DEFINITIVE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
828100.9929Exploring multiple drug and herbicide resistance in plants--spotlight on transporter proteins. Multiple drug resistance (MDR) has been extensively studied in bacteria, yeast, and mammalian cells due to the great clinical significance of this problem. MDR is not well studied in plant systems, although plant genomes contain large numbers of genes encoding putative MDR transporters (MDRTs). Biochemical pathways in the chloroplast are the targets of many herbicides and antibiotics, yet very little data is available regarding mechanisms of drug transport across the chloroplast membrane. MDRTs typically have broad substrate specificities, and may transport essential compounds and metabolites in addition to toxins. Indeed, plant transporters belonging to MDR families have also been implicated in the transport of a wide variety of compounds including auxins, flavonoids, glutathione conjugates, metal chelators, herbicides and antibiotics, although definitive evidence that a single transporter is capable of moving both toxins and metabolites has not yet been provided. Current understanding of plant MDR can be expanded via the characterization of candidate genes, especially MDRTs predicted to localize to the chloroplast, and also via traditional forward genetic approaches. Novel plant MDRTs have the potential to become endogenous selectable markers, aid in phytoremediation strategies, and help us to understand how plants have evolved to cope with toxins in their environment.201121421361
374510.9927Antimicrobial resistance in methicillin-resistant staphylococcus aureus. In the medical community, antibiotics are revered as a miracle because they stop diseases brought on by pathogenic bacteria. Antibiotics have become the cornerstone of contemporary medical advancements ever since penicillin was discovered. Antibiotic resistance developed among germs quickly, placing a strain in the medical field. Methicillin-resistant Staphylococcus aureus (MRSA), Since 1961, has emerged as the major general antimicrobial resistant bacteria (AMR) worldwide. MRSA can easily transmit across the hospital system and has mostly gained resistance to medications called beta-lactamases. This enzyme destroys the cell wall of beta-lactam antibiotics resulting in resistance against that respective antibiotic. Daptomycin, linezolid and vancomycin were previously used to treat MRSA infections. However, due to mutations and Single nucleotide polymorphisms (SNPs) in Open reading frames (ORFs) and SCCmec machinery of respective antibody, MRSA developed resistance against those antibiotics. The MRSA strains (USA300, CC398, CC130 etc.), when their pan-genomes were analyzed were found the genes involved in invoking resistance against the antibiotics as well as the epidemiology of that respective strain. PENC (penicillin plus potassium clavulanate) is the new antibiotic showing potential in treatment of MRSA though it is itself resistant against penicillin alone. In this review, our main focus is on mechanism of development of AMR in MRSA, how different ORFs are involved in evoking resistance in MRSA and what is the core-genome of different antimicrobial resistant MRSA.202336936699
479120.9926Detection of tetracycline resistance genes by PCR methods. Rapid, accurate, and sensitive determination of antibiotic resistance profiles of various human and animal pathogens becomes a vital prerequisite for successful therapeutic intervention in the face of the increased occurrences of drug-resistant bacterial infections. The current methods, which are dependent on cultivation of pathogens and phenotypic expression of antibiotic resistance, usually require excessive time, special microbiological equipment, and qualified personnel. However, even with all these requisites, for example, no bacteria can be grown from more than 80% of all clinical samples sent to clinical microbiology laboratories. Besides the cultivation limitations, the cultivation-based determination of an antibiotic resistance profile lacks the genotypic information, which is essential for understanding the epidemiology and routes of transmission of antibiotic resistance genes. These genes often reside on mobile genetic elements and can move freely between commensal and pathogenic microbiota, occurring even between taxonomically distant clinical and environmental microbiota. Therefore, development of genotyping methods for detection of antibiotic resistance genes is highly desirable for fast, accurate, and sensitive detection of antibiotic resistance genes in a broad range of pathogenic and commensal bacteria in both clinical and environmental samples. As a model for our studies we have chosen the genes conferring