# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3619 | 0 | 0.9323 | Incidence of class 1 integrons in a quaternary ammonium compound-polluted environment. Samples of effluent and soil were collected from a reed bed system used to remediate liquid waste from a wool finishing mill with a high use of quaternary ammonium compounds (QACs) and were compared with samples of agricultural soils. Resistance quotients of aerobic gram-negative and gram-positive bacteria to ditallowdimethylammomium chloride (DTDMAC) and cetyltrimethylammonium bromide (CTAB) were established by plating onto nutrient agar containing 5 microg/ml or 50 microg/ml DTDMAC or CTAB. Approximately 500 isolates were obtained and screened for the presence of the intI1 (class 1 integrase), qacE (multidrug efflux), and qacE Delta1 (attenuated qacE) genes. QAC resistance was higher in isolates from reed bed samples, and class 1 integron incidence was significantly higher for populations that were preexposed to QACs. This is the first study to demonstrate that QAC selection in the natural environment has the potential to coselect for antibiotic resistance, as class 1 integrons are well-established vectors for cassette genes encoding antibiotic resistance. | 2005 | 15855499 |
| 6735 | 1 | 0.9317 | Increased expression of antibiotic-resistance genes in biofilm communities upon exposure to cetyltrimethylammonium bromide (CTAB) and other stress conditions. Quaternary ammonium compounds (QAC, e.g., cetyltrimethylammonium bromide, (CTAB)) are widely used as surfactants and disinfectants. QAC already are commonly found in wastewaters, and their concentration could increase, since QAC are recommended to inactivate the SARS-CoV-2 (COVID-19) virus. Exposure of bacteria to QAC can lead to proliferation of antibiotic resistance genes (ARG). In particular, O(2)-based membrane biofilm reactors (O(2)-MBfRs) achieved excellent CTAB biodegradation, but ARG increased in their biofilms. Here, we applied meta-transcriptomic analyses to assess the impacts of CTAB exposure and operating conditions on microbial community's composition and ARG expression in the O(2)-MBfRs. Two opportunistic pathogens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia, dominated the microbial communities and were associated with the presence of ARG. Operating conditions that imposed stress on the biofilms, i.e., limited supplies of O(2) and nitrogen or a high loading of CTAB, led to large increases in ARG expression, particularly for genes conferring antibiotic-target protection. Important within the efflux pumps was the Resistance-Nodulation-Division (RND) family, which may have been active in exporting CTAB from cells. Oxidative stress appeared to be the key factor that triggered ARG proliferation by selecting intrinsically resistant species and accentuating the expression of ARG. Our findings suggest that means to mitigate the spread of ARG, such as shown here in a O(2)-based membrane biofilm reactor, need to consider the impacts of stressors, including QAC exposure and stressful operating conditions. | 2021 | 33418325 |
| 8190 | 2 | 0.9313 | Identification of Quorum-Sensing Inhibitors Disrupting Signaling between Rgg and Short Hydrophobic Peptides in Streptococci. Bacteria coordinate a variety of social behaviors, important for both environmental and pathogenic bacteria, through a process of intercellular chemical signaling known as quorum sensing (QS). As microbial resistance to antibiotics grows more common, a critical need has emerged to develop novel anti-infective therapies, such as an ability to attenuate bacterial pathogens by means of QS interference. Rgg quorum-sensing pathways, widespread in the phylum Firmicutes, employ cytoplasmic pheromone receptors (Rgg transcription factors) that directly bind and elicit gene expression responses to imported peptide signals. In the human-restricted pathogen Streptococcus pyogenes, the Rgg2/Rgg3 regulatory circuit controls biofilm development in response to the short hydrophobic peptides SHP2 and SHP3. Using Rgg-SHP as a model receptor-ligand target, we sought to identify chemical compounds that could specifically inhibit Rgg quorum-sensing circuits. Individual compounds from a diverse library of known drugs and drug-like molecules were screened for their ability to disrupt complexes of Rgg and FITC (fluorescein isothiocyanate)-conjugated SHP using a fluorescence polarization (FP) assay. The best hits were found to bind Rgg3 in vitro with submicromolar affinities, to specifically abolish transcription of Rgg2/3-controlled genes, and to prevent biofilm development in S. pyogenes without affecting bacterial growth. Furthermore, the top hit, cyclosporine A, as well as its nonimmunosuppressive analog, valspodar, inhibited Rgg-SHP pathways