# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5798 | 0 | 0.9966 | Rapid identification of bacteria, mecA and van genes from blood cultures. The Genotype technology, a quick molecular genetic assay based on DNA multiplex amplification with biotinylated primers followed by hybridization to membrane bound probes, complies with the requirements for a fast diagnosis of sepsis. We evaluated the new Genotype BC Gram-negative and Gram-positive test kits (Hain Life Science, Germany) which respectively allow for the identification of 15 species of Gram-negative (GN) rods, and the identification of 17 Gram-positive (GP) bacteria species together with the determination of methicillin and vancomycin resistance (mecA and van genes). The study was performed on 60 positive blood cultures from BacT/ALERT bottles (aerobic, anaerobic and pediatric bottles). First, a Gram stain was carried out to select between Genotype BC GP or GN test, then identification were performed by the Genotype BC tests and by biochemical conventional tests after subculture and phenotypic susceptibility determination. The operating procedure was very easy to carry out and required a small amount of starting material (5 to 10 microL of blood culture). The results were available within 4.5 hours. For all the blood cultures, the Genotype BC results correlated with the biochemical identification and phenotypic antibiotics susceptibility. According to our results, this DNA strip technology based assay can easily be incorporated into routine diagnosis. | 2007 | 17913394 |
| 5833 | 1 | 0.9964 | Rapid identification, virulence analysis and resistance profiling of Staphylococcus aureus by gene segment-based DNA microarrays: application to blood culture post-processing. Up to now, blood culturing systems are the method of choice to diagnose bacteremia. However, definitive pathogen identification from positive blood cultures is a time-consuming procedure, requiring subculture and biochemical analysis. We developed a microarray for the identification of Staphylococcus aureus comprising PCR generated gene-segments, which can reduce the blood culture post-processing time to a single day. Moreover, it allows concomitant identification of virulence factors and antibiotic resistance determinants directly from positive blood cultures without previous amplification by PCR. The assay unambiguously identifies most of the important virulence genes such as tsst-1, sea, seb, eta and antibiotic resistance genes such as mecA, aacA-aphD, blaZ and ermA. To obtain positive signals, 20 ng of purified genomic S. aureus DNA or 2 microg of total DNA extracted from blood culture was required. The microarray specifically distinguished S. aureus from gram-negative bacteria as well as from closely related coagulase negative staphylococci (CoNS). The microarray-based identification of S. aureus can be accomplished on the same day blood cultures become positive in the Bactec. The results of our study demonstrate the feasibility of microarray-based systems for the direct identification and characterization of bacteria from cultured clinical specimens. | 2007 | 17141897 |
| 1483 | 2 | 0.9962 | Clinical Evaluation of the iCubate iC-GPC Assay for Detection of Gram-Positive Bacteria and Resistance Markers from Positive Blood Cultures. The iC-GPC Assay (iCubate, Huntsville, AL) is a qualitative multiplex test for the detection of five of the most common Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Enterococcus faecalis, and Enterococcus faecium) responsible for bacterial bloodstream infections, performed directly from positive blood cultures. The assay also detects the presence of the mecA, vanA, and vanB resistance determinants. This study comparatively evaluated the performance of the iC-GPC Assay against the Verigene Gram-positive blood culture (BC-GP) assay (Luminex Corp., Austin, TX) for 1,134 patient blood culture specimens positive for Gram-positive cocci. The iC-GPC Assay had an overall percent agreement with the BC-GP assay of 95.5%. Discordant specimens were further analyzed by PCR and a bidirectional sequencing method. The results indicate that the iC-GPC Assay together with the iCubate system is an accurate and reliable tool for the detection of the five most common Gram-positive bacteria and their resistance markers responsible for bloodstream infections. | 2018 | 29899000 |