resistance to tetracyclines. Tetracyclines belong to a family of broad-spectrum antibiotics that include tetracycline, chlortetracycline, oxytetracycline, demeclocycline, methacycline, doxycycline, minocycline, and a number of other semisynthetic derivatives. These antibiotics inhibit protein synthesis in Gram-positive and Gram-negative bacteria by preventing the binding of aminoacyl-tRNA molecules to the 30S ribosomal subunit. The antibiotics of this group were introduced in the late 1950s and since then have been widely used in clinical and veterinary medicine, as well as for prophylaxis and growth promotion in food animals. Because of the possible misuse and overuse of these drugs, resistance to this class of antibiotics is widespread among many clinical isolates, thus limiting the utility of tetracyclines in treating infections. Despite this shortcoming, antibiotics of this class still remain in the active arsenal for dermatologists to treat skin infections such as acne and rosacea.200415156014
839930.9926SYN-View: A Phylogeny-Based Synteny Exploration Tool for the Identification of Gene Clusters Linked to Antibiotic Resistance. The development of new antibacterial drugs has become one of the most important tasks of the century in order to overcome the posing threat of drug resistance in pathogenic bacteria. Many antibiotics originate from natural products produced by various microorganisms. Over the last decades, bioinformatical approaches have facilitated the discovery and characterization of these small compounds using genome mining methodologies. A key part of this process is the identification of the most promising biosynthetic gene clusters (BGCs), which encode novel natural products. In 2017, the Antibiotic Resistant Target Seeker (ARTS) was developed in order to enable an automated target-directed genome mining approach. ARTS identifies possible resistant target genes within antibiotic gene clusters, in order to detect promising BGCs encoding antibiotics with novel modes of action. Although ARTS can predict promising targets based on multiple criteria, it provides little information about the cluster structures of possible resistant genes. Here, we present SYN-view. Based on a phylogenetic approach, SYN-view allows for easy comparison of gene clusters of interest and distinguishing genes with regular housekeeping functions from genes functioning as antibiotic resistant targets. Our aim is to implement our proposed method into the ARTS web-server, further improving the target-directed genome mining strategy of the ARTS pipeline.202033396183
836640.9926Novel LanT associated lantibiotic clusters identified by genome database mining. BACKGROUND: Frequent use of antibiotics has led to the emergence of antibiotic resistance in bacteria. Lantibiotic compounds are ribosomally synthesized antimicrobial peptides against which bacteria are not able to produce resistance, hence making them a good alternative to antibiotics. Nisin is the oldest and the most widely used lantibiotic, in food preservation, without having developed any significant resistance against it. Having their antimicrobial potential and a limited number, there is a need to identify novel lantibiotics. METHODOLOGY/FINDINGS: Identification of novel lantibiotic biosynthetic clusters from an ever increasing database of bacterial genomes, can provide a major lead in this direction. In order to achieve this, a strategy was adopted to identify novel lantibiotic biosynthetic clusters by screening the sequenced genomes for LanT homolog, which is a conserved lantibiotic transporter specific to type IB clusters. This strategy resulted in identification of 54 bacterial strains containing the LanT homologs, which are not the known lantibiotic producers. Of these, 24 strains were subjected to a detailed bioinformatic analysis to identify genes encoding for precursor peptides, modification enzyme, immunity and quorum sensing proteins. Eight clusters having two LanM determinants, similar to haloduracin and lichenicidin were identified, along with 13 clusters having a single LanM determinant as in mersacidin biosynthetic cluster. Besides these, orphan LanT homologs were also identified which might be associated with novel bacteriocins, encoded somewhere else in the genome. Three identified gene clusters had a C39 domain containing LanT transporter, associated with the LanBC proteins and double glycine type precursor peptides, the only known example of such a cluster is that of salivaricin. CONCLUSION: This study led to the identification of 8 novel putative two-component lantibiotic clusters along with 13 having a single LanM and 3 with LanBC genes. Putative lantibiotic clusters identified here hold the potential for the discovery of novel lantibiotic(s).201424621781
