# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 810 | 0 | 0.9409 | Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD(595nm)) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome. | 2021 | 34537868 |
| 100 | 1 | 0.9014 | Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv tomato. Accessions of wild Lycopersicon germplasm were screened for resistance to Pseudomonas syringae pv tomato (P.s. tomato). Resistance to both race-0 and race-1 strains of P.s. tomato was identified in L. pimpinellifolium, L. peruvianum and L. hirsutum var. glabratum. Resistance to race-0 derived from L. hirsutum var. glabratum (Pto3) appeared to be inherited independently of Pto1 and Pto2. Filial and backcross generations derived from interspecific crosses between L. esculentum and L. hirsutum var. glabratum revealed that Pto3 resistance was inherited in a complex fashion and was incompletely dominant under conditions of high bacteria inocula. Resistance to P.s. tomato race-1 (Pto4) was also identified in L. hirsutum var. glabratum. Pto3 and Pto4 segregated independently of each other. | 1994 | 24178099 |
| 5221 | 2 | 0.8986 | Molecular cloning of the DNA gyrase genes from Methylovorus sp. strain SS1 and the mechanism of intrinsic quinolone resistance in methylotrophic bacteria. The genes encoding the DNA gyrase A (GyrA) and B subunits (GyrB) of Methylovorus sp. strain SS1 were cloned and sequenced. gyrA and gyrB coded for proteins of 846 and 799 amino acids with calculated molecular weights of 94,328 and 88,714, respectively, and complemented Escherichia coli gyrA and gyrB temperature sensitive (ts) mutants. To analyze the role of type II topoisomerases in the intrinsic quinolone resistance of methylotrophic bacteria, the sequences of the quinolone resistance-determining regions (QRDRs) in the A subunit of DNA gyrase and the C subunit (ParC) of topoisomerase IV (Topo IV) of Methylovorus sp. strain SS1, Methylobacterium extorquens AM1 NCIB 9133, Methylobacillus sp, strain SK1 DSM 8269, and Methylophilus methylotrophus NCIB 10515 were determined. The deduced amino acid sequences of the QRDRs of the ParCs in the four methylotrophic bacteria were identical to that of E. coli ParC. The sequences of the QRDR in GyrA were also identical to those in E. coli GyrA except for the amino acids at positions 83, 87, or 95. The Ser83 to Thr substitution in Methylovorus sp. strain SS1, and the Ser83 to Leu and Asp87 to Asn substitutions in the three other methylotrophs, agreed well with the minimal inhibitory concentrations of quinolones in the four bacteria, suggesting that these residues play a role in the intrinsic susceptibility of methylotrophic bacteria to quinolones. | 2005 | 16404155 |
| 9997 | 3 | 0.8981 | RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production. | 2010 | 21209831 |
| 332 | 4 | 0.8978 | Analysis and Reconstitution of the Menaquinone Biosynthesis Pathway in Lactiplantibacillus plantarum and Lentilactibacillus buchneri. In Lactococcus lactis and some other lactic acid bacteria, respiratory metabolism has been reported upon supplementation with only heme, leading to enhanced biomass formation, reduced acidification, resistance to oxygen, and improved long-term storage. Genes encoding a complete respiratory chain with all components were found in genomes of L. lactis and Leuconostoc mesenteroides, but menaquinone biosynthesis was found to be incomplete in Lactobacillaceae (except L. mesenteroides). Lactiplantibacillus plantarum has only two genes (menA, menG) encoding enzymes in the biosynthetic pathway (out of eight), and Lentilactobacillus buchneri has only four (menA, menB, menE, and menG). We constructed knock-out strains of L. lactis defective in menA, menB, menE, and menG (encoding the last steps in the pathway) and complemented these by expression of the extant genes from Lactipl. plantarum and Lent. buchneri to verify their functionality. Three of the Lactipl. plantarum biosynthesis genes, lpmenA1, lpmenG1, and lpmenG2, as well as lbmenB and lbmenG from Lent. buchneri, reconstituted menaquinone production and respiratory growth in the deficient L. lactis strains when supplemented with heme. We then reconstituted the incomplete menaquinone biosynthesis pathway in Lactipl. plantarum by expressing six genes from L. lactis homologous to the missing genes in a synthetic operon with two inducible promoters. Higher biomass formation was observed in Lactipl. plantarum carrying this operon, with an OD(600) increase from 3.0 to 5.0 upon induction. | 2021 | 34361912 |
