# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 1475 | 0 | 0.9917 | Evaluation of the FilmArray(®) Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. The FilmArray(®) Pneumonia plus Panel (FAPP) is a new multiplex molecular test for hospital-acquired pneumonia (HAP), which can rapidly detect 18 bacteria, 9 viruses, and 7 resistance genes. We aimed to compare the diagnosis performance of FAPP with conventional testing in 100 intensive care unit (ICU) patients who required mechanical ventilation, with clinically suspected HAP. A total of 237 samples [76 bronchoalveolar lavages (BAL(DS)) and 82 endotracheal aspirates (ETA(DS)) obtained at HAP diagnosis, and 79 ETA obtained during follow-up (ETA(TT))], were analyzed independently by routine microbiology testing and FAPP. 58 patients had paired BAL(DS) and ETA(DS). The positivity thresholds of semi-quantified bacteria were 10(3)-10(4) CFUs/mL or 10(4) copies/mL for BAL, and 10(5) CFUs/mL or copies/mL for ETA. Respiratory commensals (H. influenzae, S. aureus, E. coli, S. pneumoniae) were the most common pathogens. Discordant results for bacterial identification were observed in 33/76 (43.4%) BAL(DS) and 36/82 (43.9%) ETA(DS), and in most cases, FAPP identified one supplemental bacteria (23/33 BAL(DS) and 21/36 ETA(DS)). An absence of growth, or polybacterial cultures, explained almost equally the majority of the non-detections in culture. No linear relationship was observed between bin and CFUs/mL variables. Concordant results between paired BAL(DS) and ETA(DS) were obtained in 46/58 (79.3%) patients with FAPP. One of the 17 resistance genes detected with FAPP (mecA/C and MREJ) was not confirmed by conventional testing. Overall, FAPP enhanced the positivity rate of diagnostic testing, with increased recognition of coinfections. Implementing this strategy may allow clinicians to make more timely and informed decisions. | 2020 | 32983057 |
| 1402 | 1 | 0.9914 | Detection of β-lactam resistance genes in Gram-negative bacteria from positive blood cultures using a microchip-based molecular assay. BACKGROUND: Accurate detection of β-lactam resistance genes in bloodstream infections is critical for guiding antimicrobial therapy. This study evaluates the Alifax Gram-negative resistance (GNR) microchip assay for detecting β-lactam resistance genes directly from positive blood cultures (PBCs) for Gram-negative (GN) bacteria, including Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii. METHODS: Simulated (n=146) and clinical (n=106) GN-PBC samples were tested for bla (KPC), bla (VIM), bla (NDM), bla (IMP), bla (OXA-23)-like, bla (OXA-48)-like, bla (SHV)-ESBL, bla (CTX-M-1/9) group, and bla (CMY-2)-like genes using the GNR microchip assay. Whole-genome sequencing (WGS) served as the reference assay for simulated samples and, selectively, for clinical samples. The bioMérieux BioFire Blood Culture Identification 2 (BCID2) panel assay was used as a comparator for clinical samples. RESULTS: The GNR microchip assay correctly identified 203 (99.5%) of 204 β-lactam resistance genes in simulated samples. One sample tested false negative for a bla (SHV)-ESBL gene but true positive for a bla (KPC) gene. In clinical samples, GNR results were concordant with BCID2 for 113 (100%) of 113 genes included in both assays. Additionally, the GNR assay detected bla (CMY-2) -like (n=6), bla (OXA-23)-like (n=5), and bla (SHV)-ESBL (n=2), which are not targeted by BCID2, all confirmed by WGS. In two β-lactam-resistant P. aeruginosa samples but negative by the GNR assay, WGS confirmed the absence of acquired β-lactam resistance genes, suggesting alternative resistance mechanisms. CONCLUSION: The GNR microchip assay demonstrated high concordance and broader β-lactam resistance gene coverage compared to BCID2, supporting its potential role in routine diagnostics. Further validation in larger, prospective studies is warranted. | 2025 | 40529307 |