839850.9925ARTS 2.0: feature updates and expansion of the Antibiotic Resistant Target Seeker for comparative genome mining. Multi-drug resistant pathogens have become a major threat to human health and new antibiotics are urgently needed. Most antibiotics are derived from secondary metabolites produced by bacteria. In order to avoid suicide, these bacteria usually encode resistance genes, in some cases within the biosynthetic gene cluster (BGC) of the respective antibiotic compound. Modern genome mining tools enable researchers to computationally detect and predict BGCs that encode the biosynthesis of secondary metabolites. The major challenge now is the prioritization of the most promising BGCs encoding antibiotics with novel modes of action. A recently developed target-directed genome mining approach allows researchers to predict the mode of action of the encoded compound of an uncharacterized BGC based on the presence of resistant target genes. In 2017, we introduced the 'Antibiotic Resistant Target Seeker' (ARTS). ARTS allows for specific and efficient genome mining for antibiotics with interesting and novel targets by rapidly linking housekeeping and known resistance genes to BGC proximity, duplication and horizontal gene transfer (HGT) events. Here, we present ARTS 2.0 available at http://arts.ziemertlab.com. ARTS 2.0 now includes options for automated target directed genome mining in all bacterial taxa as well as metagenomic data. Furthermore, it enables comparison of similar BGCs from different genomes and their putative resistance genes.202032427317
870860.9925Genome-Driven Discovery of Enzymes with Industrial Implications from the Genus Aneurinibacillus. Bacteria belonging to the genus Aneurinibacillus within the family Paenibacillaceae are Gram-positive, endospore-forming, and rod-shaped bacteria inhabiting diverse environments. Currently, there are eight validly described species of Aneurinibacillus; however, several unclassified species have also been reported. Aneurinibacillus spp. have shown the potential for producing secondary metabolites (SMs) and demonstrated diverse types of enzyme activities. These features make them promising candidates with industrial implications. At present, genomes of 9 unique species from the genus Aneurinibacillus are available, which can be utilized to decipher invaluable information on their biosynthetic potential as well as enzyme activities. In this work, we performed the comparative genome analyses of nine Aneurinibacillus species representing the first such comprehensive study of this genus at the genome level. We focused on discovering the biosynthetic, biodegradation, and heavy metal resistance potential of this under-investigated genus. The results indicate that the genomes of Aneurinibacillus contain SM-producing regions with diverse bioactivities, including antimicrobial and antiviral activities. Several carbohydrate-active enzymes (CAZymes) and genes involved in heavy metal resistance were also identified. Additionally, a broad range of enzyme classes were also identified in the Aneurinibacillus pan-genomes, making this group of bacteria potential candidates for future investigations with industrial applications.202133652876
846270.9924Comparative Genomics of Lactiplantibacillus plantarum: Insights Into Probiotic Markers in Strains Isolated From the Human Gastrointestinal Tract and Fermented Foods. Lactiplantibacillus (Lpb.) plantarum is a versatile species commonly found in a wide variety of ecological niches including dairy products and vegetables, while it may also occur as a natural inhabitant of the human gastrointestinal tract. Although Lpb. plantarum strains have been suggested to exert beneficial properties on their host, the precise mechanisms underlying these microbe-host interactions are still obscure. In this context, the genome-scale in silico analysis of putative probiotic bacteria represents a bottom-up approach to identify probiotic biomarkers, predict desirable functional properties, and identify potentially detrimental antibiotic resistance genes. In this study, we characterized the bacterial genomes of three Lpb. plantarum strains isolated from three distinct environments [strain IMC513 (from the human GIT), C904 (from table olives), and LT52 (from raw-milk cheese)]. A whole-genome sequencing was performed combining Illumina short reads with Oxford Nanopore long reads. The phylogenomic analyses suggested the highest relatedness between IMC513 and C904 strains which were both clade 4 strains, with LT52 positioned within clade 5 within the Lpb. plantarum species. The comparative genome analysis performed across several Lpb. plantarum representatives highlighted the genes involved in the key metabolic pathways