| 6077 | 5 | 0.8969 | Brytella acorum gen. nov., sp. nov., a novel acetic acid bacterium from sour beverages. Polyphasic taxonomic and comparative genomic analyses revealed that a series of lambic beer isolates including strain LMG 32668(T) and the kombucha isolate LMG 32879 represent a novel species among the acetic acid bacteria, with Acidomonas methanolica as the nearest phylogenomic neighbor with a valid name. Overall genomic relatedness indices and phylogenomic and physiological analyses revealed that this novel species was best classified in a novel genus for which we propose the name Brytella acorum gen. nov., sp. nov., with LMG 32668(T) (=CECT 30723(T)) as the type strain. The B. acorum genomes encode a complete but modified tricarboxylic acid cycle, and complete pentose phosphate, pyruvate oxidation and gluconeogenesis pathways. The absence of 6-phosphofructokinase which rendered the glycolysis pathway non-functional, and an energy metabolism that included both aerobic respiration and oxidative fermentation are typical metabolic characteristics of acetic acid bacteria. Neither genome encodes nitrogen fixation or nitrate reduction genes, but both genomes encode genes for the biosynthesis of a broad range of amino acids. Antibiotic resistance genes or virulence factors are absent. | 2023 | 37429096 |
| 6006 | 6 | 0.8962 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 824 | 7 | 0.8958 | Cloning, nucleotide sequence, and expression in Escherichia coli of levansucrase genes from the plant pathogens Pseudomonas syringae pv. glycinea and P. syringae pv. phaseolicola. Plant-pathogenic bacteria produce various extracellular polysaccharides (EPSs) which may function as virulence factors in diseases caused by these bacteria. The EPS levan is synthesized by the extracellular enzyme levansucrase in Pseudomonas syringae, Erwinia amylovora, and other bacterial species. The lsc genes encoding levansucrase from P. syringae pv. glycinea PG4180 and P. syringae pv. phaseolicola NCPPB 1321 were cloned, and their nucleotide sequences were determined. Heterologous expression of the lsc gene in Escherichia coli was found in four and two genomic library clones of strains PG4180 and NCPPB 1321, respectively. A 3. 0-kb PstI fragment common to all six clones conferred levan synthesis on E. coli when further subcloned. Nucleotide sequence analysis revealed a 1,248-bp open reading frame (ORF) derived from PG4180 and a 1,296-bp ORF derived from NCPPB 1321, which were both designated lsc. Both ORFs showed high homology to the E. amylovora and Zymomonas mobilis lsc genes at the nucleic acid and deduced amino acid sequence levels. Levansucrase was not secreted into the supernatant but was located in the periplasmic fraction of E. coli harboring the lsc gene. Expression of lsc was found to be dependent on the vector-based Plac promoter, indicating that the native promoter of lsc was not functional in E. coli. Insertion of an antibiotic resistance cassette in the lsc gene abolished levan synthesis in E. coli. A PCR screening with primers derived from lsc of P. syringae pv. glycinea PG4180 allowed the detection of this gene in a number of related bacteria. | 1998 | 9726857 |
| 548 | 8 | 0.8946 | Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. The MER5 [now called the Aop1 (antioxidant protein 1) gene] was cloned as a transiently expressed gene of murine erythroleukaemia (MEL) cell differentiation and its antisense expression inhibited differentiation of MEL cells. We found that the Aop1 gene shows significant nucleotide sequence similarity to the gene coding for the C22 subunit of Salmonella typhimurium alkylhydroperoxide reductase, which is also found in other bacteria, suggesting it functions as an antioxidant protein. Expression of the Aop1 gene product in E. coli deficient in the C22-subunit gene rescued resistance of the bacteria to alkylhydroperoxide. The human and mouse Aop1 genes are highly conserved, and they mapped to the regions syntenic between mouse and human chromosomes. Sequence comparisons with recently cloned mammalian Aop1 homologues suggest that these genes consist of a family that is responsible for regulation of cellular proliferation, differentiation and antioxidant functions. | 1995 | 7733872 |
| 636 | 9 | 0.8946 | Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood. | 2014 | 25157076 |
