# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9076 | 0 | 0.9809 | ResiDB: An automated database manager for sequence data. The amount of publicly available DNA sequence data is drastically increasing, making it a tedious task to create sequence databases necessary for the design of diagnostic assays. The selection of appropriate sequences is especially challenging in genes affected by frequent point mutations such as antibiotic resistance genes. To overcome this issue, we have designed the webtool resiDB, a rapid and user-friendly sequence database manager for bacteria, fungi, viruses, protozoa, invertebrates, plants, archaea, environmental and whole genome shotgun sequence data. It automatically identifies and curates sequence clusters to create custom sequence databases based on user-defined input sequences. A collection of helpful visualization tools gives the user the opportunity to easily access, evaluate, edit, and download the newly created database. Consequently, researchers do no longer have to manually manage sequence data retrieval, deal with hardware limitations, and run multiple independent software tools, each having its own requirements, input and output formats. Our tool was developed within the H2020 project FAPIC aiming to develop a single diagnostic assay targeting all sepsis-relevant pathogens and antibiotic resistance mechanisms. ResiDB is freely accessible to all users through https://residb.ait.ac.at/. | 2021 | 33495705 |
| 9733 | 1 | 0.9805 | The 2018 Garrod Lecture: Preparing for the Black Swans of resistance. The need for governments to encourage antibiotic development is widely agreed, with 'market entry rewards' being suggested. Unless these are to be spread widely-which is unlikely given the $1 billion sums proposed-we should be wary, for this approach is likely to evolve into one of picking, or commissioning, a few 'winners' based on extrapolation of current resistance trends. The hazard to this is that whilst the evolution of resistance has predictable components, notably mutation, it also has completely unpredictable ones, contingent upon 'Black Swan' events. These include the escape of 'new' resistance genes from environmental bacteria and the recruitment of these genes by promiscuous mobile elements and epidemic strains. Such events can change the resistance landscape rapidly and unexpectedly, as with the rise of Escherichia coli ST131 with CTX-M ESBLs and the emergence of 'impossible' VRE. Given such unpredictability, we simply cannot say with any certainty, for example, which of the four current approaches to combating MBLs offers the best prospect of sustainable prizeworthy success. Only time will tell, though it is encouraging that multiple potential approaches to overcoming these problematic enzymes are being pursued. Rather than seeking to pick winners, governments should aim to reduce development barriers, as with recent relaxation of trial regulations. In particular, once β-lactamase inhibitors have been successfully trialled with one partner drug, there is scope to facilitate licensing them for partnering with other established β-lactams, thereby insuring against new emerging resistance. | 2018 | 30351434 |
| 5103 | 2 | 0.9800 | Revolutionising bacteriology to improve treatment outcomes and antibiotic stewardship. LABORATORY INVESTIGATION OF BACTERIAL INFECTIONS GENERALLY TAKES TWO DAYS: one to grow the bacteria and another to identify them and to test their susceptibility. Meanwhile the patient is treated empirically, based on likely pathogens and local resistance rates. Many patients are over-treated to prevent under-treatment of a few, compromising antibiotic stewardship. Molecular diagnostics have potential to improve this situation by accelerating precise diagnoses and the early refinement of antibiotic therapy. They include: (i) the use of 'biomarkers' to swiftly distinguish patients with bacterial infection, and (ii) molecular bacteriology to identify pathogens and their resistance genes in clinical specimens, without culture. Biomarker interest centres on procalcitonin, which has given good results particularly for pneumonias, though broader biomarker arrays may prove superior in the future. PCRs already are widely used to diagnose a few infections (e.g. tuberculosis) whilst multiplexes are becoming available for bacteraemia, pneumonia and gastrointestinal infection. These detect likely pathogens, but are not comprehensive, particularly for resistance genes; there is also the challenge of linking pathogens and resistance genes when multiple organisms are present in a sample. Next-generation sequencing offers more comprehensive profiling, but obstacles include sensitivity when the bacterial load is low, as in bacteraemia, and the imperfect correlation of genotype and phenotype. In short, rapid molecular bacteriology presents great potential to improve patient treatments and antibiotic stewardship but faces many technical challenges; moreover it runs counter to the current nostrum of defining resistance in pharmacodynamic terms, rather than by the presence of a mechanism, and the policy of centralising bacteriology services. | 2013 | 24265945 |
