spectrum Beta-Lactamases in Periodontal Infections and Resistance. INTRODUCTION: Gram-negative bacteria exhibit more antibiotic resistance than gram-positive bacteria due to their cell wall structure and composition differences. Porins, or protein channels in these bacteria, can allow small, hydrophilic antibiotics to diffuse, affecting their susceptibility. Mutations in porin protein genes can also impair antibiotic entry. Predicting drug-gene associations of extended-spectrum beta-lactamases (ESBLs) is crucial as they confer resistance to beta-lactam antibiotics, challenging the treatment of infections. This aids clinicians in selecting suitable treatments, optimizing drug usage, enhancing patient outcomes, and controlling antibiotic resistance in healthcare settings. Graph-based neural networks can predict drug-gene associations in periodontal infections and resistance. The aim of the study was to predict drug-gene associations of ESBLs in periodontal infections and resistance. METHODS: The study focuses on analyzing drug-gene associations using probes and drugs. The data was converted into graph language, assigning nodes and edges for drugs and genes. Graph neural networks (GNNs) and similar algorithms were implemented using Google Colab and Python. Cytoscape and CytoHubba are open-source software platforms used for network analysis and visualization. GNNs were used for tasks like node classification, link prediction, and graph-level prediction. Three graph-based models were used: graph convolutional network (GCN), Graph SAGE, and graph attention network (GAT). Each model was trained for 200 epochs using the Adam optimizer with a learning rate of 0.01 and a weight decay of 5e-4. RESULTS: The drug-gene association network has 57 nodes, 79 edges, and a 2.730 characteristic path length. Its structure, organization, and connectivity are analyzed using the GCN and Graph SAGE, which show high accuracy, precision, recall, and an F1-score of 0.94. GAT's performance metrics are lower, with an accuracy of 0.68, precision of 0.47, recall of 0.68, and F1-score of 0.56, suggesting that it may not be as effective in capturing drug-gene relationships. CONCLUSION: Compared to ESBLs, both GCN and Graph SAGE demonstrate excellent performance with accuracy, precision, recall, and an F1-score of 0.94. These results indicate that GCN and Graph SAGE are highly effective in predicting drug-gene associations related to ESBLs. GCN and Graph SAGE outperform GAT in predicting drug-gene associations for ESBLs. Improvements include data augmentation, regularization, and cross-validation. Ethical considerations, fairness, and open-source implementations are crucial for future research in precision periodontal treatment.202439347119
179820.9735Impacts of Domestication and Veterinary Treatment on Mobile Genetic Elements and Resistance Genes in Equine Fecal Bacteria. Antimicrobial resistance in bacteria is a threat to both human and animal health. We aimed to understand the impact of domestication and antimicrobial treatment on the types and numbers of resistant bacteria, antibiotic resistance genes (ARGs), and class 1 integrons (C1I) in the equine gut microbiome. Antibiotic-resistant fecal bacteria were isolated from wild horses, healthy farm horses, and horses undergoing veterinary treatment, and isolates (9,083 colonies) were screened by PCR for C1I; these were found at frequencies of 9.8% (vet horses), 0.31% (farm horses), and 0.05% (wild horses). A collection of 71 unique C1I(+) isolates (17 Actinobacteria and 54 Proteobacteria) was subjected to resistance profiling and genome sequencing. Farm horses yielded mostly C1I(+) Actinobacteria (Rhodococcus, Micrococcus, Microbacterium, Arthrobacter, Glutamicibacter, Kocuria), while vet horses primarily yielded C1I(+) Proteobacteria (Escherichia, Klebsiella, Enterobacter, Pantoea, Acinetobacter, Leclercia, Ochrobactrum); the vet isolates had more extensive resistance and stronger P(C) promoters in the C1Is. All integrons in Actinobacteria were flanked by copies of IS6100, except in Micrococcus, where a novel IS5 family element (ISMcte1) was implicated in mobilization. In the Proteobacteria, C1Is were predominantly associated with IS26 and also IS1, Tn21, Tn1721, Tn512, and a putative formaldehyde-resistance transposon (Tn7489). Several large C1I-containing plasmid contigs were retrieved; two of these (plasmid types Y and F) also had extensive sets of metal resistance genes, including a novel copper-resistance transposon (Tn7519). Both veterinary treatment and domestication increase the frequency of C1Is in equine gut microflora, and each of these anthropogenic factors selects for a distinct group of integron-containing bacteria. IMPORTANCE