| 5795 | 3 | 0.9962 | Direct identification of Gram-positive bacteria and resistance determinants from blood cultures using a microarray-based nucleic acid assay: in-depth analysis of microarray data for undetermined results. BACKGROUND: The Verigene Gram-Positive Blood Culture (BC-GP) nucleic acid assay (Nanosphere, Inc., Northbrook, IL, USA) is a newly developed microarray-based test with which 12 Gram-positive bacterial genes and three resistance determinants can be detected using blood culture broths. We evaluated the performance of this assay and investigated the signal characteristics of the microarray images. METHODS: At the evaluation stage, we tested 80 blood cultures that were positive for various bacteria (68 bacteria covered and 12 not covered by the BC-GP panel) collected from the blood of 36 patients and 44 spiked samples. In instances where the automated system failed and errors were called, we manually inspected microarray images, measured the signal intensities of target spots, and reclassified the results. RESULTS: With the manual analysis of the microarray images of 14 samples for which error calls were reported, we could obtain correct identification results for 12 samples without the need for retesting, because strong signals in the target spots were clearly discriminable from background noise. With our interpretation strategy, we could obtain 97.1% sensitivity and 100% specificity for bacterial identification by using the BC-GP assay. The two unidentified bacteria were viridans group streptococci, which produced weaker target signals. During the application stage, among 25 consecutive samples positive for Gram-positive bacteria, we identified two specimens with error calls as Streptococcus spp. by using manual analysis. CONCLUSIONS: With help of the manual review of the microarray images, the BC-GP assay could successfully identify species and resistance markers for many clinically important Gram-positive bacteria. | 2015 | 25536666 |
| 5882 | 4 | 0.9962 | PCR Analysis Methods for Detection and Identification of Beer-Spoilage Lactic Acid Bacteria. Polymerase chain reaction (PCR) analysis enables rapid and accurate detection of beer-spoilage lactic acid bacteria (LAB). Hop resistance genes, horA and horC, are utilized as genetic markers to determine the spoilage ability of LAB strains. PCR analysis of horA and horC, combined with multiplex PCR methods of 12 beer-spoilage species, enables simultaneous and comprehensive detection easily and inexpensively. | 2019 | 30506252 |
| 1484 | 5 | 0.9962 | Use of a commercial PCR-based line blot method for identification of bacterial pathogens and the mecA and van genes from BacTAlert blood culture bottles. In this study, the PCR-based DNA strip assay GenoType BC for the identification of bacteria and the resistance genes mecA, vanA, vanB, vanC1, and vanC2/3 directly from positive BacTAlert blood culture bottles was evaluated in a multicenter study. Of a total of 511 positive blood cultures, correct identification percentages for Gram-negative bacteria, Gram-positive bacteria, and the mecA gene were 96.1%, 89.9%, and 92.9%, respectively. Results were available 4 h after growth detection. | 2012 | 22075585 |
| 5797 | 6 | 0.9961 | PCR-reverse blot hybridization assay for screening and identification of pathogens in sepsis. Rapid and accurate identification of the pathogens involved in bloodstream infections is crucial for the prompt initiation of appropriate therapy, as this can decrease morbidity and mortality rates. A PCR-reverse blot hybridization assay for sepsis, the reverse blot hybridization assay (REBA) Sepsis-ID test, was developed; it uses pan-probes to distinguish Gram-positive and -negative bacteria and fungi. In addition, the assay was designed to identify bacteria and fungi using six genus-specific and 13 species-specific probes; it uses additional probes for antibiotic resistance genes, i.e., the mecA gene of methicillin-resistant Staphylococcus aureus (MRSA) and the vanA and vanB genes of vancomycin-resistant enterococci (VRE). The REBA Sepsis-ID test successfully identified clinical isolates and blood culture samples as containing Gram-positive bacteria, Gram-negative bacteria, or fungi. The results matched those obtained with conventional microbiological methods. For the REBA Sepsis-ID test, of the 115 blood culture samples tested, 47 (40.8%) and 49 (42.6%) samples were identified to the species and genus levels, respectively, and the remaining 19 samples (16.5%), which included five Gram-positive rods, were identified as Gram-positive bacteria, Gram-negative bacteria, or fungi. The antibiotic resistances of the MRSA and VRE strains were identified using both conventional microbiological methods and the REBA Sepsis-ID test. In conclusion, the REBA Sepsis-ID test developed for this study is a fast and reliable test for the identification of Gram-positive bacteria, Gram-negative bacteria, fungi, and antibiotic resistance genes (including mecA for MRSA and the vanA and vanB genes for VRE) in bloodstream infections. | 2013 | 23447637 |