| 8164 | 3 | 0.9798 | Antibiotic Resistance - A Cause for Reemergence of Infections. This article can rightly be called 'the rise of the microbial phoenix'; for, all the microbial infections whose doomsday was predicted with the discovery of antibiotics, have thumbed their noses at mankind and reemerged phoenix like. The hubris generated by Sir Alexander Fleming's discovery of Penicillin in 1928, exemplified best by the comment by William H Stewart, the US Surgeon General in 1967, "It is time to close the books on infectious diseases" has been replaced by the realisation that the threat of antibiotic resistance is, in the words of the Chief Medical Officer of England, Dame Sally Davies, "just as important and deadly as climate change and international terrorism". Antimicrobial resistance threatens to negate all the major medical advances of the last century because antimicrobial use is linked to many other fields like organ transplantation and cancer chemotherapy. Antibiotic resistance genes have been there since ancient times in response to naturally occurring antibiotics. Modern medicine has only driven further evolution of antimicrobial resistance by use, misuse, overuse and abuse of antibiotics. Resistant bacteria proliferate by natural selection when their drug sensitive comrades are removed by antibiotics. In this article the authors discuss the various causes of antimicrobial resistance and dwell in some detail on antibiotic resistance in gram-positive and gram-negative organisms. Finally they stress on the important role clinicians have in limiting the development and spread of antimicrobial resistance. | 2020 | 32026301 |
| 8185 | 4 | 0.9797 | RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent. | 2022 | 34505182 |
| 4103 | 5 | 0.9796 | Aeromonas: the multifaceted middleman in the One Health world. Aeromonas is at the interface of all the One Health components and represents an amazingly sound test case in the One Health approach, from economic loss in aquaculture tochallenges related to antibiotic-resistant bacteria selected from the environment. In human health, infections following leech therapy is an outstanding example of such One Health challenges. Aeromonads are not only ubiquitous environmental bacteria, able to rapidly colonize and cause opportunistic infections in humans and animals, they are also capable of promoting interactions and gene exchanges between the One Health components. This makes this genus a key amplifier of genetic transfer, especially of antibiotic resistance genes. | 2022 | 34717260 |
| 5117 | 6 | 0.9796 | Metagenomic sequencing of mpox virus clade Ib lesions identifies possible bacterial and viral co-infections in hospitalized patients in eastern DRC. Mpox is an emerging zoonotic disease that caused two public health emergencies of international concern within two years. Less is known about the interplay of microbial organisms in mpox lesions which could result in superinfections that exacerbate outcomes or delay recovery. We utilized a unified metagenomic sequencing approach involving slow-speed centrifugation and differential lysis on 19 mpox lesion swabs of hospitalized patients in South Kivu province (eastern DRC) to characterize bacteria, antimicrobial resistance genes, mpox virus (MPXV), and viral co-infections. High-quality MPXV whole-genome sequences were obtained until a Ct value of 27. Furthermore, co-infections with other clinically relevant viruses, such as varicella zoster virus and herpes simplex virus-2, were detected and confirmed by real-time PCR. In addition, metagenomic sequence analysis of the bacterial content showed the presence of bacteria associated with skin and soft tissue infection in 10 of the 19 samples analyzed. These bacteria had a high abundance of resistance genes, with possible implications for antimicrobial treatment based on the predicted antimicrobial resistance. In conclusion, we report the presence of bacterial and viral pathogens in mpox lesions and detection of widespread resistance genes to the standard antibiotic treatment. The possibility of a co-infection, including antimicrobial resistance, should be considered when discussing treatment options, along with the determination of the case-fatality ratio.IMPORTANCEThe mpox virus clade Ib lineage emerged in the eastern Democratic Republic of the Congo owing to continuous human-to-human transmission in a vulnerable patient population. A major challenge of this ongoing outbreak is its occurrence in regions with severely limited healthcare infrastructure. As a result, less is known about co-infections in affected patients. Identifying and characterizing pathogens, including their antimicrobial resistance, is crucial for reducing infection-related complications and improving antimicrobial stewardship. In this study, we applied a unified metagenomics approach to detect and characterize bacterial and viral co-infections in mpox lesions of hospitalized mpox patients in the eastern DRC. | 2025 | 40445195 |