There is increasing acknowledgment that a "one health" approach is required to tackle the growing problem of antimicrobial resistance. This requires that the issue is examined from not only the perspective of human medicine but also includes consideration of the roles of antimicrobials in veterinary medicine and agriculture and recognizes the importance of other ecological compartments in the dissemination of ARGs and mobile genetic elements such as C1I. We have shown that domestication and veterinary treatment increase the frequency of occurrence of C1Is in the equine gut microflora and that, in healthy farm horses, the C1I are unexpectedly found in Actinobacteria, while in horses receiving antimicrobial veterinary treatments, a taxonomic shift occurs, and the more typical integron-containing Proteobacteria are found. We identified several new mobile genetic elements (plasmids, insertion sequences [IS], and transposons) on genomic contigs from the integron-containing equine bacteria.202336988354
247430.9733Nano-biosensors for rapid detection of antibiotic resistance genes blaCTX-M in Escherichia coli and blaKPC in Klebsiella pneumoniae. The wide spread of antibiotic resistance genes in clinical isolates of Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae) has become a worrying issue worldwide. Thus, electrochemical DNA-based biosensors were developed and applied for the rapid detection of antibiotic resistance genes (blaCTX-M extended-spectrum β-lactamase (ESBL) in E. coli and blaKPC carbapenemase in Klebsiella pneumoniae). Selective ssDNA probes specific to the targeting complementary genes were designed and individually immobilized onto disposable sensor chips that were functionalized with nanocomposite (ssDNA-probe@ATP@AuNPs-PPY-V(2)O(5)). In this regard, the sensor surfaces were first modified with vanadium oxide (V(2)O(5)) and polypyrrole (PPy) then gold nanoparticles (AuNPs) to effectively promote the chemical immobilization of each of the designed bio-receptor (ssDNA probe) onto the sensor matrix using the 4-aminothiophenol (ATP) as the chemical cross-linker. Different parameters that affect the biosensing performance were studied and optimized. Accordingly, high sensitivity to both E. coli blaCTX-M and K. pneumoniae blaKPC genes were obtained with a dynamic linear range from 10(-6) to 0.1 ng/μL with correlation coefficient (R(2)) of 0.991 and 0.988, limit of detection (LODs) of 0.5 × 10(-7) ng/μL and 1 × 10(-7) ng/μL, and limit of quantification (LOQs) of 1.2 × 10(-7) and 3 × 10(-7) ng/μL, respectively. High selectivity was provided since no electrochemical signals were obtained from various competitors of common bacteria. Finally, different types of clinical samples were analyzed and validated.202540250654
199640.9732Conjugation of plasmid harboring bla (NDM-1) in a clinical Providencia rettgeri strain through the formation of a fusion plasmid. Providencia rettgeri has recently gained increased importance owing to the New Delhi metallo-β-lactamase (NDM) and other β-lactamases produced by its clinical isolates. These enzymes reduce the efficiency of antimicrobial therapy. Herein, we reported the findings of whole-genome sequence analysis and a comprehensive pan-genome analysis performed on a multidrug-resistant P. rettgeri 18004577 clinical strain recovered from the urine of a hospitalized patient in Shandong, China, in 2018. Providencia rettgeri 18004577 was found to have a genome assembly size of 4.6 Mb with a G + C content of 41%; a circular plasmid p18004577_NDM of 273.3 Kb, harboring an accessory multidrug-resistant region; and a circular, stable IncT plasmid p18004577_Rts of 146.2 Kb. Additionally, various resistance genes were identified in its genome, including bla (NDM-1), bla (OXA-10), bla (PER-4), aph(3')-VI, ant(2'')-Ia, ant(3')-Ia, sul1, catB8, catA1, mph(E), and tet. Conjugation experiments and whole-genome sequencing revealed that the bla (NDM-1) gene could be transferred to the transconjugant via the formation of pJ18004577_NDM, a novel hybrid plasmid. Based on the genetic comparison, the main possible formation process for pJ18004577_NDM was the insertion of the [ΔISKox2-IS26-ΔISKox2]-aph(3')-VI-bla (NDM-1) translocatable unit module from p18004577_NDM into plasmid p18004577_Rts in the Russian doll insertion structure (ΔISKox2-IS26-ΔISKox2), which played a role similar to that of IS26 using the "copy-in" route in the mobilization of [aph(3')-VI]-bla (NDM-1). The array, multiplicity, and diversity of the resistance and virulence genes in this strain necessitate stringent infection control, antibiotic stewardship, and periodic resistance surveillance/monitoring policies to preempt further horizontal and vertical spread of the resistance genes. Roary analysis based on 30 P. rettgeri strains pan genome identified 415 core, 756 soft core, 5,744 shell, and 12,967 cloud genes, highlighting the "close" nature of P. rettgeri pan-genome. After a comprehensive pan-genome analysis, representative biological information was revealed that included phylogenetic distances, presence or absence of genes across the P. rettgeri bacteria clade, and functional distribution of proteins. Moreover, pan-genome analysis has been shown to be an effective approach to better understand P. rettgeri bacteria because it helps develop various tailored therapeutic strategies based on their biological similarities and differences.202236687647