| 1486 | 7 | 0.9961 | Multicenter evaluation of the Verigene Gram-negative blood culture nucleic acid test for rapid detection of bacteria and resistance determinants in positive blood cultures. The Verigene Gram-Negative Blood Culture Nucleic Acid Test (BC-GN) is a microarray-based assay that enables rapid detection of 9 common Gram-negative bacteria and 6 resistance determinants directly from positive blood cultures. We compared the performance of BC-GN with currently used automated systems, testing 141 clinical blood cultures and 205 spiked blood cultures. For identification of BC-GN target organisms in clinical and spiked blood cultures, the BC-GN assay showed 98.5% (130/132) and 98.9% (182/184) concordance, respectively. Of 140 resistance genes positively detected in clinical and spiked blood cultures with the BC-GN test, 139 (99.3%) were confirmed by PCR, and the detection results were consistent with the resistance phenotypes observed. The BC-GN assay, thus, can potentially improve care for sepsis patients by enabling timely detection and targeted antimicrobial therapy. | 2015 | 26361710 |
| 6056 | 8 | 0.9960 | Virulence, antibiotic resistance and biogenic amines of bacteriocinogenic lactococci and enterococci isolated from goat milk. The present study aimed to investigate the virulence, antibiotic resistance and biogenic amine production in bacteriocinogenic lactococci and enterococci isolated from goat milk in order to evaluate their safety. Twenty-nine bacteriocinogenic lactic acid bacteria (LAB: 11 Lactococcus spp., and 18 Enterococcus spp.) isolated from raw goat milk were selected and subjected to PCR to identify gelE, cylA, hyl, asa1, esp, efaA, ace, vanA, vanB, hdc1, hdc2, tdc and odc genes. The expression of virulence factors (gelatinase, hemolysis, lipase, DNAse, tyramine, histamine, putrescine) in different incubation temperatures was assessed by phenotypic methods, as well as the resistance to vancomycin, gentamicin, chloramphenicol, ampicillin and rifampicin (using Etest®). The tested isolates presented distinct combinations of virulence related genes, but not necessarily the expression of such factors. The relevance of identifying virulence-related genes in bacteriocinogenic LAB was highlighted, demanding for care in their usage as starter cultures or biopreservatives due to the possibility of horizontal gene transfer to other bacteria in food systems. | 2014 | 24960293 |
| 5796 | 9 | 0.9960 | Antibiotic treatment algorithm development based on a microarray nucleic acid assay for rapid bacterial identification and resistance determination from positive blood cultures. Rapid diagnosis of bloodstream infections remains a challenge for the early targeting of an antibiotic therapy in sepsis patients. In recent studies, the reliability of the Nanosphere Verigene Gram-positive and Gram-negative blood culture (BC-GP and BC-GN) assays for the rapid identification of bacteria and resistance genes directly from positive BCs has been demonstrated. In this work, we have developed a model to define treatment recommendations by combining Verigene test results with knowledge on local antibiotic resistance patterns of bacterial pathogens. The data of 275 positive BCs were analyzed. Two hundred sixty-three isolates (95.6%) were included in the Verigene assay panels, and 257 isolates (93.5%) were correctly identified. The agreement of the detection of resistance genes with subsequent phenotypic susceptibility testing was 100%. The hospital antibiogram was used to develop a treatment algorithm on the basis of Verigene results that may contribute to a faster patient management. | 2016 | 26712265 |