| 6649 | 7 | 0.9795 | The development of antibiotics has provided much success against infectious diseases in animals and humans. But the intensive and extensive use of antibiotics over the years has resulted in the emergence of drug-resistant bacterial pathogens. The existence of a reservoir(s) of antibiotic resistant bacteria and antibiotic resistance genes in an interactive environment of animals, plants, and humans provides the opportunity for further transfer and dissemination of antibiotic resistance. The emergence of antibiotic resistant bacteria has created growing concern about its impact on animal and human health. To specifically address the impact of antibiotic resistance resulting from the use of antibiotics in agriculture, the American Academy of Microbiology convened a colloquium, “Antibiotic Resistance and the Role of Antimicrobials in Agriculture: A Critical Scientific Assessment,” in Santa Fe, New Mexico, November 2–4, 2001. Colloquium participants included academic, industrial, and government researchers with a wide range of expertise, including veterinary medicine, microbiology, food science, pharmacology, and ecology. These scientists were asked to provide their expert opinions on the current status of antibiotic usage and antibiotic resistance, current research information, and provide recommendations for future research needs. The research areas to be addressed were roughly categorized under the following areas: ▪ Origins and reservoirs of resistance; ▪ Transfer of resistance; ▪ Overcoming/modulating resistance by altering usage; and ▪ Interrupting transfer of resistance. The consensus of colloquium participants was that the evaluation of antibiotic usage and its impact were complex and subject to much speculation and polarization. Part of the complexity stems from the diverse array of animals and production practices for food animal production. The overwhelming consensus was that any use of antibiotics creates the possibility for the development of antibiotic resistance, and that there already exist pools of antibiotic resistance genes and antibiotic resistant bacteria. Much discussion revolved around the measurement of antibiotic usage, the measurement of antibiotic resistance, and the ability to evaluate the impact of various types of usage (animal, human) on overall antibiotic resistance. Additionally, many participants identified commensal bacteria as having a possible role in the continuance of antibiotic resistance as reservoirs. Participants agreed that many of the research questions could not be answered completely because of their complexity and the need for better technologies. The concept of the “smoking gun” to indicate that a specific animal source was important in the emergence of certain antibiotic resistant pathogens was discussed, and it was agreed that ascribing ultimate responsibility is likely to be impossible. There was agreement that expanded and more improved surveillance would add to current knowledge. Science-based risk assessments would provide better direction in the future. As far as preventive or intervention activities, colloquium participants reiterated the need for judicious/prudent use guidelines. Yet they also emphasized the need for better dissemination and incorporation by end-users. It is essential that there are studies to measure the impact of educational efforts on antibiotic usage. Other recommendations included alternatives to antibiotics, such as commonly mentioned vaccines and probiotics. There also was an emphasis on management or production practices that might decrease the need for antibiotics. Participants also stressed the need to train new researchers and to interest students in postdoctoral work, through training grants, periodic workshops, and comprehensive conferences. This would provide the expertise needed to address these difficult issues in the future. Finally, the participants noted that scientific societies and professional organizations should play a pivotal role in providing technical advice, distilling and disseminating information to scientists, media, and consumers, and in increasing the visibility and funding for these important issues. The overall conclusion is that antibiotic resistance remains a complex issue with no simple answers. This reinforces the messages from other meetings. The recommendations from this colloquium provide some insightful directions for future research and action. | 2002 | 32687288 |
| 6690 | 8 | 0.9793 | Antimicrobial resistance situation in animal health of Bangladesh. Antimicrobial resistance (AMR) is a crucial multifactorial and complex global problem and Bangladesh poses a regional and global threat with a high degree of antibiotic resistance. Although the routine application of antimicrobials in the livestock industry has largely contributed to the health and productivity, it correspondingly plays a significant role in the evolution of different pathogenic bacterial strains having multidrug resistance (MDR) properties. Bangladesh is implementing the National Action Plan (NAP) for containing AMR in human, animal, and environment sectors through "One Health" approach where the Department of Livestock Services (DLS) is the mandated body to implement NAP strategies in the animal health sector of the country. This review presents a "snapshot" of the predisposing factors, and current situations of AMR along with the weakness and strength of DLS to contain the problem in animal farming practices in Bangladesh. In the present review, resistance monitoring data and risk