in multiple species of Streptococcus. The Rgg-FITC-peptide-based screen provides a platform to identify inhibitors specific for each Rgg type. Discovery of Rgg inhibitors constitutes a step toward the goal of manipulating bacterial behavior for purposes of improving health. IMPORTANCE: The global emergence of antibiotic-resistant bacterial infections necessitates discovery not only of new antimicrobials but also of novel drug targets. Since antibiotics restrict microbial growth, strong selective pressures to develop resistance emerge quickly in bacteria. A new strategy to fight microbial infections has been proposed, namely, development of therapies that decrease pathogenicity of invading organisms while not directly inhibiting their growth, thus decreasing selective pressure to establish resistance. One possible means to this goal is to interfere with chemical communication networks used by bacteria to coordinate group behaviors, which can include the synchronized expression of genes that lead to disease. In this study, we identified chemical compounds that disrupt communication pathways regulated by Rgg proteins in species of Streptococcus. Treatment of cultures of S. pyogenes with the inhibitors diminished the development of biofilms, demonstrating an ability to control bacterial behavior with chemicals that do not inhibit growth. | 2015 | 25968646 |
| 124 | 3 | 0.9310 | A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Essentially all bacteria have genes for toxic metal ion resistances and these include those for Ag+, AsO2-, AsO4(3-), Cd2+ Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. The largest group of resistance systems functions by energy-dependent efflux of toxic ions. Fewer involve enzymatic transformations (oxidation, reduction, methylation, and demethylation) or metal-binding proteins (for example, metallothionein SmtA, chaperone CopZ and periplasmic silver binding protein SilE). Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. For example, Cd2+-efflux pumps of bacteria are either inner membrane P-type ATPases or three polypeptide RND chemiosmotic complexes consisting of an inner membrane pump, a periplasmic-bridging protein and an outer membrane channel. In addition to the best studied three-polypeptide chemiosmotic system, Czc (Cd2+, Zn2+, and Co2), others are known that efflux Ag+, Cu+, Ni2+, and Zn2+. Resistance to inorganic mercury, Hg2+ (and to organomercurials, such as CH3Hg+ and phenylmercury) involve a series of metal-binding and membrane transport proteins as well as the enzymes mercuric reductase and organomercurial lyase, which overall convert more toxic to less toxic forms. Arsenic resistance and metabolizing systems occur in three patterns, the widely-found ars operon that is present in most bacterial genomes and many plasmids, the more recently recognized arr genes for the periplasmic arsenate reductase that functions in anaerobic respiration as a terminal electron acceptor, and the aso genes for the periplasmic arsenite oxidase that functions as an initial electron donor in aerobic resistance to arsenite. | 2005 | 16133099 |
| 123 | 4 | 0.9305 | Genes for all metals--a bacterial view of the periodic table. The 1996 Thom Award Lecture. Bacterial chromosomes have genes for transport proteins for inorganic nutrient cations and oxyanions, such as NH4+, K+, Mg2+, Co2+, Fe3+, Mn2+, Zn2+ and other trace cations, and PO4(3-), SO4(2-) and less abundant oxyanions. Together these account for perhaps a few hundred genes in many bacteria. Bacterial plasmids encode resistance systems for toxic metal and metalloid ions including Ag+, AsO2-, AsO4(3-), Cd2+, Co2+, CrO4(2-), Cu2+, Hg2+, Ni2+, Pb2+, TeO3(2-), Tl+ and Zn2+. Most resistance systems function by energy-dependent efflux of toxic ions. A few involve enzymatic (mostly redox) transformations. Some of the efflux resistance systems are ATPases and others are chemiosmotic ion/proton exchangers. The Cd(2+)-resistance cation pump of Gram-positive bacteria is membrane P-type ATPase, which has been labeled with 32P from [gamma-32P]ATP and drives ATP-dependent Cd2+ (and Zn2+) transport by membrane vesicles. The genes defective in the human hereditary diseases of copper metabolism, Menkes syndrome and Wilson's disease, encode P-type ATPases that are similar to bacterial cadmium ATPases. The arsenic resistance system transports arsenite [As(III)], alternatively with the ArsB polypeptide functioning as a chemiosmotic efflux transporter or with two polypeptides, ArsB and ArsA, functioning as an ATPase. The third protein of the arsenic resistance system is an enzyme that reduces intracellular arsenate [As(V)] to arsenite [As(III)], the substrate of the efflux system. In Gram-negative cells, a three polypeptide complex functions as a chemiosmotic cation/protein exchanger to efflux Cd2+, Zn2+ and Co2+. This pump consists of an inner membrane (CzcA), an outer membrane (CzcC) and a membrane-spanning (CzcB) protein that function together. | 1998 | 9523453 |