| 5776 | 10 | 0.9960 | Detection of pbp2b and ermB genes in clinical isolates of Streptococcus pneumoniae. BACKGROUND: Streptococcus pneumoniae is a major human pathogen. The emergence of penicillin resistant strains since the 1970s has been life threatening and the evolution of the bacteria have enabled itself to develop resistance to many other antibiotics such as the macrolides and the fluoroquinolones. This study aims to characterize S. pneumoniae isolates for the presence of penicillin and macrolide resistance genes. METHODOLOGY: One hundred and twenty clinical isolates of S. pneumoniae were obtained from patients of University Malaya Medical Centre (UMMC). The strains were screened using a multiplex real-time PCR method for the presence of alterations in the genes encoding the penicillin binding proteins: pbp2b, macrolide resistance determinant ermB and the pneumolysin gene, ply. Dual-labelled Taqman probes were used in the real-time detection method comprising three different genes labeled with individual fluorophores at different wavelengths. One hundred and twenty isolates from bacterial cultures and isolates directly from blood cultures samples were analyzed using this assay. RESULTS: A multiplex PCR comprising the antibiotic resistance genes, ermB and and pneumolysin gene (ply), a S. pneumoniae species specific gene, was developed to characterize strains of S. pneumoniae. Out of the 120 pneumococcal isolates, 58 strains were categorized as Penicillin Sensitive Streptococcus pneumoniae (PSSP), 36 as Penicillin Intermediate Streptococcus pneumoniae (PISP) and 26 as Penicillin Resistant Streptococcus pneumoniae (PRSP). All the 58 PSSP strains harboured the pbp2b gene while the 36 PISP and 26 PRSP strains did not harbour this gene, thus suggesting reduced susceptibility to penicillin. Resistance to erythromycin was observed in 47 of the pneumococcal strains while 15 and 58 were intermediate and sensitive to this drug respectively. Susceptibility testing to other beta-lactams (CTX and CRO) also showed reduced susceptibility among the strains within the PISP and PRSP groups but most PSSP strains were sensitive to other antibiotics. CONCLUSION: The characterization of pneumococcal isolates for penicillin and erythromycin resistance genes could be useful to predict the susceptibility of these isolates to other antibiotics, especially beta-lactams drugs. We have developed an assay with a shorter turnaround time to determine the species and resistance profile of Streptococcus pneumoniae with respect to penicillin and macrolides using the Real Time PCR format with fluorescent labeled Taqman probes, hence facilitating earlier and more definitive antimicrobial therapy which may lead to better patient management. | 2008 | 19738350 |
| 2347 | 11 | 0.9960 | Multiple drug resistance of Listeria monocytogenes isolated from aborted women by using serological and molecular techniques in Diwaniyah city/Iraq. BACKGROUND AND OBJECTIVES: The study was sought to detect the effect of Listeria monocytogenes on pregnant Iraqi women at Al-Diwaniya hospitals and determination of virulence genes and antimicrobial susceptibility of isolates. MATERIALS AND METHODS: 360 specimens including blood, urine, vaginal and endocervical were collected from 90 patients with spontaneous abortions. Blood samples were displayed to immunological study and remaining specimens were subjected to bacteriological diagnosis. PCR was used to determine the virulence factors and antimicrobial resistance genes. RESULTS: Fifteen positive samples (16.6%) of patients and thirteen isolates (14.5%) from patients were recognized based on ELISA and PCR assay respectively. The general isolation of L. monocytogenes strains in cases of abortive women was 13/270 (4.8%). L. monocytogenes strains were highly virulent because of presence of virulence factors associated genes, namely actA, hlyA, plcA and prfA in all strains. Multiple drug resistance (MAR) index values of 15.4% of isolates were >0.2. CONCLUSION: It is necessary for conducting susceptibility testing and to select the suitable antibiotics and avoid the effects of these bacteria in pregnant women. | 2020 | 32994901 |
| 2318 | 12 | 0.9959 | Distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analysis of integron resistance genes in respiratory tract isolates of uninfected patients. BACKGROUND: We studied the distribution of pathogenic bacteria in lower respiratory tract infection in lung cancer patients after chemotherapy and analyzed the integron resistance genes in respiratory tract isolates of uninfected patients. METHODS: Retrospective analysis was used to select sputum samples from 400 lung cancer patients after chemotherapy admitted in Fuyang People's Hospital from July 2017 to July 2019. Culture, isolation and identification of strains were conducted in accordance with the national clinical examination operating