assessment identified several direct and/or indirect predisposing factors to be potentially associated with AMR development in the animal health sector of Bangladesh. The predisposing factors are inadequate veterinary healthcare, monitoring and regulatory services, intervention of excessive informal animal health service providers, and farmers' knowledge gap on drugs, and AMR which have resulted in the misuse and overuse of antibiotics, ultimate in the evolution of antibiotic-resistant bacteria and genes in all types of animal farming settings of Bangladesh. MDR bacteria with extreme resistance against antibiotics recommended to use in both animals and humans have been reported and been being a potential public health hazard in Bangladesh. Execution of extensive AMR surveillance in veterinary practices and awareness-building programs for stakeholders along with the strengthening of the capacity of DLS are recommended for effective containment of AMR emergence and dissemination in the animal health sector of Bangladesh. | 2020 | 33487990 |
| 6607 | 9 | 0.9793 | The Growing Threat of Antibiotic Resistance in Children. Antimicrobial resistance is a global public health threat and a danger that continues to escalate. These menacing bacteria are having an impact on all populations; however, until recently, the increasing trend in drug-resistant infections in infants and children has gone relatively unrecognized. This article highlights the current clinical and molecular data regarding infection with antibiotic-resistant bacteria in children, with an emphasis on transmissible resistance and spread via horizontal gene transfer. | 2018 | 29406971 |
| 6608 | 10 | 0.9793 | Trends in antimicrobial resistance in Malaysia. INTRODUCTION: Antibiotic resistance is a burgeoning problem worldwide. The trend of bacterial resistance has increased over the past decade in which more common bacteria are becoming resistant to almost all the antibiotics currently in use, posing a threat to humans and even livestock. METHODS: The databases used to search for the relevant articles for this review include PubMed, Science Direct, and Scopus. The following keywords were used in the search: Antimicrobial resistance, Malaysian action plan, antibioticresistant bacteria, and Malaysian National Surveillance on Antimicrobial Resistance (NSAR). The relevant articles published in English were considered. RESULTS: The antibiotic-resistant bacteria highlighted in this review showed an increase in resistance patterns to the majority of the antibiotics tested. The Malaysian government has come up with an action plan to create public awareness and to educate them regarding the health implications of antibiotic resistance. CONCLUSION: Antimicrobial resistance in Malaysia continues to escalate and is attributed to the overuse and misuse of antibiotics in various fields. As this crisis impacts the health of both humans and animals, therefore a joined continuous effort from all sectors is warranted to reduce the spread and minimize its development. | 2021 | 34508377 |
| 6606 | 11 | 0.9793 | Comprehensive analysis of antimicrobial resistance in the Southwest Indian Ocean: focus on WHO critical and high priority pathogens. The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network. | 2024 | 38628847 |
| 8177 | 12 | 0.9793 | Antibiotic action and resistance: updated review of mechanisms, spread, influencing factors, and alternative approaches for combating resistance. Antibiotics represent a frequently employed therapeutic modality for the management of bacterial infections across diverse domains, including human health, agriculture, livestock breeding, and fish farming. The efficacy of antibiotics relies on four distinct mechanisms of action, which are discussed in detail in this review, along with accompanying diagrammatic illustrations. Despite their effectiveness, antibiotic resistance has emerged as a significant challenge to treating bacterial infections. Bacteria have developed defense mechanisms against antibiotics, rendering them ineffective. This review delves into the specific mechanisms that bacteria have developed to resist antibiotics, with the help of diagrammatic illustrations. Antibiotic resistance can spread among bacteria through various routes, resulting in previously susceptible bacteria becoming antibiotic-resistant. Multiple factors contribute to the worsening crisis of antibiotic resistance, including human misuse of antibiotics. This review also emphasizes alternative solutions proposed to mitigate the exacerbation of antibiotic resistance. | 2023 | 38283841 |
| 2517 | 13 | 0.9793 | The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. Carbapenem-resistant Enterobacteriaceae (CRE) are a serious public health threat. Infections due to these organisms are associated with significant morbidity and mortality. Mechanisms of drug resistance in gram-negative bacteria (GNB) are numerous; β-lactamase genes carried on mobile genetic elements are a key mechanism for the rapid spread of antibiotic-resistant GNB worldwide. Transmissible carbapenem-resistance in Enterobacteriaceae has been recognized for the last 2 decades, but global dissemination of carbapenemase-producing Enterobacteriaceae (CPE) is a more recent problem that, once initiated, has been occurring at an alarming pace. In this article, we discuss the evolution of CRE, with a focus on the epidemiology of the CPE pandemic; review risk factors for colonization and infection with the most common transmissible CPE worldwide, Klebsiella pneumoniae carbapenemase-producing K. pneumoniae; and present strategies used to halt the striking spread of these deadly pathogens. | 2017 | 28375512 |