| 1480 | 2 | 0.9912 | Prospective observational pilot study of the T2Resistance panel in the T2Dx system for detection of resistance genes in bacterial bloodstream infections. Early initiation of antimicrobial therapy targeting resistant bacterial pathogens causing sepsis and bloodstream infections (BSIs) is critical for a successful outcome. The T2Resistance Panel (T2R) detects the following resistance genes within organisms that commonly cause BSIs directly from patient blood samples: bla(KPC), bla(CTXM-14/15), bla(NDM)/bla(/IMP)/bla(VIM), bla(AmpC), bla(OXA), vanA, vanB, and mecA/mecC. We conducted a prospective study in two major medical centers for the detection of circulating resistance genes by T2R in patients with BSIs. T2R reports were compared to antimicrobial susceptibility testing (AST), phenotypic identification, and standard molecular detection assays. Among 59 enrolled patients, 25 resistance genes were identified: bla(KPC) (n = 10), bla(NDM)/bla(/IMP)/bla(VIM) (n = 5), bla(CTXM-14/15) (n = 4), bla(AmpC) (n = 2), and mecA/mecC (n = 4). Median time-to-positive-T2R in both hospitals was 4.4 hours [interquartile range (IQR): 3.65-4.97 hours] in comparison to that for positive blood cultures with final reporting of AST of 58.34 h (IQR: 45.51-111.2 hours; P < 0.0001). The sensitivity of T2R to detect the following genes in comparison to AST was 100% for bla(CTXM-14/15), bla(NDM)/bla(/)(IMP)/bla(VIM), bla(AmpC), mecA/mecC and 87.5% for bla(KPC). When monitored for the impact of significant antimicrobial changes, there were 32 events of discontinuation of unnecessary antibiotics and 17 events of escalation of antibiotics, including initiation of ceftazidime/avibactam in six patients in response to positive T2R results for bla(KPC). In summary, T2R markers were highly sensitive for the detection of drug resistance genes in patients with bacterial BSIs, when compared with standard molecular resistance detection systems and phenotypic identification assays while significantly reducing by approximately 90% the time to detection of resistance compared to standard methodology and impacting clinical decisions for antimicrobial therapy. IMPORTANCE: This is the first reported study to our knowledge to identify key bacterial resistance genes directly from the bloodstream within 3 to 5 hours in patients with bloodstream infections and sepsis. The study further demonstrated a direct effect in modifying initial empirical antibacterial therapy in response to T2R signal to treat resistant bacteria causing bloodstream infections and sepsis. | 2024 | 38456690 |
| 1476 | 3 | 0.9911 | Evaluation of the BioFire FilmArray Pneumonia Panel for rapid detection of respiratory bacterial pathogens and antibiotic resistance genes in sputum and endotracheal aspirate specimens. OBJECTIVES: The performance of the investigational-use-only version of the BioFire FilmArray Pneumonia Panel (FA-Pneumo), a high-order nested multiplex PCR, was evaluated for the detection of typical respiratory bacterial pathogens and antibiotic resistance genes in sputa and endotracheal aspirate (ETA) specimens. METHODS: Thirty-one sputa and 69 ETA specimens were analyzed. The diagnostic performance of FA-Pneumo was assessed using routine microbiological methods as the reference standard. RESULTS: Overall sensitivity and specificity for organism detection using FA-Pneumo were 98.5% and 76.5%, respectively. The sensitivity for each pathogen was 100%, except for Klebsiella aerogenes, and the range of specificity was 83.3-99.0%. FA-Pneumo detected antimicrobial resistance genes in 17 out of 18 specimens (94.4%) that were resistant by antimicrobial susceptibility testing. FA-Pneumo additionally detected 25 resistance genes in 22 specimens, and sequencing for the presence of resistance genes confirmed the majority of these results (20/25, 80%). Semi-quantitative analysis of bacterial nucleic acid amounts by FA-Pneumo revealed that 88.2% of the identified bacteria (67/76) with ≥10(6) copies/ml also gave culture-positive results with significant amounts of bacteria. CONCLUSIONS: FA-Pneumo is a rapid test with high sensitivity for the detection of bacteria and antimicrobial resistance genes in sputum and ETA specimens and could aid in determining antibiotic therapy. | 2020 | 32179139 |
| 2223 | 4 | 0.9910 | Evaluation of a new real-time PCR assay (Check-Direct CPE) for rapid detection of KPC, OXA-48, VIM, and NDM carbapenemases using spiked rectal swabs. To prevent the spread of carbapenemase-producing bacteria, a fast and accurate detection of patients carrying these bacteria is extremely important. The Check-Direct CPE assay (Check-Points, Wageningen, The Netherlands) is a new multiplex real-time PCR assay, which has been developed to detect and differentiate between the most prevalent carbapenemase genes encountered in Enterobacteriaceae (blaKPC, blaOXA-48, blaVIM, and blaNDM) directly from rectal swabs. Evaluation of this assay using 83 non-duplicate isolates demonstrated 100% sensitivity and specificity and the correct identification of the carbapenemase gene(s) present in all carbapenemase-producing isolates. Moreover, the limit of detection (LoD) of the real-time PCR assay in spiked rectal swabs was determined and showed comparable LoDs with the ChromID CARBA agar. With an excellent performance on clinical isolates and spiked rectal swabs, this assay appeared to be an accurate and rapid method to detect blaKPC, blaOXA-48, blaVIM, and blaNDM genes directly from a rectal screening swab. | 2013 | 24135412 |