as well as those encoding potential probiotic features in these new isolates. In particular, our strains varied significantly in genes encoding exopolysaccharide biosynthesis and in contrast to strains IMC513 and C904, the LT52 strain does not encode a Mannose-binding adhesion protein. The LT52 strain is also deficient in genes encoding complete pentose phosphate and the Embden-Meyerhof pathways. Finally, analyses using the CARD and ResFinder databases revealed that none of the strains encode known antibiotic resistance loci. Ultimately, the results provide better insights into the probiotic potential and safety of these three strains and indicate avenues for further mechanistic studies using these isolates.202235663852
921380.9924Emergence of antibiotic-resistant extremophiles (AREs). Excessive use of antibiotics in recent years has produced bacteria that are resistant to a wide array of antibiotics. Several genetic and non-genetic elements allow microorganisms to adapt and thrive under harsh environmental conditions such as lethal doses of antibiotics. We attempt to classify these microorganisms as antibiotic-resistant extremophiles (AREs). AREs develop strategies to gain greater resistance to antibiotics via accumulation of multiple genes or plasmids that harbor genes for multiple drug resistance (MDR). In addition to their altered expression of multiple genes, AREs also survive by producing enzymes such as penicillinase that inactivate antibiotics. It is of interest to identify the underlying molecular mechanisms by which the AREs are able to survive in the presence of wide arrays of high-dosage antibiotics. Technologically, "omics"-based approaches such as genomics have revealed a wide array of genes differentially expressed in AREs. Proteomics studies with 2DE, MALDI-TOF, and MS/MS have identified specific proteins, enzymes, and pumps that function in the adaptation mechanisms of AREs. This article discusses the molecular mechanisms by which microorganisms develop into AREs and how "omics" approaches can identify the genetic elements of these adaptation mechanisms. These objectives will assist the development of strategies and potential therapeutics to treat outbreaks of pathogenic microorganisms in the future.201222907125
587990.9924Isolation and phenotypic and genomic characterization of Tetragenococcus spp. from two Spanish traditional blue-veined cheeses made of raw milk. High throughput sequencing has recently revealed the presence of Tetragenococcus-related DNA sequences in dairy environments such as brine and cheeses. In the present work, a selective medium was developed to isolate Tetragenococcus spp. from two ripened, traditional, Spanish, blue-veined cheese varieties made from raw milk. The strains recovered belonged to either Tetragenococcus koreensis or Tetragenococcus halophilus species. Twenty of these isolates (15 of T. koreensis and 5 of T. halophilus) were then subjected to a battery of phenotypic and genetic tests, and six strains (4 T. koreensis and 2 T. halophilus) to genome sequencing. Wide genetic and phenotypic diversity was noted. All strains grew poorly in milk, producing small quantities of lactic and acetic acids. Most strains used lactose as a carbon source and ferment milk citrate. In agreement, genome analysis detected in the genome of the six strains analyzed gene clusters harboring several lactose/galactose-related genes and genes encoding citrate metabolic enzymes (permease, citrate lyase, and oxaloacetate decarboxylase). Most of the tested strains were resistant to erythromycin and clindamycin, and a few to other antimicrobial agents, but neither known mutations nor acquired genes conferring resistance to antibiotics were identified in their genomes. Neither were genes coding for pathogenicity or virulence factors detected. Decarboxylase-encoding genes involved in biogenic amine production were not identified, in keeping with the strains' negative biogenic amine-producer phenotype. Genome comparison revealed vast arrays of genes (similar in number to those described in other lactic acid bacteria) coding for components of proteolytic and lipolytic systems. Tetragenococcus strains showing desirable traits plus the absence of detrimental features might be exploitable in the form of secondary, adjunct or ripening cultures to ensure the typical bouquet of traditional blue-veined cheeses is obtained, or to diversify the final flavor in other varieties.202235427955