| 9570 | 14 | 0.9793 | Antibiotic use in developing countries. Antimicrobials have been used successfully for over 6 decades, but genes expressing resistance to them have emerged in strains of bacteria and have disseminated through the global ecosystem to reach infecting microorganisms, produce disease, and seriously interfere with therapy, allowing infections to progress and kill despite antibiotic administration. The upsurge in prevalence of such resistance genes in the bacterial population that colonize and infect humans involves two processes, emergence and dissemination, in both of which there have been contributions from the developing world, where resistance is common and increasing. The emergence of pneumococcal isolates noted in Papua New Guinea and later in South Africa that 1 decade later spread to most of the world and the intercontinental spread between the United States and Venezuela of a new gentamicin resistance gene carried on an epidemic plasmid are examples of the ability of bacteria to travel freely, without regard to borders. Complex societal issues such as the misuse of antibiotics by physicians, pharmacists, and the public; the suboptimal quality of the drugs (emergence); and conditions such as crowding, lack of hygiene, poor or nonexistent hospital infection control practices, or insufficient surveillance (dissemination) play a largely unmeasured role that requires study and solutions. In the meantime, we may intervene to delay the emergence of resistance and to limit its spread by promoting the judicious use of antibiotics both at the local level as well as from multinational organized cooperative efforts. Education and improvement of surveillance and socioeconomic conditions are integral parts of any solution strategy. | 2000 | 10879571 |
| 6617 | 15 | 0.9792 | Mechanisms in colistin-resistant superbugs transmissible from veterinary, livestock and animal food products to humans. In the era of antibiotic resistance, where multidrug-resistant (MDR), extensively drug resistant (XDR), and pan-drug resistant (PDR) Gram-negative infections are prevalent, it is crucial to identify the primary sources of antibiotic resistance, understand resistant mechanisms, and develop strategies to combat these mechanisms. The emergence of resistance to last-resort antibiotics like colistin has sparked a war between humanity and resistant bacteria, leaving humanity struggling to find effective countermeasures. Although colistin is used as a highly toxic antibiotic in infections that are not treated with routine antibiotics, its widespread use in animal breeding and veterinary medicine has contributed to the spread of colistin-resistant bacteria, plasmid-borne colistin resistance genes (mcr), and antibiotic residues in livestock and animal-derived foods. These sources can potentially transmit colistin resistance to humans through various routes. Therefore, managing the use of colistin in livestock and animal foods, implementing strict monitoring, and establishing guidelines for its proper use are essential to prevent the escalation of colistin resistance. This review article discusses the latest mechanisms of colistin antibiotic resistance, particularly biofilm production as a public health threat, the livestock and animal food sources of this resistance, and the routes of transmission to humans. | 2025 | 40386099 |
| 4888 | 16 | 0.9792 | A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Infectious disease outbreaks have caused thousands of deaths and hospitalizations, along with severe negative global economic impacts. Among these, infections caused by antimicrobial-resistant microorganisms are a major growing concern. The misuse and overuse of antimicrobials have resulted in the emergence of antimicrobial resistance (AMR) worldwide. Carbapenem-resistant Enterobacterales (CRE) are among the bacteria that need urgent attention globally. The emergence and spread of carbapenem-resistant bacteria are mainly due to the rapid dissemination of genes that encode carbapenemases through horizontal gene transfer (HGT). The rapid dissemination enables the development of host colonization and infection cases in humans who do not use the antibiotic (carbapenem) or those who are hospitalized but interacting with environments and hosts colonized with carbapenemase-producing (CP) bacteria. There are continuing efforts to characterize and differentiate carbapenem-resistant bacteria from susceptible bacteria to allow for the appropriate diagnosis, treatment, prevention, and control of infections. This review presents an overview of the factors that cause the emergence of AMR, particularly CRE, where they have been reported, and then, it outlines carbapenemases and how they are disseminated through humans, the environment, and food systems. Then, current and emerging techniques for the detection and surveillance of AMR, primarily CRE, and gaps in detection technologies are presented. This review can assist in developing prevention and control measures to minimize the spread of carbapenem resistance in the human ecosystem, including hospitals, food supply chains, and water treatment facilities. Furthermore, the development of rapid and affordable detection techniques is helpful in controlling the negative impact of infections caused by AMR/CRE. Since delays in diagnostics and appropriate antibiotic treatment for such infections lead to increased mortality rates and hospital costs, it is, therefore, imperative that rapid tests be a priority. | 2023 | 37374993 |