procedures. RESULTS: A total of 134 strains were identified. In 120 patients with pulmonary infection, 114 strains were cultured. Twenty strains of klebsiella pneumoniae were cultured in 280 patients without pulmonary infection. Among the 134 strains, the detection rate of gram-negative bacteria was 79.10%. The first four strains were Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, and Haemophilus influenzae. The gram-positive bacteria detection rate was 4.47%, mainly Staphylococcus aureus and Streptococcus. The fungus detection rate was 16.42%. The drug sensitivity results showed that the resistance rate of gram-negative bacillus to penicillin and cephalosporin was higher, and were more sensitive to carbapenem, piperacillin tazobactam and cefoperazone sulbactam. Gram-positive cocci were resistant to penicillin, macrolide and clindamycin, and sensitive to linezolid, vancomycin and rifampicin. All strains of fungal culture were candida albicans, which were sensitive to common antifungal drugs. Among the 20 strains of klebsiella pneumoniae cultured in sputum specimens of non-infected patients with lung cancer undergoing chemotherapy, 2 strains were integron-positive strains, and all of them were class I integrons. CONCLUSIONS: Lung cancer patients after chemotherapy have a high resistance to commonly used antimicrobial drugs, so it is necessary to detect the resistance of pathogenic microorganisms in clinical practice. The strains carried by patients with lung cancer without pulmonary infection during chemotherapy can isolate type I integrons, suggesting that the spread of drug resistance at gene level should be closely detected. | 2020 | 32944333 |
| 2233 | 13 | 0.9959 | Assessment of the multiplex PCR-based assay Unyvero pneumonia application for detection of bacterial pathogens and antibiotic resistance genes in children and neonates. BACKGROUND: Pneumonia is a major healthcare problem. Rapid pathogen identification is critical, but often delayed due to the duration of culturing. Early, broad antibacterial therapy might lead to false-negative culture findings and eventually to the development of antibiotic resistances. We aimed to assess the accuracy of the new application Unyvero P50 based on multiplex PCR to detect bacterial pathogens in respiratory specimens from children and neonates. METHODS: In this prospective study, bronchoalveolar lavage fluids, tracheal aspirates, or pleural fluids from neonates and children were analyzed by both traditional culture methods and Unyvero multiplex PCR. RESULTS: We analyzed specimens from 79 patients with a median age of 1.8 (range 0.01-20.1). Overall, Unyvero yielded a sensitivity of 73.1% and a specificity of 97.9% compared to culture methods. Best results were observed for non-fermenting bacteria, for which sensitivity of Unyvero was 90% and specificity 97.3%, while rates were lower for Gram-positive bacteria (46.2 and 93.9%, respectively). For resistance genes, we observed a concordance with antibiogram of 75% for those specimens in which there was a cultural correlate. CONCLUSIONS: Unyvero is a fast and easy-to-use tool that might provide additional information for clinical decision making, especially in neonates and in the setting of nosocomial pneumonia. Sensitivity of the PCR for Gram-positive bacteria and important resistance genes must be improved before this application can be widely recommended. | 2018 | 29086343 |
| 2282 | 14 | 0.9959 | Cross resistance of quinolone derivatives in gram-negative bacteria. A total of 127 Gram-negative bacteria resistant to nalidixic acid were isolated from as many patients affected by urinary tract infections and hospitalized in the first Clinic of Infectious Diseases, University of Naples. Enterobacteria were identified by Enterotube system (Roche) and API 20 system (Ayerst). Non-fermentative bacteria were identified by OXI/FERM system (Roche). The following bacteria were collected: Escherichia coli 50, Proteus spp. 35, Enterobacter agglomerans 12, Serratia sp. 5, Pseudomonas aeruginosa 25. The in vitro antibacterial activity of nalidixic acid and three other quinoline derivatives (pipemidic acid, oxolinic acid and ciprofloxacin) were studied by determining the MICs by a miniaturized dilution broth method. The MICs were compared to evaluate the eventual cross resistance to the drugs under examination within each bacterial species. The results showed that 23% of bacteria were resistant to nalidixic acid, pipemidic acid and oxolinic acid; 49.6% to nalidixic and pipemidic acid and 0.7% to nalidixic acid and oxolinic acid. On the other hand none of the bacteria were resistant to ciprofloxacin. The last showed very low MICs against all the bacteria under examination, including Pseudomonas and Serratia. The high antibacterial activity of ciprofloxacin even against bacteria highly resistant to the other quinolines could be due to a greater affinity of the target sites or to the better permeability of resistant strains to the newer drug or because it is unaffected until now by mutations of genes responsible for cross resistance. | 1985 | 3159488 |