9561100.9924The resistance tsunami, antimicrobial stewardship, and the golden age of microbiology. Modern medicine is built on antibiotics. Antibiotics are something that we take for granted. We have however spent over 60 years educating bacteria to become resistant, and the global resistance tsunami has caught everyone unawares. Since bacteria have changed, we also have to change, and to change most of the practices of how we use antibiotics. Because the development of new antibiotics is so expensive, a stewardship approach may help to preserve those that we have now while we work to develop new antibiotics and to develop other approaches to controlling and treating infections. We need to adopt the ethic of Good Stewardship Practice (GSP) as an active and dynamic process of continuous improvement in antibiotic use, a process with many steps of different sizes involving everyone involved in antibiotic use. All antibiotic users have an important role to play in GSP. Although the resistance situation is pessimistic, and the future of antibiotics looks uncertain, we are fortunately entering what may be seen as the golden age of microbiology. This encompasses an astonishing array of technologies for rapid pathogen and resistance gene detection, for clone identification by genome sequencing, for identification of novel bacterial genes and for identification of the Achilles' heels of different pathogens. Future antibiotics may have to be far more targeted to the individual pathogen and the site of infection. A global tax on antibiotics might reduce their use while funding the cost of developing new antibiotics and new approaches to control of infectious diseases.201424646601
121110.9924Old and New Glycopeptide Antibiotics: Action and Resistance. Glycopeptides are considered antibiotics of last resort for the treatment of life-threatening infections caused by relevant Gram-positive human pathogens, such as Staphylococcus aureus, Enterococcus spp. and Clostridium difficile. The emergence of glycopeptide-resistant clinical isolates, first among enterococci and then in staphylococci, has prompted research for second generation glycopeptides and a flurry of activity aimed at understanding resistance mechanisms and their evolution. Glycopeptides are glycosylated non-ribosomal peptides produced by a diverse group of soil actinomycetes. They target Gram-positive bacteria by binding to the acyl-D-alanyl-D-alanine (D-Ala-D-Ala) terminus of the growing peptidoglycan on the outer surface of the cytoplasmatic membrane. Glycopeptide-resistant organisms avoid such a fate by replacing the D-Ala-D-Ala terminus with D-alanyl-D-lactate (D-Ala-D-Lac) or D-alanyl-D-serine (D-Ala-D-Ser), thus markedly reducing antibiotic affinity for the cellular target. Resistance has manifested itself in enterococci and staphylococci largely through the expression of genes (named van) encoding proteins that reprogram cell wall biosynthesis and, thus, evade the action of the antibiotic. These resistance mechanisms were most likely co-opted from the glycopeptide producing actinomycetes, which use them to avoid suicide during antibiotic production, rather than being orchestrated by pathogen bacteria upon continued treatment. van-like gene clusters, similar to those described in enterococci, were in fact identified in many glycopeptide-producing actinomycetes, such as Actinoplanes teichomyceticus, which produces teicoplanin, and Streptomyces toyocaensis, which produces the A47934 glycopeptide. In this paper, we describe the natural and semi-synthetic glycopeptide antibiotics currently used as last resort drugs for Gram-positive infections and compare the van gene-based strategies of glycopeptide resistance among the pathogens and the producing actinomycetes. Particular attention is given to the strategy of immunity recently described in Nonomuraea sp. ATCC 39727. Nonomuraea sp. ATCC 39727 is the producer of A40926, which is the natural precursor of the second generation semi-synthetic glycopeptide dalbavancin, very recently approved for acute bacterial skin and skin structure infections. A thorough understanding of glycopeptide immunity in this producing microorganism may be particularly relevant to predict and eventually control the evolution of resistance that might arise following introduction of dalbavancin and other second generation glycopeptides into clinics.201427025757