227250.9729Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections. BACKGROUND: Wastewater-based monitoring represents a useful tool for antibiotic resistance surveillance. AIM: To investigate the prevalence and abundance of antibiotic resistance genes (ARGs) in hospital wastewater over time. METHODS: Wastewater from two hospitals in Finland (HUS1 and HUS2) was monitored weekly for nine weeks (weeks 25-33) in summer 2020. A high-throughput real-time polymerization chain reaction (HT-qPCR) system was used to detect and quantify 216 ARGs and genes associated with mobile genetic elements (MGEs), integrons, and bacteria causing hospital-acquired infections (HAIs), as well as the 16S rRNA gene. Data from HT-qPCR were analysed and visualized using a novel digital platform, ResistApp. Eight carbapenem resistance genes (blaGES, blaKPC, blaVIM, blaNDM, blaCMY, blaMOX, blaOXA48, and blaOXA51) and three genes associated with bacteria causing HAIs (Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were studied. FINDINGS: There was a significantly higher number of ARGs at both hospitals in weeks 27-30 (174-191 genes) compared to other sampling weeks (151-171 genes). Our analyses also indicated that the two hospitals, which used different amounts of antibiotics, had significantly different resistance gene profiles. Carbapenem resistance genes were more prevalent and abundant in HUS1 than HUS2. Across both hospitals, blaGES and blaVIM were the most prevalent and abundant. There was also a strong positive association between blaKPC and K. pneumoniae in HUS1 wastewater. CONCLUSION: Routine wastewater-based monitoring using ResistApp can provide valuable information on the prevalence and abundance of ARGs in hospitals. This helps hospitals understand the spread of antibiotic resistance in hospitals and identify potential areas for intervention.202134537275
247260.9728A 'Tuba Drain' incorporated in sink drains reduces counts of antibiotic-resistant bacterial species at the plughole: a blinded, randomized trial in 36 sinks in a hospital outpatient department with a low prevalence of sink colonization by antibiotic-resistant species. BACKGROUND: Multi-resistant Gram-negative bacteria (GNB) survive in hospital drains in traps that contain water and may ascend into the sink because of splashes, or biofilm growth. AIM: To investigate whether the 'Tuba Drain' (TD) a long, bent, continually descending copper tube between the sink outlet and the trap prevents the ascent of bacteria. METHODS: After initial laboratory tests confirmed that the TD prevented bacteria in the U-bend from splashing upwards into the sink outlet, TDs were assessed in a randomized, blinded trial in a hospital outpatient department built in 2019. Sinks were paired into those with a similar clinical exposure and each member of each pair was randomized to receive either new, standard plumbing up to and including the trap (18 sinks) or the same new standard plumbing but including the TD inserted between the sink outlet and trap. Bacterial counts in swabs from the sink outlets were determined blindly before and monthly after the plumbing change for a year. GNB that are associated with clinical infection and carriage of resistance genes, Pseudomonas aeruginosa, Acinetobacter baumanii, Stenotrophomonas maltophilia and all Enterobacterales were the organisms of primary interest and termed target bacteria. FINDINGS: The TDs fitted into the required spaces and functioned without problems. The geometric means (over months) of the counts of target bacteria in TD-plumbed sinks was lower than those in their paired controls, P=0.012 (sign test, two-tailed). Prevalence of target bacteria in sinks was low. CONCLUSION: TDs were effective for reducing target bacteria in sinks.202539515476