| 1478 | 5 | 0.9910 | Multicenter Evaluation of the FilmArray Blood Culture Identification 2 Panel for Pathogen Detection in Bloodstream Infections. The FilmArray Blood Culture Identification 2 panel (BCID2; bioMérieux) is a fully automated PCR-based assay for identifying bacteria, fungi, and bacterial resistance markers in positive blood cultures (BC) in about 1 h. In this multicenter study, we evaluated the performance of the BCID2 panel for pathogen detection in positive BC. Conventional culture and BCID2 were performed in parallel at four tertiary-care hospitals. We included 152 positive BC-130 monomicrobial and 22 polymicrobial cultures-in this analysis. The BCID2 assay correctly identified 90% (88/98) of Gram-negative and 89% (70/79) of Gram-positive bacteria. Five bacterial isolates targeted by the BCID2 panel and recovered from five positive BC, including three polymicrobial cultures, were missed by the BCID2 assay. Fifteen isolates were off-panel organisms, accounting for 8% (15/182) of the isolates obtained from BC. The mean positive percent agreement between the BCID2 assay and standard culture was 97% (95% confidence interval, 95 to 99%), with agreement ranging from 67% for Candida albicans to 100% for 17 targets included in the BCID2 panel. BCID2 also identified the bla(CTX-M) gene in seven BC, including one for which no extended-spectrum β-lactamase (ESBL)-producing isolate was obtained in culture. However, it failed to detect ESBL-encoding genes in three BC. Two of the 18 mecA/C genes detected by the BCID2 were not confirmed. No carbapenemase, mecA/C, or MREJ targets were detected. The median turnaround time was significantly shorter for BCID2 than for culture. The BCID2 panel may facilitate faster pathogen identification in bloodstream infections. IMPORTANCE Rapid molecular diagnosis combining the identification of pathogens and the detection of antibiotic resistance genes from positive blood cultures (BC) can improve the outcome for patients with bloodstream infections. The FilmArray BCID2 panel, an updated version of the original BCID, can detect 11 Gram-positive bacteria, 15 Gram-negative bacteria, 7 fungal pathogens, and 10 antimicrobial resistance genes directly from a positive BC. Here, we evaluated the real-life microbiological performance of the BCID2 assay in comparison to the results of standard methods used in routine practice at four tertiary care hospitals. | 2023 | 36519852 |
| 2238 | 6 | 0.9910 | Rapid detection of carbapenem resistance among gram-negative organisms directly from positive blood culture bottles. BACKGROUND: Carbapenemase producing gram-negative bacteria (GNB) has become a huge problem in majority of tertiary care centers worldwide. They are associated with very high morbidity and mortality rates, especially when they cause invasive infections. Therefore, rapid detection of these organisms is very important for prompt and adequate antibiotic therapy as well as infection control. The aim of this study was rapid detection of carbapenemase genes and thereby likely carbapenem resistance, 24-48 hours in advance, directly from the positive-flagged blood culture bottles using CHROMagar and Xpert® Carba-R. METHODS: Aspirate from positively flagged blood culture bottles was subjected to differential centrifuge. All gram-negative bacilli on gram stain from the deposit were processed in Xpert® Carba-R and inoculated on CHROMagar. The presence of genes and growth on CHROMagar was compared with carbapenem resistance on VITEK-2 Compact. RESULTS: A total of 119 GNB isolates were processed. One or more of the carbapenemase genes were detected in 80 isolates. On comparison with VITEK-2 result, 92 samples showed concordance for carbapenem resistance 48 hours in advance. There was discordance in 21 isolates with 12 major errors and 09 minor errors. The sensitivity of direct Xpert® Carba-R test for rapid detection of carbapenem resistance, 48 hours in advance, was 81.42%. The sensitivity of direct CHROMagar test for accurate detection of carbapenem resistance, 24 hours in advance, was 92.06%. CONCLUSION: The ability to detect carbapenem resistance with very high accuracy, 48 hours in advance, helps in appropriate antibiotic therapy and implementation of effective infection control practices. | 2023 | 37193528 |