9813120.9924Antibacterial Discovery: 21st Century Challenges. It has been nearly 50 years since the golden age of antibiotic discovery (1945-1975) ended; yet, we still struggle to identify novel drug targets and to deliver new chemical classes of antibiotics to replace those rendered obsolete by drug resistance. Despite herculean efforts utilizing a wide range of antibiotic discovery platform strategies, including genomics, bioinformatics, systems biology and postgenomic approaches, success has been at best incremental. Obviously, finding new classes of antibiotics is really hard, so repeating the old strategies, while expecting different outcomes, seems to boarder on insanity. The key questions dealt with in this review include: (1) If mutation based drug resistance is the major challenge to any new antibiotic, is it possible to find drug targets and new chemical entities that can escape this outcome; (2) Is the number of novel chemical classes of antibacterials limited by the number of broad spectrum drug targets; and (3) If true, then should we focus efforts on subgroups of pathogens like Gram negative or positive bacteria only, anaerobic bacteria or other group where the range of common essential genes is likely greater?. This review also provides some examples of existing drug targets that appear to escape the specter of mutation based drug resistance, and provides examples of some intermediate spectrum strategies as well as modern molecular and genomic approaches likely to improve the odds of delivering 21st century medicines to combat multidrug resistant pathogens.202032353943
9726130.9924The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. The ecology of antibiotic resistance involves the interplay of a long natural history of antibiotic production in the environment, and the modern selection of resistance in pathogens through human use of these drugs. Important components of the resistome are intrinsic resistance genes of environmental bacteria, evolved and acquired over millennia, and their mobilization, which drives dissemination in pathogens. Understanding the dynamics and evolution of resistance across bacterial taxa is essential to address the current crisis in drug-resistant infections. Here we report the exploration of antibiotic resistance in the Paenibacillaceae prompted by our discovery of an ancient intrinsic resistome in Paenibacillus sp. LC231, recovered from the isolated Lechuguilla cave environment. Using biochemical and gene expression analysis, we have mined the resistome of the second member of the Paenibacillaceae family, Brevibacillus brevis VM4, which produces several antimicrobial secondary metabolites. Using phylogenomics, we show that Paenibacillaceae resistomes are in flux, evolve mostly independent of secondary metabolite biosynthetic diversity, and are characterized by cryptic, redundant, pseudoparalogous, and orthologous genes. We find that in contrast to pathogens, mobile genetic elements are not significantly responsible for resistome remodeling. This offers divergent modes of resistome development in pathogens and environmental bacteria.201829259290
9563140.9924Do we need new antibiotics? The search for new targets and new compounds. Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.201021086099
8279150.9924Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Many secondary metabolites (e.g. antibiotics and mycotoxins) are toxic to the microorganisms that produce them. The clusters of genes that are responsible for the biosynthesis of secondary metabolites frequently contain genes for resistance to these toxic metabolites, such as different types of multiple drug resistance systems, to avoid suicide of the producer strains. Recently there has been research into the efflux systems of secondary metabolites in bacteria and in filamentous fungi, such as the large number of ATP-binding cassette transporters found in antibiotic-producing Streptomyces species and that are involved in penicillin secretion in Penicillium chrysogenum. A different group of efflux systems, the major facilitator superfamily exporters, occur very frequently in a variety of bacteria that produce pigments or antibiotics (e.g. the cephamycin and thienamycin producers) and in filamentous fungi that produce mycotoxins. Such efflux systems include the CefT exporters that mediate cephalosporin secretion in Acremonium chrysogenum. The evolutionary origin of these efflux systems and their relationship with current resistance determinants in pathogenic bacteria has been analyzed. Genetic improvement of the secretion systems of secondary metabolites in the producer strain has important industrial applications.200515939351
4353160.9923Bioinformatics-driven discovery of skin microbiota bacteriocins as potential antibiotics and probiotics. The human skin microbiota, comprising a diverse range of microorganisms, including bacteria, viruses, and fungi, plays an important role in maintaining skin health and protecting against pathogenic invasions. Among these microorganisms, certain bacteria produce bacteriocins, which are ribosomal peptides with potent antimicrobial properties. This study presents a novel computational approach to identify and predict bacteriocins from microbial genomes comprising sebaceous region of the skin, aiming to explore their therapeutic potential. Through genome analysis using advanced bioinformatics tools, we identified potential genes, operons, open reading frames (ORFs), and promoter regions linked to bacteriocin production. The BAGEL4 platform was employed to detect structural bacteriocin genes, while modelling bacterial growth and bacteriocin expression under various environmental conditions was conducted using MATLAB's SimBiology application. The results revealed the optimal conditions for bacteriocin production and highlighted promising candidates for further experimental validation. These findings underscore the significance of skin microbiota as a source of novel bacteriocins, offering potential alternatives to traditional antibiotics amidst rising antimicrobial resistance.202540702306