| 4896 | 17 | 0.9792 | The changing ecology of bacterial infections in children. There is continued change in the organisms involved in commonly encountered infections. Although the major organisms have changed less in pediatric than in medical or surgical infections, the advances in neonatology and the chemotherapy of leukemia have resulted in cases in which infection with once uncommon organisms is now commonplace. Perhaps more disheartening has been the increasing resistance of bacteria to antibiotics. Since resistance patterns are so much a reflection of antibiotic usage patterns in an institution, each pediatrician must be aware of the species of bacteria and the resistance patterns of the bacteria isolated in his hospital, particularly in neonatal, intensive care, and burn areas where there is the highest use of antibiotics. Close interaction of pediatrician, diagnostic microbiology laboratory, and hospital epidemiologist can provide early clues to possible bacteria involved in infection, as well as suspected antibiotic resistance patterns. | 1976 | 1253540 |
| 9474 | 18 | 0.9792 | Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection. Multi-drug resistant bacterial pathogens are alarmingly on the rise, signaling that the golden age of antibiotics may be over. Phage therapy is a classic approach that often employs strictly lytic bacteriophages (bacteria-specific viruses that kill cells) to combat infections. Recent success in using phages in patient treatment stimulates greater interest in phage therapy among Western physicians. But there is concern that widespread use of phage therapy would eventually lead to global spread of phage-resistant bacteria and widespread failure of the approach. Here, we argue that various mechanisms of horizontal genetic transfer (HGT) have largely contributed to broad acquisition of antibiotic resistance in bacterial populations and species, whereas similar evolution of broad resistance to therapeutic phages is unlikely. The tendency for phages to infect only particular bacterial genotypes limits their broad use in therapy, in turn reducing the likelihood that bacteria could acquire beneficial resistance genes from distant relatives via HGT. We additionally consider whether HGT of clustered regularly interspaced short palindromic repeats (CRISPR) immunity would thwart generalized use of phages in therapy, and argue that phage-specific CRISPR spacer regions from one taxon are unlikely to provide adaptive value if horizontally-transferred to other taxa. For these reasons, we conclude that broadscale phage therapy efforts are unlikely to produce widespread selection for evolution of bacterial resistance. | 2020 | 33365149 |
| 4355 | 19 | 0.9792 | An expectation-maximization algorithm for estimating proportions of deletions among bacterial populations with application to study antibiotic resistance gene transfer in Enterococcus faecalis. The emergence of antibiotic resistance in bacteria limits the availability of antibiotic choices for treatment and infection control, thereby representing a major threat to human health. The de novo mutation of bacterial genomes is an essential mechanism by which bacteria acquire antibiotic resistance. Previously, deletion mutations within bacterial immune systems, ranging from dozens to thousands of base pairs (bps) in length, have been associated with the spread of antibiotic resistance. Most current methods for evaluating genomic structural variations (SVs) have concentrated on detecting them, rather than estimating the proportions of populations that carry distinct SVs. A better understanding of the distribution of mutations and subpopulations dynamics in bacterial populations is needed to appreciate antibiotic resistance evolution and movement of resistance genes through populations. Here, we propose a statistical model to estimate the proportions of genomic deletions in a mixed population based on Expectation-Maximization (EM) algorithms and next-generation sequencing (NGS) data. The method integrates both insert size and split-read mapping information to iteratively update estimated distributions. The proposed method was evaluated with three simulations that demonstrated the production of accurate estimations. The proposed method was then applied to investigate the horizontal transfers of antibiotic resistance genes in concert with changes in the CRISPR-Cas system of E. faecalis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s42995-022-00144-z. | 2023 | 36744155 |