| 1474 | 7 | 0.9909 | Simple, rapid, and cost-effective modified Carba NP test for carbapenemase detection among Gram-negative bacteria. PURPOSE: Detection of carbapenemases among Gram-negative bacteria (GNB) is important for both clinicians and infection control practitioners. The Clinical and Laboratory Standards Institute recommends Carba NP (CNP) as confirmatory test for carbapenemase production. The reagents required for CNP test are costly and hence the test cannot be performed on a routine basis. The present study evaluates modifications of CNP test for rapid detection of carbapenemases among GNB. MATERIALS AND METHODS: The GNB were screened for carbapenemase production using CNP, CarbAcineto NP (CANP), and modified CNP (mCNP) test. A multiplex polymerase chain reaction (PCR) was performed on all the carbapenem-resistant bacteria for carbapenemase genes. The results of three phenotypic tests were compared with PCR. RESULTS: A total of 765 gram negative bacteria were screened for carbapenem resistance. Carbapenem resistance was found in 144 GNB. The metallo-β-lactamases were most common carbapenemases followed by OXA-48-like enzymes. The CANP test was most sensitive (80.6%) for carbapenemases detection. The mCNP test was 62.1% sensitive for detection of carbapenemases. The mCNP, CNP, and CANP tests were equally sensitive (95%) for detection of NDM enzymes among Enterobacteriaceae. The mCNP test had poor sensitivity for detection of OXA-48-like enzymes. CONCLUSION: The mCNP test was rapid, cost-effective, and easily adoptable on routine basis. The early detection of carbapenemases using mCNP test will help in preventing the spread of multidrug-resistant organisms in the hospital settings. | 2017 | 28966495 |
| 1477 | 8 | 0.9909 | Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial. | 2023 | 37227281 |
| 1486 | 9 | 0.9908 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 2234 | 10 | 0.9908 | Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BACKGROUND: Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. METHODS: Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. RESULTS: We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. CONCLUSIONS: qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy. | 2016 | 27585633 |
| 2239 | 11 | 0.9907 | The Direct Semi-Quantitative Detection of 18 Pathogens and Simultaneous Screening for Nine Resistance Genes in Clinical Urine Samples by a High-Throughput Multiplex Genetic Detection System. BACKGROUND: Urinary tract infections (UTIs) are one the most common infections. The rapid and accurate identification of uropathogens, and the determination of antimicrobial susceptibility, are essential aspects of the management of UTIs. However, existing detection methods are associated with certain limitations. In this study, a new urinary tract infection high-throughput multiplex genetic detection system (UTI-HMGS) was developed for the semi-quantitative detection of 18 pathogens and the simultaneously screening of nine resistance genes directly from the clinical urine sample within 4 hours. METHODS: We designed and optimized a multiplex polymerase chain reaction (PCR) involving fluorescent dye-labeled specific primers to detect 18 pathogens and nine resistance genes. The specificity of the UTI-HMGS was tested using standard strains or plasmids for each gene target. The sensitivity of the UTI-HMGS assay was tested by the detection of serial tenfold dilutions of plasmids or simulated positive urine samples. We also collected clinical urine samples and used these to perform urine culture and antimicrobial susceptibility testing (AST). Finally, all urine samples were detected by UTI-HMGS and the results were compared with both urine culture and Sanger sequencing. RESULTS: UTI-HMGS showed high levels of sensitivity and specificity for the detection of uropathogens when compared with culture and sequencing. In addition, ten species of bacteria and three species of fungi were detected semi-quantitatively to allow accurate discrimination of significant bacteriuria and candiduria. The sensitivity of the UTI-HMGS for the all the target genes could reach 50 copies per reaction. In total, 531 urine samples were collected and analyzed by UTI-HMGS, which exhibited high levels of sensitivity and specificity for the detection of uropathogens and resistance genes when compared with Sanger sequencing. The results from UTI-HMGS showed that the detection rates of 15 pathogens were significantly higher (P<0.05) than that of the culture method. In addition, there were 41(7.72%, 41/531) urine samples were positive for difficult-to-culture pathogens, which were missed detected by routine culture method. CONCLUSIONS: UTI-HMGS proved to be an efficient method for the direct semi-quantitative detection of 18 uropathogens and the simultaneously screening of nine antibiotic resistance genes in urine samples. The UTI-HMGS could represent an alternative method for the clinical detection and monitoring of antibiotic resistance. | 2021 | 33912478 |