153870.9727KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: bla(KPC-80), bla(KPC-81), bla(KPC-96) and bla(KPC-97). Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of bla(KPC-2) resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant bla(KPC) genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for bla(KPC-80), bla(KPC-96), and bla(KPC-97) by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including bla(TEM-1), bla(OXA-18) and bla(OXA-1), were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of bla(KPC-2) and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE: The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, bla(KPC-2). The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.202438319084
348880.9727Characteristics of Antibiotic Resistance Genes and Antibiotic-Resistant Bacteria in Full-Scale Drinking Water Treatment System Using Metagenomics and Culturing. The contamination of antibiotic resistance genes (ARGs) may directly threaten human health. This study used a metagenomic approach to investigate the ARG profile in a drinking water treatment system (DWTS) in south China. In total, 317 ARG subtypes were detected; specifically, genes encoding bacitracin, multidrug, and sulfonamide were widely detected in the DWTS. Putative ARG hosts included Acidovorax (6.0%), Polynucleobacter (4.3%), Pseudomonas (3.4%), Escherichia (1.7%), and Klebsiella (1.5%) as the enriched biomarkers in the DWTS, which mainly carried bacitracin, beta-lactam, and aminoglycoside ARGs. From a further analysis of ARG-carrying contigs (ACCs), Stenotrophomonas maltophilia and Pseudomonas aeruginosa were the most common pathogens among the 49 ACC pathogens in the DWTS. The metagenomic binning results demonstrated that 33 high-quality metagenome-assembled genomes (MAGs) were discovered in the DWTS; particularly, the MAG identified as S. maltophilia-like (bin.195) harbored the greatest number of ARG subtypes (n = 8), namely, multidrug (n = 6; smeD, semE, multidrug_transporter, mexE, semB, and smeC), beta-lactam (n = 1; metallo-beta-lactamase), and aminoglycoside [n = 1; aph(3')-IIb]. The strong positive correlation between MGEs and ARG subtypes revealed a high ARG dissemination risk in the DWTS. Based on the pure-culture method, 93 isolates that belong to 30 genera were recovered from the DWTS. Specifically, multidrug-resistant pathogens and opportunistic pathogens such as P. aeruginosa, Bacillus cereus, and S. maltophilia were detected in the DWTS. These insights into the DWTS's antibiotic resistome indicated the need for more comprehensive ARG monitoring and management in the DWTS. Furthermore, more effective disinfection methods need to be developed to remove ARGs in DWTSs, and these findings could assist governing bodies in the surveillance of antibiotic resistance in DWTSs.202135273579
227190.9725Detection of clinically relevant antibiotic-resistant bacteria in shared fomites, waste water and municipal solid wastes disposed near residential areas of a Nigerian city. Studies investigating environmental hotspots of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in Nigeria are limited. This study was designed to assess various environmental sources and commonly touched surfaces as potential carriers of ARB and ARGs with implications for public health. A total of 392 samples, including sewage (36), sludge (36), diapers (20), plastics (20), water sachet polythene bags (20), food wastes (20), soil beneath dump sites (20), and frequently touched surfaces such as restroom floors (80), corridors (24), door handles (56), and room floors and walls (60), were collected and screened for the presence of resistant bacteria carrying genes such as bla (KPC), bla (NDM-1), bla (CMY-2), bla (IMP), bla (OXA66) and MecA. Additionally, we employed standard techniques to detect methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii . We also evaluated the effectiveness of routine disinfection procedures in eliminating ARB from restroom floors. Our findings revealed that sewage, sludge, diapers, food wastes and restroom floors are frequently contaminated with highly and moderately resistant strains of E. coli, K. pneumoniae, P. aeruginosa and MRSA. Notably, we identified two variants of the bla (OXA51-like) gene (bla (OXA-66) and bla (OXA-180)) in A. baumannii isolated from these environmental sources. Furthermore, we detected seven ESBL- K. pneumoniae , five ESBL- A. baumannii , two ESBL- E. coli and one ESBL- P. aeruginosa , all carrying one or more ARGs (bla (KPC), bla (NDM-1), bla (CMY-2)), in isolates recovered from sewage, sludge, restroom floors and plastics. It is of note that ARB persisted on restroom floors even after disinfection procedures. In conclusion, this study highlights that environmental wastes indiscriminately discarded in residential areas and shared surfaces among individuals are heavily colonized by ARB carrying ARGs of significant public health importance.202338188243