| 407 | 10 | 0.8946 | Molecular cloning and characterization of two lincomycin-resistance genes, lmrA and lmrB, from Streptomyces lincolnensis 78-11. Two different lincomycin-resistance determinants (lmrA and lmrB) from Streptomyces lincolnensis 78-11 were cloned in Streptomyces lividans 66 TK23. The gene lmrA was localized on a 2.16 kb fragment, the determined nucleotide sequence of which encoded a single open reading frame 1446 bp long. Analysis of the deduced amino acid sequence suggested the presence of 12 membrane-spanning domains and showed significant similarities to the methylenomycin-resistance protein (Mmr) from Streptomyces coelicolor, the QacA protein from Staphylococcus aureus, and several tetracycline-resistance proteins from both Gram-positive and Gram-negative bacteria, as well as to some sugar-transport proteins from Escherichia coli. The lmrB gene was actively expressed from a 2.7 kb fragment. An open reading frame of 837 bp could be localized which encoded a protein that was significantly similar to 23S rRNA adenine(2058)-N-methyltransferases conferring macrolide-lincosamide-streptogramin resistance. LmrB also had putative rRNA methyltransferase activity since lincomycin resistance of ribosomes was induced in lmrB-containing strains. Surprisingly, both enzymes, LmrA and LmrB, had a substrate specificity restricted to lincomycin and did not cause resistance to other lincosamides such as celesticetin and clindamycin, or to macrolides. | 1992 | 1328813 |
| 6082 | 11 | 0.8940 | Complete genome sequence of the probiotic candidate strain Lacticaseibacillus rhamnosus B3421 isolated from Panax ginseng C. A. Meyer in South Korea. OBJECTIVES: Lacticaseibacillus rhamnosus is a widely recognized probiotic bacteria with therapeutic applications in human and animal health. The L. rhamnosus B3421 strain, isolated from Panax ginseng, has been reported to be associated with antioxidant and anti-inflammatory properties, supporting its functional potential. We sequenced and analyzed the genome of L. rhamnosus B3421 to evaluate its probiotic potential for human healthcare and animal applications, focusing on genomic features related to safety and functionality. DATA DESCRIPTION: In this study, we isolated L. rhamnosus B3421 from Panax ginseng C. A. Meyer (Ginseng) and performed whole-genome sequencing. The genome of L. rhamnosus B3421 consists of 3,000,051 base pairs (bp) with a guanine + cytosine (G + C) content of 46.70%. It encodes 59 transfer RNAs, 15 ribosomal RNAs, and 2,807 coding sequences (CDSs). Of these CDSs, 99.13% (2,758 proteins) were assigned to functional categories in the Clusters of Orthologous Group (COGs) classification system, while 49 proteins remained uncharacterized. Our genome analysis identified no antibiotic resistance (ABR) or antimicrobial resistance (AMR) genes, indicating that L. rhamnosus B3421 is a safe probiotic bacterium with minimal risk of contributing to the horizontal transfer of antibiotic resistance within the gut microbiome. Additionally, the genome contains genes associated with the ggmotif (PF10439), Enterocin X chain beta, and Carnocin CP52, as identified through BAGEL4 analysis, along with 24 other genes related to reductase or peroxidase activities. These genes may confer competitive advantages against pathogenic bacteria and oxidative stress. Our findings highlight the probiotic potential of L. rhamnosus B3421 and its prospective applications in promoting human and animal health. | 2025 | 40877785 |
| 515 | 12 | 0.8940 | The Streptomyces peucetius dpsY and dnrX genes govern early and late steps of daunorubicin and doxorubicin biosynthesis. The Streptomyces peucetius dpsY and dnrX genes govern early and late steps in the biosynthesis of the clinically valuable antitumor drugs daunorubicin (DNR) and doxorubicin (DXR). Although their deduced products resemble those of genes thought to be involved in antibiotic production in several other bacteria, this information could not be used to identify the functions of dpsY and dnrX. Replacement of dpsY with a mutant form disrupted by insertion of the aphII neomycin-kanamycin resistance gene resulted in the accumulation of UWM5, the C-19 ethyl homolog of SEK43, a known shunt product of iterative polyketide synthases involved in the biosynthesis of aromatic polyketides. Hence, DpsY must act along with the other components of the DNR-DXR polyketide synthase to form 12-deoxyaklanonic acid, the earliest known intermediate of the DXR pathway. Mutation of dnrX in the same way resulted in a threefold increase in DXR production and the disappearance of two acid-sensitive, unknown compounds from culture extracts. These results suggest that dnrX, analogous to the role of the S. peucetius dnrH gene (C. Scotti and C. R. Hutchinson, J. Bacteriol. 178:73167321, 1996), may be involved in the metabolism of DNR and/or DXR to acid-sensitive compounds, possibly related to the baumycins found in many DNR-producing bacteria. | 1998 | 9573189 |