| 2234 | 15 | 0.9959 | Clinical relevance of molecular identification of microorganisms and detection of antimicrobial resistance genes in bloodstream infections of paediatric cancer patients. BACKGROUND: Bloodstream infections (BSIs) are the major cause of mortality in cancer patients. Molecular techniques are used for rapid diagnosis of BSI, allowing early therapy and improving survival. We aimed to establish whether real-time quantitative polymerase chain reaction (qPCR) could improve early diagnosis and therapy in paediatric cancer patients, and describe the predominant pathogens of BSI and their antimicrobial susceptibility. METHODS: Blood samples were processed by the BACTEC system and microbial identification and susceptibility tests were performed by the Phoenix system. All samples were screened by multiplex 16 s rDNA qPCR. Seventeen species were evaluated using sex-specific TaqMan probes and resistance genes blaSHV, blaTEM, blaCTX, blaKPC, blaIMP, blaSPM, blaVIM, vanA, vanB and mecA were screened by SYBR Green reactions. Therapeutic efficacy was evaluated at the time of positive blood culture and at final phenotypic identification and antimicrobial susceptibility results. RESULTS: We analyzed 69 episodes of BSI from 64 patients. Gram-positive bacteria were identified in 61 % of the samples, Gram-negative bacteria in 32 % and fungi in 7 %. There was 78.2 % of agreement between the phenotypic and molecular methods in final species identification. The mecA gene was detected in 81.4 % of Staphylococcus spp., and 91.6 % were concordant with the phenotypic method. Detection of vanA gene was 100 % concordant. The concordance for Gram-negative susceptibilities was 71.4 % for Enterobacteriaceae and 50 % for Pseudomonas aeruginosa. Therapy was more frequently inadequate in patients who died, and the molecular test was concordant with the phenotypic susceptibility test in 50 %. CONCLUSIONS: qPCR has potential indication for early identification of pathogens and antimicrobial resistance genes from BSI in paediatric cancer patients and may improve antimicrobial therapy. | 2016 | 27585633 |
| 5834 | 16 | 0.9959 | Real-Time PCR to Identify Staphylococci and Assay for Virulence from Blood. The genus Staphylococcus includes pathogenic and non-pathogenic facultative anaerobes. Due to the plethora of virulence factors encoded in its genome, the species Staphylococcus aureus is known to be the most pathogenic. S. aureus strains harboring genes encoding virulence and antibiotic resistance are of public health importance. In clinical samples, however, pathogenic S. aureus is often mixed with putatively less pathogenic coagulase-negative staphylococci (CoNS), both of which can harbor mecA, the genetic driver for staphylococcal methicillin-resistance. In this chapter, the detailed practical procedure for operating a real-time pentaplex PCR assay in blood cultures is described. The pentaplex real-time PCR assay simultaneously detects markers for the presence of bacteria (16S rRNA), coagulase-negative staphylococcus (cns), S. aureus (spa), Panton-Valentine leukocidin (pvl), and methicillin resistance (mecA). | 2017 | 28600770 |
| 2430 | 17 | 0.9959 | Characterization of bacteriocinogenic Enterococcus isolates from wild and laboratory rabbits for the selection of autochthonous probiotic strains in Tunisia. AIM: The objective of this study was to characterize lactic acid bacteria (LAB) from rabbits to be used as potential autochthonous probiotic. METHODS AND RESULTS: Fifteen faecal samples were collected from wild and laboratory rabbits. One hundred and eight isolates were collected and tested for their inhibitory power against eight pathogenic bacteria. Among them, 43 Enterococcus isolates were able to inhibit at least one pathogen. Enterocine genes entA, entB and entP were detected in 14, 17 and 22 isolates, respectively. These isolates were tested for their antibiotic susceptibility and genes encoding virulence factors. Relevant phenotypes of antibiotic resistance were observed especially for ampicillin, vancomycin and linezolid. The following virulence genes were detected (number of positive isolates): hyl (5), esp (8), gelE (30), agg (2), ace (21), efa (6), CylL(L/s) (5), cob (26), cpd (32) and ccf (33). Five isolates were considered as safe and showed tolerance to both acid and bile salt. CONCLUSION: Bacteriocinogenic enterococci isolates from rabbits may show relevant resistance phenotypes and virulence factors. In addition, one Enterococcus durans isolate presents promising autochthonous probiotic candidate. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reveals interesting properties for E. durans isolate and supports their utilization as autochthonous probiotic in rabbit husbandry. | 2021 | 33629433 |
| 2240 | 18 | 0.9959 | Evaluation of multiplex tandem PCR (MT-PCR) assays for the detection of bacterial resistance genes among Enterobacteriaceae in clinical urines. BACKGROUND: Increasing resistance drives empirical use of less potent and previously reserved antibiotics, including for urinary tract infections (UTIs). Molecular profiling, without culture, might better guide early therapy. OBJECTIVES: To explore the potential of AusDiagnostics multiplex tandem (MT) PCR UTI assays. METHODS: Two MT-PCR assays were developed successively, seeking 8 or 16 resistance genes. Amplification was tracked in real time, with melting temperatures used to confirm product identity. Assays were variously performed on: (i) extracted DNA; (ii) cultured bacteria; (iii) urine spiked with reference strains; and (iv) bacteria harvested from clinical urines. Results were compared with those from sequencing, real-time SybrGreen PCR or phenotypic susceptibility. RESULTS: Performance was similar irrespective of whether DNA, cultures or urines were used, with >90% sensitivity and specificity with respect to common β-lactamases, dfr genes and aminoglycoside resistance determinants except aadA1/A2/A3, for which carriage correlated poorly with streptomycin resistance. Fluoroquinolone-susceptible and -resistant Escherichia coli (but not other species) were distinguished by the melting temperatures of their gyrA PCR products. The time from urine to results was <3 h. CONCLUSIONS: The MT-PCR assays rapidly identified resistance genes from Gram-negative bacteria in urines as well as from cultivated bacteria. Used directly on urines, this assay has the potential to guide early therapy. | 2019 | 30476137 |
| 1477 | 19 | 0.9958 | Multicenter Evaluation of the BIOFIRE Blood Culture Identification 2 Panel for Detection of Bacteria, Yeasts, and Antimicrobial Resistance Genes in Positive Blood Culture Samples. Diagnostic tools that can rapidly identify and characterize microbes growing in blood cultures are important components of clinical microbiology practice because they help to provide timely information that can be used to optimize patient management. This publication describes the bioMérieux BIOFIRE Blood Culture Identification 2 (BCID2) Panel clinical study that was submitted to the U.S. Food & Drug Administration. Results obtained with the BIOFIRE BCID2 Panel were compared to standard-of-care (SoC) results, sequencing results, PCR results, and reference laboratory antimicrobial susceptibility testing results to evaluate the accuracy of its performance. Results for 1,093 retrospectively and prospectively collected positive blood culture samples were initially enrolled, and 1,074 samples met the study criteria and were included in the final analyses. The BIOFIRE BCID2 Panel demonstrated an overall sensitivity of 98.9% (1,712/1,731) and an overall specificity of 99.6% (33,592/33,711) for Gram-positive bacteria, Gram-negative bacteria and yeast targets which the panel is designed to detect. One hundred eighteen off-panel organisms, which the BIOFIRE BCID2 Panel is not designed to detect, were identified by SoC in 10.6% (114/1,074) of samples. The BIOFIRE BCID2 Panel also demonstrated an overall positive percent agreement (PPA) of 97.9% (325/332) and an overall negative percent agreement (NPA) of 99.9% (2,465/2,767) for antimicrobial resistance determinants which the panel is designed to detect. The presence or absence of resistance markers in Enterobacterales correlated closely with phenotypic susceptibility and resistance. We conclude that the BIOFIRE BCID2 Panel produced accurate results in this clinical trial. | 2023 | 37227281 |