8066100.9724Inoculation of thermophilic bacteria from giant panda feces into cattle manure reduces gas emissions and decreases resistance gene prevalence in short-term composting. Here, thermophilic bacteria (TB) with cellulose degradation functions were screened from composting panda feces and applied to cattle manure composting. TB (Aeribacillus pallidus G5 and Parageobacillus toebii G12) inoculation led to remarkable improvement of the compost temperature, prolonging of the thermophilic stage and shortening of the composting process, resulting in increased manure harmlessness (GI ≥ 70%), compost humification, and greenhouse gas emission reduction (14.19%-22.57%), compared with the control compost, within 15 days of composting. In particular, G5 inoculation reduced NH(3) emissions by 41.97% relative to control composts over 15 days. G5 was capable of rapidly colonizing in the composts, and its inoculation immediately enriched the genera of Firmicutes, and simultaneously decreased the genera of Proteobacteria, contributing to the elimination of harmful microorganisms. Notably, this strain lacked antibiotic resistance genes, and the absolute abundances of resistance genes and mobile genetic genes (MGEs) decreased the most (by 80.84%). Metagenomic analysis revealed that enzymes capable of producing CO(2), N(2)O, and NH(3) were generally inhibited, while CO(2) fixation and N(2)O and NH(3) reduction enzymes were enriched in the G5 compost, since metagenome-assembled genomes of Proteobacteria harbored more key genes and enzymes in complete pathways for producing N(2)O, NH(3), and CO(2). Moreover, Proteobacteria, such as Pseudomonas and Halopseudomonas, were the main host of resistance genes and MGEs. Overall, the gas emission could be reduced, and more efficient control of resistance genes could be achieved by inhibited the abundance of Proteobacteria during composting. This study provides a safe and effective microbial agent (A. pallidus) for manure treatment.202539642832
3485110.9724Abundance and Diversity of Phages, Microbial Taxa, and Antibiotic Resistance Genes in the Sediments of the River Ganges Through Metagenomic Approach. In this study, we have analyzed the metagenomic DNA from the pooled sediment sample of the river Ganges to explore the abundance and diversity of phages, microbial community, and antibiotic resistance genes (ARGs). Utilizing data from Illumina platform, 4,174 (∼0.0013%) reads were classified for the 285 different DNA viruses largely dominated by the group of 260 distinctive phages (3,602 reads, ∼86.3%). Among all, Microcystis (782 hits), Haemophilus (403), Synechococcus (386), Pseudomonas (279), Enterococcus (232), Bacillus (196), Rhodococcus (166), Caulobacter (163), Salmonella (146), Enterobacteria (143), Mycobacterium and (128) phages show the highest abundance and account for ∼90% of the total identified phages. In addition, we have also identified corresponding host pertaining to these phages. Mainly, Proteobacteria (∼69.3%) dominates the microbial population structure. Primarily, orders such as Caulobacterales (∼28%), Burkholderiales (∼13.9%), Actinomycetales (∼13.7%), and Pseudomonadales (∼7.5%) signify the core section. Furthermore, 21,869 (∼0.00695%) reads were classified in 20 ARG types (classes) and 240 ARGs (subtypes), among which 4 ARG types, namely multidrug resistance (12,041 reads, ∼55%), bacitracin (3,202 reads, ∼15%), macrolide-lincosamide-streptogramin (1,744 reads, ∼7.98%), and fosmidomycin (990 reads, ∼4.53%), have the highest abundance. Simultaneously, six resistance mechanisms were also recognized with the dominance of antibiotic efflux (72.8%, 15,919 reads). The results unveil the distribution of (pro)-phages; microbial community; and various ARGs in the Ganges river sediments.202133913739
3020120.9723Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance.201931381486
5125130.9723Do we still need Illumina sequencing data? Evaluating Oxford Nanopore Technologies R10.4.1 flow cells and the Rapid v14 library prep kit for Gram negative bacteria whole genome assemblies. The best whole genome assemblies are currently built from a combination of highly accurate short-read sequencing data and long-read sequencing data that can bridge repetitive and problematic regions. Oxford Nanopore Technologies (ONT) produce long-read sequencing platforms and they are continually improving their technology to obtain higher quality read data that is approaching the quality obtained from short-read platforms such as Illumina. As these innovations continue, we evaluated how much ONT read coverage produced by the Rapid Barcoding Kit v14 (SQK-RBK114) is necessary to generate high-quality hybrid and long-read-only genome assemblies for a panel of carbapenemase-producing