| 6083 | 13 | 0.8940 | Bioactivity and genome analysis of Bacillus amyloliquefaciens GL18 isolated from the rhizosphere of Kobresia myosuroides in an alpine meadow. The unique eco-environment of the Qinghai-Tibet Plateau breeds abundant microbial resources. In this research, Bacillus amyloliquefaciens GL18, isolated from the rhizosphere of Kobresia myosuroides from an alpine meadow, and the antagonistic activity, bacteriostatic hydrolase activity, and low temperature, salt, and drought resistance of it were determined and analysed. The seedlings of Avena sativa were root-irrigated using bacteria suspensions (cell concentration 1 × 10(7) cfu/mL) of GL18, and the growth-promoting effect of GL18 on it was determined under cold, salt and drought stress, respectively. The whole genome of GL18 was sequenced, and its functional genes were analysed. GL18 presented significant antagonistic activity to Fusarium graminearum, Fusarium acuminatum, Fusarium oxysporum and Aspergillus niger (inhibition zone diameter > 17 mm). Transparent zones formed on four hydrolase detection media, indicating that GL18 secreted cellulase, protease, pectinase and β-1,3-glucanase. GL18 tolerated conditions of 10 °C, 11% NaCl and 15% PEG-6000, presenting cold, salt and drought resistance. GL18 improved the cold, salt and drought tolerance of A. sativa and it showed significant growth effects under different stress. The total length of the GL18 genome was 3,915,550 bp, and the number of coding DNA sequence was 3726. Compared with the clusters of orthologous groups of proteins, gene ontology and kyoto encyclopedia of genes and genomes databases, 3088, 2869 and 2357 functional genes were annotated, respectively. GL18 contained gene clusters related to antibacterial substances, functional genes related to the synthesis of plant growth-promoting substances, and encoding genes related to stress resistance. This study identified an excellent Bacillus strain and provided a theoretical basis for improving stress resistance and promoting the growth of herbages under abiotic stress. | 2024 | 38189906 |
| 6081 | 14 | 0.8940 | In vitro probiotic characteristics and whole-genome sequence analysis of lactic acid bacteria isolated from monkey faeces. This study aimed to isolate lactic acid bacteria from monkey faeces and evaluate their safety and probiotic properties through a combination of in vitro assays and complete genomic sequencing. The results revealed that two Limosilactobacillus reuteri strains (LDHa and LSHe) exhibited promising probiotic attributes: no hemolytic activity, remarkable antibacterial activity against intestinal pathogens, high bile salt tolerance (77.46% survival rate for LDHa at 0.3% bile salt concentration), excellent gastrointestinal resistance (survival rate > 40%), and favorable surface characteristics (63.92-66.00% auto-aggregation; 91.33-93.80% hydrophobicity). The whole genome sequencing results revealed that strain LDHa has a total length of 2,031,794 bp with a GC content of 39.02% and contains (Strompfová et al. 2014) coding genes. The LSHe strain has a total length of 2,031,507 bp with a GC content of 39.02% and contains 1954 coding genes. Genomic analysis revealed that both strains possess four CRISPR sequences and one secondary metabolic gene cluster, with functional annotations from the EGGNOG, KEGG, and CAZy databases demonstrating genome stability; the absence of horizontally transferable antibiotic resistance genes; the enrichment of metabolic pathway-related genes, and probiotic-associated functional potential including antimicrobial, anti-inflammatory, immunomodulatory, and antitumor activities. This study demonstrated that L. reuteri LDHa and LSHe exhibit favorable safety profiles and probiotic potential at both physiological and genomic levels, positioning them as promising candidates for probiotic formulations in captive primate populations. | 2025 | 40852645 |
| 3021 | 15 | 0.8938 | Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup. | 2011 | 21115076 |
| 6003 | 16 | 0.8937 | Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 h. After lens removal, corneas were immediately challenged for 4 h with P. aeruginosa. A separate group of naïve mice were similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naive controls as was lens wear alone. Total RNA-sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including: upregulated pattern-recognition receptors (tlr3, nod1), downregulated lectin pathway of complement activation (masp1), amplified upregulation of tcf7, gpr55, ifi205, wfdc2 (immune defense) and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, gpr55 (immune defense) and downregulated Ca2(+)-dependent genes necab1, snx31 and npr3. P. aeruginosa exposure to prior lens wearing vs. naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226) and antimicrobial resistance (arnB, oprR). CONCLUSION: Prior lens wear impacts corneal epithelium gene expression altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis. | 2024 | 39677621 |