4347170.9923Going through phages: a computational approach to revealing the role of prophage in Staphylococcus aureus. Prophages have important roles in virulence, antibiotic resistance, and genome evolution in Staphylococcus aureus . Rapid growth in the number of sequenced S. aureus genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011  S . aureus genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011  S . aureus ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in S. aureus and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the S. aureus genomes is novel.202337424556
5806180.9923Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Orthopaedic implant-associated infections are a devastating complication of orthopaedic surgery with a significant impact on patients and healthcare systems. The aims of this work were to describe the patterns of antimicrobial resistance, pathogenicity and virulence of clinical bacterial isolates from orthopaedic implant-associated infections and to further isolate and characterise bacteriophages that are efficient in controlling these bacteria. Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolated from orthopaedic infections showed multiresistance patterns to the most frequently used antibiotics in clinical settings. The presence of mobile genetic elements (mecA, Tn916/Tn1545 and intl1) and virulence determinants (icaB, cna, hlb, cylLs, cylM, agg, gelE, fsr and fimA) highlighted the pathogenicity of these isolates. Moreover, the isolates belonged to clonal complexes associated with the acquisition of pathogenicity islands and antimicrobial resistance genes by recombination and horizontal gene transfer. Bacteriophages vB_SauM_LM12, vB_EfaS_LM99 and vB_EcoM_JB75 were characterised and their ability to infect clinical isolates of S. aureus, E. faecalis and E. coli, respectively, was assessed. Morphological and genomic analyses revealed that vB_EfaS_LM99 and vB_EcoM_JB75 belong to the Siphoviridae and Myoviridae families, respectively, and no genes associated with lysogeny were found. The bacteriophages showed low latent periods, high burst sizes, broad host ranges and tolerance to several environmental conditions. Moreover, they showed high efficiency and specificity to infect and reduce clinical bacteria, including methicillin-resistant S. aureus and vancomycin-resistant enterococci. Therefore, the results obtained suggest that the bacteriophages used in this work are a promising approach to control these pathogens involved in orthopaedic implant-associated infections.201931229670
9815190.9923Prospecting gene therapy of implant infections. Infection still represents one of the most serious and ravaging complications associated with prosthetic devices. Staphylococci and enterococci, the bacteria most frequently responsible for orthopedic postsurgical and implant-related infections, express clinically relevant antibiotic resistance. The emergence of antibiotic-resistant bacteria and the slow progress in identifying new classes of antimicrobial agents have encouraged research into novel therapeutic strategies. The adoption of antisense or "antigene" molecules able to silence or knock-out bacterial genes responsible for their virulence is one possible innovative approach. Peptide nucleic acids (PNAs) are potential drug candidates for gene therapy in infections, by silencing a basic gene of bacterial growth or by tackling the antibiotic resistance or virulence factors of a pathogen. An efficacious contrast to bacterial genes should be set up in the first stages of infection in order to prevent colonization of periprosthesis tissues. Genes encoding bacterial factors for adhesion and colonization (biofilm and/or adhesins) would be the best candidates for gene therapy. But after initial enthusiasm for direct antisense knock-out or silencing of essential or virulence bacterial genes, difficulties have emerged; consequently, new approaches are now being attempted. One of these, interference with the regulating system of virulence factors, such as agr, appears particularly promising.200919882546