Enterobacterales bacterial isolates. We found that 30× long-read coverage is sufficient if Illumina data are available, and that more (at least 100× long-read coverage is recommended for long-read-only assemblies. Illumina polishing is still improving single nucleotide variants (SNVs) and INDELs in long-read-only assemblies. We also examined if antimicrobial resistance genes could be accurately identified in long-read-only data, and found that Flye assemblies regardless of ONT coverage detected >96% of resistance genes at 100% identity and length. Overall, the Rapid Barcoding Kit v14 and long-read-only assemblies can be an optimal sequencing strategy (i.e., plasmid characterization and AMR detection) but finer-scale analyses (i.e., SNV) still benefit from short-read data.202438354391
8439140.9722Comparative genomics analysis and virulence-related factors in novel Aliarcobacter faecis and Aliarcobacter lanthieri species identified as potential opportunistic pathogens. BACKGROUND: Emerging pathogenic bacteria are an increasing threat to public health. Two recently described species of the genus Aliarcobacter, A. faecis and A. lanthieri, isolated from human or livestock feces, are closely related to Aliarcobacter zoonotic pathogens (A. cryaerophilus, A. skirrowii, and A. butzleri). In this study, comparative genomics analysis was carried out to examine the virulence-related, including virulence, antibiotic, and toxin (VAT) factors in the reference strains of A. faecis and A. lanthieri that may enable them to become potentially opportunistic zoonotic pathogens. RESULTS: Our results showed that the genomes of the reference strains of both species have flagella genes (flaA, flaB, flgG, flhA, flhB, fliI, fliP, motA and cheY1) as motility and export apparatus, as well as genes encoding the Twin-arginine translocation (Tat) (tatA, tatB and tatC), type II (pulE and pulF) and III (fliF, fliN and ylqH) secretory pathways, allowing them to secrete proteins into the periplasm and host cells. Invasion and immune evasion genes (ciaB, iamA, mviN, pldA, irgA and fur2) are found in both species, while adherence genes (cadF and cj1349) are only found in A. lanthieri. Acid (clpB), heat (clpA and clpB), osmotic (mviN), and low-iron (irgA and fur2) stress resistance genes were observed in both species, although urease genes were not found in them. In addition, arcB, gyrA and gyrB were found in both species, mutations of which may mediate the resistance to quaternary ammonium compounds (QACs). Furthermore, 11 VAT genes including six virulence (cadF, ciaB, irgA, mviN, pldA, and tlyA), two antibiotic resistance [tet(O) and tet(W)] and three cytolethal distending toxin (cdtA, cdtB, and cdtC) genes were validated with the PCR assays. A. lanthieri tested positive for all 11 VAT genes. By contrast, A. faecis showed positive for ten genes except for cdtB because no PCR assay for this gene was available for this species. CONCLUSIONS: The identification of the virulence, antibiotic-resistance, and toxin genes in the genomes of A. faecis and A. lanthieri reference strains through comparative genomics analysis and PCR assays highlighted the potential zoonotic pathogenicity of these two species. However, it is necessary to extend this study to include more clinical and environmental strains to explore inter-species and strain-level genetic variations in virulence-related genes and assess their potential to be opportunistic pathogens for animals and humans.202235761183
1561150.9722The extent of carbapenemase-encoding genes in public genome sequences. Genome sequences provide information on the genetic elements present in an organism, and currently there are databases containing hundreds of thousands of bacterial genome sequences. These repositories allow for mining patterns concerning antibiotic resistance gene occurrence in both pathogenic and non-pathogenic bacteria in e.g. natural or animal environments, and link these to relevant metadata such as bacterial host species, country and year of isolation, and co-occurrence with other resistance genes. In addition, the advances in the prediction of mobile genetic elements, and discerning chromosomal from plasmid DNA, broadens our view on the mechanism mediating dissemination. In this study we utilize the vast amount of data in the public database PATRIC to investigate the dissemination of carbapenemase-encoding genes (CEGs), the emergence and spread of which is considered a grave public health concern. Based on publicly available genome sequences from PATRIC and manually curated CEG sequences from the beta lactam database, we found 7,964 bacterial genomes, belonging to at least 70 distinct species, that carry in total 9,892 CEGs, amongst