| 404 | 17 | 0.8937 | Plasmid-borne cadmium resistance genes in Listeria monocytogenes are similar to cadA and cadC of Staphylococcus aureus and are induced by cadmium. pLm74 is the smallest known plasmid in Listeria monocytogenes. It confers resistance to the toxic divalent cation cadmium. It contains a 3.1-kb EcoRI fragment which hybridizes with the cadAC genes of plasmid pI258 of Staphylococcus aureus. When introduced into cadmium-sensitive L. monocytogenes or Bacillus subtilis strains, this fragment conferred cadmium resistance. The DNA sequence of the 3.1-kb EcoRI fragment contains two open reading frames, cadA and cadC. The deduced amino acid sequences are similar to those of the cad operon of plasmid pI258 of S. aureus, known to prevent accumulation of Cd2+ in the bacteria by an ATPase efflux mechanism. The cadmium resistance determinant of L. monocytogenes does not confer zinc resistance, in contrast to the cadAC determinant of S. aureus, suggesting that the two resistance mechanisms are slightly different. Slot blot DNA-RNA hybridization analysis showed cadmium-inducible synthesis of L. monocytogenes cadAC RNA. | 1994 | 8188605 |
| 6004 | 18 | 0.8936 | Contact Lens Wear Alters Transcriptional Responses to Pseudomonas aeruginosa in Both the Corneal Epithelium and the Bacteria. PURPOSE: Healthy corneas resist colonization by virtually all microbes, yet contact lens wear can predispose the cornea to sight-threatening infection with Pseudomonas aeruginosa. Here, we explored how lens wear changes corneal epithelium transcriptional responses to P. aeruginosa and its impact on bacterial gene expression. METHODS: Male and female C57BL/6J mice were fitted with a contact lens on one eye for 24 hours. After lens removal, corneas were immediately challenged for 4 hours with P. aeruginosa. A separate group of naïve mice was similarly challenged with bacteria. Bacteria-challenged eyes were compared to uninoculated naïve controls, as was lens wear alone. Total RNA sequencing determined corneal epithelium and bacterial gene expression. RESULTS: Prior lens wear profoundly altered the corneal response to P. aeruginosa, including upregulated pattern recognition receptors (tlr3, nod1); downregulated lectin pathway of complement activation (masp1); amplified upregulation of tcf7, gpr55, ifi205, and wfdc2 (immune defense); and further suppression of efemp1 (corneal stromal integrity). Without lens wear, P. aeruginosa upregulated mitochondrial and ubiquinone metabolism genes. Lens wear alone upregulated axl, grn, tcf7, and gpr55 (immune defense) and downregulated Ca2+-dependent genes necab1, snx31, and npr3. P. aeruginosa exposure to prior lens wearing versus naïve corneas upregulated bacterial genes of virulence (popD), its regulation (rsmY, PA1226), and antimicrobial resistance (arnB, oprR). CONCLUSIONS: Prior lens wear impacts corneal epithelium gene expression, altering its responses to P. aeruginosa and how P. aeruginosa responds to it favoring virulence, survival, and adaptation. Impacted genes and associated networks provide avenues for research to better understand infection pathogenesis. | 2025 | 39932472 |
| 531 | 19 | 0.8936 | p-Aminobenzoic acid and chloramphenicol biosynthesis in Streptomyces venezuelae: gene sets for a key enzyme, 4-amino-4-deoxychorismate synthase. Amplification of sequences from Streptomyces venezuelae ISP5230 genomic DNA using PCR with primers based on conserved prokaryotic pabB sequences gave two main products. One matched pabAB, a locus previously identified in S. venezuelae. The second closely resembled the conserved pabB sequence consensus and hybridized with a 3.8 kb NcoI fragment of S. venezuelae ISP5230 genomic DNA. Cloning and sequence analysis of the 3.8 kb fragment detected three ORFs, and their deduced amino acid sequences were used in BLAST searches of the GenBank database. The ORF1 product was similar to PabB in other bacteria and to the PabB domain encoded by S. venezuelae pabAB. The ORF2 product resembled PabA of other bacteria. ORF3 was incomplete; its deduced partial amino acid sequence placed it in the MocR group of GntR-type transcriptional regulators. Introducing vectors containing the 3.8 kb NcoI fragment of S. venezuelae DNA into pabA and pabB mutants of Escherichia coli, or into the Streptomyces lividans pab mutant JG10, enhanced sulfanilamide resistance in the host strains. The increased resistance was attributed to expression of the pair of discrete translationally coupled p-aminobenzoic acid biosynthesis genes (designated pabB/pabA) cloned in the 3.8 kb fragment. These represent a second set of genes encoding 4-amino-4-deoxychorismate synthase in S. venezuelae ISP5230. In contrast to the fused pabAB set previously isolated from this species, they do not participate in chloramphenicol biosynthesis, but like pabAB they can be disrupted without affecting growth on minimal medium. The gene disruption results suggest that S. venezuelae may have a third set of genes encoding PABA synthase. | 2001 | 11495989 |