| 2454 | 12 | 0.9907 | Colistin resistance in Gram-negative bacteria analysed by five phenotypic assays and inference of the underlying genomic mechanisms. BACKGROUND: Colistin is used against multi-drug resistant pathogens, yet resistance emerges through dissemination of plasmid-mediated genes (mcr) or chromosomal mutation of genes involved in lipopolysaccharide synthesis (i.e. mgrB, phoPQ, pmrCAB). Phenotypic susceptibility testing is challenging due to poor diffusion of colistin in agar media, leading to an underestimation of resistance. Performance of five phenotypic approaches was compared in the context of different molecular mechanisms of resistance. We evaluated Vitek 2® (bioMérieux, AST N242), Colistin MIC Test Strip (Liofilchem Diagnostici), UMIC (Biocentric), and Rapid Polymyxin™ NP test (ELITechGroup) against the standard broth microdilution (BMD) method. We used whole genome sequencing (WGS) to infer molecular resistance mechanisms. We analysed 97 Enterobacterales and non-fermenting bacterial isolates, largely clinical isolates collected up to 2018. Data was analysed by comparing susceptibility categories (susceptible or resistant) and minimal inhibitory concentrations (MIC). Susceptibility category concordance is the percentage of test results sharing the same category to BMD. MIC concordance was calculated similarly but considering ±1 MIC titre error range. We determined genomic diversity by core genome multi locus sequencing typing (cgMLST) and identified putative antimicrobial resistance genes using NCBI and CARD databases, and manual annotation. RESULTS: Of 97 isolates, 54 (56%) were resistant with standard BMD. Highest susceptibility category concordance was achieved by Rapid Polymyxin™ NP (98.8%) followed by UMIC (97.9%), Colistin E-test MIC strip (96.9%) and Vitek 2® (95.6%). Highest MIC concordance was achieved by UMIC (80.4%), followed by Vitek 2® (72.5%) and Colistin E-test MIC strip (62.9%). Among resistant isolates, 23/54 (43%) were intrinsically resistant to colistin, whereas 31/54 (57%) isolates had acquired colistin resistance. Of these, mcr-1 was detected in four isolates and mcr-2 in one isolate. Non-synonymous mutations in mgrB, phoQ, pmrA, pmrB, and pmrC genes were encountered in Klebsiella pneumoniae, Escherichia coli, and Acinetobacter bereziniae resistant isolates. Mutations found in mgrB and pmrB were only identified in isolates exhibiting MICs of ≥16 mg/L. CONCLUSIONS: The Rapid Polymyxin™ NP test showed highest categorical concordance and the UMIC test provided MIC values with high concordance to BMD. We found colistin resistance in diverse species occurred predominantly through spontaneous chromosomal mutation rather than plasmid-mediated resistance. | 2021 | 34798825 |
| 2217 | 13 | 0.9907 | MALDI-TOF MS based carbapenemase detection from culture isolates and from positive blood culture vials. BACKGROUND: Antibiotic resistance in bacteria leads to massive health problems. Incidence of carbapenem and multidrug resistance in Gram-negative bacteria are increasing globally and turn out to be a very urgent challenge in health care. Resistant bacteria play an important clinical role during hospital outbreaks as well as in sepsis. Rapid diagnostic tests are necessary to provide immediate information for antimicrobial treatment and infection control measures. METHODS: Our mass spectrometry-based assay was validated with 63 carbapenemase-producing Gram-negative bacterial isolates, and 35 carbapenem-resistant Gram-negative species with no carbapenemase production. These were analyzed from solid culture media and positive blood culture vials. After 4 h of incubation the carbapenemase products were analyzed with the MALDI-TOF MS. All the isolates were genotyped for carbapenemase genes by PCR and sequencing. RESULTS: For culture isolates the concordance of hydrolysis assay to genetic results was 98 % for OXA variants, KPC, VIM, IMP, GIM, and NDM. In contrast, only 14 of 29 Acinetobacter baumannii isolates carrying the OXA and NDM genes could be identified from blood culture. However, from blood culture vials our method allowed the detection of carbapenemases in 98 % of Pseudomonas and Enterobacteriaceae isolates harboring different genes. CONCLUSIONS: This MALDI-TOF MS-based assay permitted the detection of carbapenemases either from solid culture media (98-100 %) or blood culture vials (96 %) for all non-A. baumannii isolates within 4 h. In case of A. baumannii isolates the assay was highly sensitive for the detection of carbapenemases directly from solid culture media. | 2016 | 26839024 |