which bla (NDM), bla (OXA), bla (VIM), bla (IMP) and bla (KPC). We were able to distinguish between chromosomally located resistance genes (4,137; 42%) and plasmid-located resistance genes (5,753; 58%). We found that a large proportion of the identified CEGs were identical, i.e. displayed 100% nucleotide similarity in multiple bacterial species (8,361 out of 9,892 genes; 85%). For example, the New Delhi metallo-beta-lactamase NDM-1 was found in 42 distinct bacterial species, and present in seven different environments. Our data show the extent of carbapenem-resistance far beyond the canonical species Acetinobacter baumannii, Klebsiella pneumoniae or Pseudomonas aeruginosa. These types of data complement previous systematic reviews, in which carbapenem-resistant Enterobacteriaceae were found in wildlife, livestock and companion animals. Considering the widespread distribution of CEGs, we see a need for comprehensive surveillance and transmission studies covering more host species and environments, akin to previous extensive surveys that focused on extended spectrum beta-lactamases. This may help to fully appreciate the spread of CEGs and improve the understanding of mechanisms underlying transmission, which could lead to interventions minimizing transmission to humans.202133732552
2497160.9722Rapid Simultaneous Detection of the Clinically Relevant Carbapenemase Resistance Genes blaKPC, blaOXA48, blaVIM and blaNDM with the Newly Developed Ready-to-Use qPCR CarbaScan LyoBead. Antibiotic resistance, in particular the dissemination of carbapenemase-producing organisms, poses a significant threat to global healthcare. This study introduces the qPCR CarbaScan LyoBead assay, a robust, accurate, and efficient tool for detecting key carbapenemase genes, including blaKPC, blaNDM, blaOXA-48, and blaVIM. The assay utilizes lyophilized beads, a technological advancement that enhances stability, simplifies handling, and eliminates the need for refrigeration. This feature renders it particularly well-suited for point-of-care diagnostics and resource-limited settings. The assay's capacity to detect carbapenemase genes directly from bacterial colonies without the need for extensive sample preparation has been demonstrated to streamline workflows and enable rapid diagnostic results. The assay demonstrated 100% specificity and sensitivity across a diverse range of bacterial strains, including multiple allelic variants of target genes, facilitating precise identification of resistance mechanisms. Bacterial strains of the species Acinetobacter baumannii, Citrobacter freundii, Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae and Pseudomonas aeruginosa were utilized as reference material for assay development (n = 9) and validation (n = 28). It is notable that the assay's long shelf life and minimal operational complexity further enhance its utility for large-scale implementation in healthcare, food safety, and environmental monitoring. The findings emphasize the necessity of continuous surveillance and the implementation of rapid diagnostic methods for the effective detection of resistance genes. Furthermore, the assay's potential applications in other fields, such as toxin-antitoxin system research and monitoring of resistant bacteria in the community, highlight its versatility. In conclusion, the qPCR CarbaScan LyoBead assay is a valuable tool that can contribute to the urgent need to combat antibiotic resistance and improve global public health outcomes.202539940986
7817170.9722Effect of alkaline treatment on pathogens, bacterial community and antibiotic resistance genes in different sewage sludges for potential agriculture use. Alkaline treatment is widely used to reduce pathogens in sewage sludge in developing countries and guarantee that it is safe for use in agriculture. The aim of this study was to investigate the effect of alkaline treatment applied to waste-activated (WAS) and Upflow Anaerobic Sludge Blanket (UASB)-sludge on the bacterial community, pathogens (viable helminths eggs and Salmonella spp), and antibiotic resistance genes (ARG). The bacterial community structure was examined through denaturing gel gradient electrophoresis (DGGE), targeting 16S rRNA genes. Polymerase chain reaction (PCR) was applied to evaluate the presence of several ARGs. The conducted alkaline experiment consisted of adding hydrated lime (Ca(OH)(2)) to sewage sludges. Samples were taken before and after 2, 24, 48, and 72 hours of treatment. Alkaline treatment changed considerably the bacterial community structure and after 24 hours, shifts in bacterial profiles were more pronounced in the UASB sludge sample than in WAS. Some bacteria remained under extreme pH conditions (pH > 12), such as Azospira oryzae and Dechloromonas denitrificans in the WAS samples, and Geothrix and Geobacter in the UASB sludge samples. The values of pathogens and indicators in the sludge after 24 hours of alkaline treatment meet sanitary law regulations and thus the sludges could have the potential to agricultural distribution. It is important to highlight that ARG, which are not currently present in sanitary regulations, were detected in the sludge samples after the alkaline treatment, which could be a concern for human health.202030051768