| 2236 | 14 | 0.9907 | Development of a Multiplex PCR Platform for the Rapid Detection of Bacteria, Antibiotic Resistance, and Candida in Human Blood Samples. The diagnosis of bloodstream infections (BSIs) still relies on blood culture (BC), but low turnaround times may hinder the early initiation of an appropriate antimicrobial therapy, thus increasing the risk of infection-related death. We describe a direct and rapid multiplex PCR-based assay capable of detecting and identifying 16 bacterial and four Candida species, as well as three antibiotic-resistance determinants, in uncultured samples. Using whole-blood samples spiked with microorganisms at low densities, we found that the MicrobScan assay had a mean limit of detection of 15.1 ± 3.3 CFU of bacteria/Candida per ml of blood. When applied to positive BC samples, the assay allowed the sensitive and specific detection of BSI pathogens, including bla(KPC)-, mecA-, or vanA/vanB-positive bacteria. We evaluated the assay using prospectively collected blood samples from patients with suspected BSI. The sensitivity and specificity were 86.4 and 97.0%, respectively, among patients with positive BCs for the microorganisms targeted by the assay or patients fulfilling the criteria for infection. The mean times to positive or negative assay results were 5.3 ± 0.2 and 5.1 ± 0.1 h, respectively. Fifteen of 20 patients with MicrobScan assay-positive/BC-negative samples were receiving antimicrobial therapy. In conclusion, the MicrobScan assay is well suited to complement current diagnostic methods for BSIs. | 2019 | 31799215 |
| 1481 | 15 | 0.9907 | Molecular versus conventional assay for diagnosis of hospital-acquired pneumonia in critically ill patients: a single center experience. PURPOSE: Lower respiratory tract infections are reported as one of top five causes of mortality and morbidity in the world. A bacterial etiology is often involved in HAP, most frequently from multidrug resistant gram-negative bacteria, and fast accurate diagnosis of etiologic agent(s) of LRTI is essential for an appropriate management. The aim of this retrospective study was to evaluate the analytical performance of Biofire Filmarray Pneumonia Plus for bacteria detection in bronchoalveolar lavage samples and the concordance of bacterial loads between BFPP and cultural gold standard methods. METHODS: A total of 111 BAL samples were obtained from 111 consecutive patients admitted to Intensive Care Unit of "Renato Dulbecco" Teaching Hospital of Catanzaro, from March 2023 to March 2024. RESULTS: Compared to conventional methods, BFPP showed a sensitivity of 99 % and a specificity of 64 %. The agreement between the two methods was assessed by calculating PPA and NPA, being 89 % and 95 %, respectively. The most common bacterial species identified at BFPP was Klebsiella pneumoniae, followed by Acinetobacter calcaceuticus-baumanii complex, Staphylococcus aureus and Pseudomonas aeruginosa. Bacterial load (CFU/ml) in relation to copy number detected by molecular analysis showed the best performance for value ≥10(6) copie/mL. About molecular mechanisms of resistance in comparison to phenotypic profiles, the highest level of performance was observed for presence of KPC genes, all isolates showing resistance to carbapenems, followed by OXA-48 like and NDM. CONCLUSION: The high concordance reported in this study between the identification of resistance genes and phenotypic indication can lead to an appropriate, fast and tailored antibiotic therapy. | 2025 | 40513663 |