7814180.9722Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H(2)O(2) vs UVC/H(2)O(2)/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. The efficiency of a new Advanced Oxidation Process (AOP), namely the photo Fenton like process UV-C/H(2)O(2)/IDS-Cu, in removing determinants of antibiotic resistance and pathogenic bacteria was compared to a consolidated AOP (namely UV-C/H(2)O(2)) in a secondary treated municipal WasteWater (WW). A reductionist experimental laboratory-based approach was applied on real WW and the parameters were collected by an alternative integrated approach using (i) flow cytometry to enumerate bacteria and test for the fitness of the bacterial communities and (ii) molecular analyses to define the community composition (16S rRNA amplicon sequencing) and the abundances of Antibiotic Resistance Genes (ARGs) and of the class 1 integron (intI1 gene) (by quantitative PCR). The same approach was applied also to post-treatment regrowth tests (24 h) to define the potential persistence of the tested parameters. These experiments were performed in both, human pathogens favorable conditions (HPC, in rich medium and 37°C) and in environmental mimicking conditions (EMC, original WW and 20°C). UV-C/H(2)O(2)/IDS-Cu process resulted to be more effective than the UV-C/H(2)O(2)in inactivating bacterial cells in the EMC post-treatment regrowth experiments. Both AOPs were efficiently abating potential human pathogenic bacteria and ARGs in the HPC regrowth experiments, although this trend could not be detected in the measurements taken immediately after the disinfection. In comparison with the UV-C/H(2)O(2), the UV-C/H(2)O(2)/IDS-Cu process did not apparently offer significant improvements in the abatement of the tested parameters in the WW effluent but, by evaluating the results of the regrowth experiments it was possible to extrapolate more complex trends, suggesting contrasting efficiencies visible only after a few hours. This study offers a detailed view on the abatement efficiency of microbiological/genetic parameters for the UV-C/H(2)O(2)/IDS-Cu process, calling for technical adjustments for this very promising technology. At the same time, our results clearly demonstrated the inadequacy of currently applied methodologies in the evaluation of specific parameters (e.g. determinants of antibiotic resistance and pathogenic bacteria) in WW.202032711221
6940190.9721Higher spreading risk of antibacterial biocide and heavy metal resistance genes than antibiotic resistance genes in aerobic granular sludge. Metagenomic approach was applied to simultaneously reveal the antibiotic resistance genes (ARGs) and antibacterial biocide & metal resistance genes (BMRGs), and the corresponding microbial hosts with high mobility during aerobic granular sludge (AGS) formation process. The results showed that the relative abundance of BMRGs was 88-123 times that of ARGs. AGS process was easier to enrich BMRGs, leading to a greater risk of drug resistance caused by BMRGs than that by ARGs. The enrichments of ARGs and BMRGs in AGS were closely related to several enhanced microbial metabolisms (i.e., cell motility, transposase and ATP-binding cassette transporters) and their corresponding regulatory genes. Several enhanced KEGG Orthologs (KO) functions, such as K01995, K01996, K01997 and K02002, might cause a positive impact on the spread of ARGs and BMRGs, and the main contributors were the largely enriched glycogens accumulating organisms. The first dominant ARGs (adeF) was carried by lots of microbial hosts, which might be enriched and propagated mainly through horizontal gene transfer. Candidatus Competibacter denitrificans simultaneously harbored ARG (cmx) and Cu related RGs (corR). Many enriched bacteria contained simultaneously multiple BMRGs (copR and corR) and mobile genetic elements (integrons and plasmids), granting them high mobility capabilities and contributing to the spread of BMRGs. This study might provide deeper understandings of the proliferation and mobility of ARGs and BMRGs, importantly, highlighted the status of BMRGs, which laid the foundation for the controlling widespread of resistance genes in AGS.202235489476