| 1479 | 16 | 0.9907 | BioFire FilmArray BCID2 versus VITEK-2 System in Determining Microbial Etiology and Antibiotic-Resistant Genes of Pathogens Recovered from Central Line-Associated Bloodstream Infections. Central line-associated bloodstream infection (CLABSI) is among the most serious hospital acquired infections. Therefore, the rapid detection of the causative microorganism is of crucial importance to allow for the appropriate antimicrobial therapy. In the present study, we analyzed the clinical performance of the BioFire FilmArray Blood Culture Identification 2 (BCID2) panel in the identification of 33 microbial species and 10 antibiotic resistance genes in comparison to the VITEK-2 system. A total of 104 blood specimens were included. The FilmArray BCID2 results were concordant with the VITEK-2 system in 69/97 specimens (71.1%). Non-concordance was either due to the detection of more pathogens by the FilmArray BCID2 23/28 (82%) or microbial species were misidentified 5/28 (18%). Hence, in comparison to the VITEK-2 system, the FilmArray BCID2 panel showed an overall sensitivity of 75.8% (95% CI, 66-83%) and an overall specificity of 98% (95% CI, 97-98.8%) in detecting microbial species. For the resistance genes, the FilmArray BCID was able to detect the presence of blaCTX-M gene in 23 Gram-negative isolates, blaNDM and blaOXA-48- like genes in 14 and 13 isolates, respectively. The mecA and mecC genes were found in 23 Staphylococcus species, while mecA, mecC and MREJ genes were found in 4 Staphylococcus aureus isolates. The sensitivity and specificity for detecting resistance genes by the FilmArray BCID2 was 90% (95% CI, 81.4-95%) and 99.6% (95% CI, 99-100%), respectively. As concluded, the present study emphasizes the high sensitivity and specificity of the FilmArray BCID2 in the rapid and reliable detection of different bacteria and fungi from positive blood culture bottles, as well as the accurate detection of various antibiotic resistance markers. | 2022 | 36358274 |
| 2237 | 17 | 0.9907 | Evaluation of Sepsis Flow Chip for identification of Gram-negative bacilli and detection of antimicrobial resistance genes directly from positive blood cultures. Blood stream infections are serious conditions associated with high morbi-mortality. In this study, the new Sepsis Flow Chip (SFC) assay for identification of Gram-negative bacteria and their antimicrobial resistance genes was evaluated in positive blood cultures (BCs). SFC is a microarray with a broad panel comprising the most frequent causative agents of sepsis and antimicrobial resistance genes associated with them. A total of 100 prospective BCs, positive for Gram-negative bacilli, were assessed in the routine of the clinical microbiology laboratory and also applying the SFC assay. Moreover, 19 BCs spiked with well-characterized enterobacterial isolates, harboring antimicrobial resistance genes, were analyzed by the latter. Among the monomicrobial BCs (90), the concordance between SFC identification and the reference method was 94.4%; however, it achieved 100% when SFC was combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after 4-h incubation. Regarding polymicrobial BCs (10), 15 out of the 22 bacteria present (68.2%) were correctly identified, including all contained in 50% of the cultures. With regard to antimicrobial resistance genes, 98.8%, 98.9%, and 99% concordance was obtained for bla(CTX-M), bla(OXA-48), and bla(VIM), respectively, in comparison with polymerase chain reaction amplification. SFC assay gives results in only 4 h and showed a high concordance rate with the reference method. Although further evaluation studies are necessary, SFC assay implementation, together with antimicrobial stewardship programs, could contribute to improve the therapeutic approaches and to reduce the morbi-mortality, length of hospital stay, and healthcare-associated costs in patients with sepsis. | 2018 | 29551362 |
| 1405 | 18 | 0.9906 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 1473 | 19 | 0.9906 | Evaluation of the Unyvero i60 ITI® multiplex PCR for infected chronic leg ulcers diagnosis. OBJECTIVES: Unyvero i60 ITI multiplex PCR (mPCR) may identify a large panel of bacteria and antibiotic resistance genes. In this study, we compared results obtained by mPCR to standard bacteriology in chronic leg ulcer (CLU) infections. METHODS: A prospective study, part of the interventional-blinded randomized study "ulcerinfecte" (NCT02889926), was conducted at Saint Joseph Hospital in Paris. Fifty patients with a suspicion of infected CLU were included between February 2017 and September 2018. Conventional bacteriology and mPCR were performed simultaneously on deep skin biopsies. RESULTS: Staphylococcus aureus and Pseudomonas aeruginosa were the most detected pathogens. Regarding the global sensitivity, mPCR is not overcome to the standard culture. Anaerobes and slow growing bacteria were detected with a higher sensitivity rate by mPCR than standard culture. CONCLUSION: Unyvero i60 ITI multiplex PCR detected rapidly pathogenic bacteria in infected CLU especially anaerobes and slow growing bacteria and was particularly effective for patients previously treated with antibiotics. | 2020 | 31790779 |