| 8798 | 5 | 0.9304 | Estrogen mimics induce genes encoding chemical efflux proteins in gram-negative bacteria. Escherichia coli and Pseudomonas aeruginosa are gram-negative bacteria found in wastewater and biosolids. Spanning the inner and outer membrane are resistance-nodulation-cell division superfamily (RND) efflux pumps responsible for detoxification of the cell, typically in response to antibiotics and other toxicity inducing substrates. Here, we show that estrogenic endocrine disruptors, common wastewater pollutants, induce genes encoding chemical efflux proteins. Bacteria were exposed to environmental concentrations of the synthetic estrogen 17α-ethynylestradiol, the surfactant nonylphenol, and the plasticizer bisphenol-A, and analyzed for RND gene expression via q-PCR. Results showed that the genes acrB and yhiV were over-expressed in response to the three chemicals in E. coli, and support previous findings that these two transporters export hormones. P. aeruginosa contains 12 RND efflux pumps, which were differentially expressed in response to the three chemicals: 17α-ethynylestradiol, bisphenol-A, and nonylphenol up-regulated mexD and mexF, while nonylphenol and bisphenol-A positively affected transcription of mexK, mexW, and triC. Gene expression via q-PCR of RND genes may be used to predict the interaction of estrogen mimics with RND genes. One bacterial response to estrogen mimic exposure is to induce gene expression of chemical efflux proteins, which leads to the expulsion of the contaminant from the cell. | 2015 | 25754012 |
| 7946 | 6 | 0.9303 | New Insights into the Microbial Diversity of Cake Layer in Yttria Composite Ceramic Tubular Membrane in an Anaerobic Membrane Bioreactor (AnMBR). Cake layer formation is an inevitable challenge in membrane bioreactor (MBR) operation. The investigations on the cake layer microbial community are essential to control biofouling. This work studied the bacterial and archaeal communities in the cake layer, the anaerobic sludge, and the membrane cleaning solutions of anaerobic membrane bioreactor (AnMBR) with yttria-based ceramic tubular membrane by polymerase chain reaction (PCR) amplification of 16S rRNA genes. The cake layer resistance was 69% of the total membrane resistance. Proteins and soluble microbial by-products (SMPs) were the dominant foulants in the cake layer. The pioneering archaeal and bacteria in the cake layer were mostly similar to those in the anaerobic bulk sludge. The dominant biofouling bacteria were Proteobacteria, Bacteroidetes, Firmicutes, and Chloroflexi and the dominant archaeal were Methanosaetacea and Methanobacteriacea at family level. This finding may help to develop antifouling membranes for AnMBR treating domestic wastewater. | 2021 | 33546268 |
| 4777 | 7 | 0.9302 | Identification of Bacterial Strains and Development of anmRNA-Based Vaccine to Combat Antibiotic Resistance in Staphylococcus aureus via In Vitro and In Silico Approaches. The emergence of antibiotic-resistant microorganisms is a significant concern in global health. Antibiotic resistance is attributed to various virulent factors and genetic elements. This study investigated the virulence factors of Staphylococcus aureus to create an mRNA-based vaccine that could help prevent antibiotic resistance. Distinct strains of the bacteria were selected for molecular identification of virulence genes, such as spa, fmhA, lukD, and hla-D, which were performed utilizing PCR techniques. DNA extraction from samples of Staphylococcus aureus was conducted using the Cetyl Trimethyl Ammonium Bromide (CTAB) method, which was confirmed and visualized using a gel doc; 16S rRNA was utilized to identify the bacterial strains, and primers of spa, lukD, fmhA, and hla-D genes were employed to identify the specific genes. Sequencing was carried out at Applied Bioscience International (ABI) in Malaysia. Phylogenetic analysis and alignment of the strains were subsequently constructed. We also performed an in silico analysis of the spa, fmhA, lukD, and hla-D genes to generate an antigen-specific vaccine. The virulence genes were translated into proteins, and a chimera was created using various linkers. The mRNA vaccine candidate was produced utilizing 18 epitopes, linkers, and an adjuvant, known as RpfE, to target the immune system. Testing determined that this design covered 90% of the population conservancy. An in silico immunological vaccine simulation was conducted to verify the hypothesis, including validating and predicting secondary and tertiary structures and molecular dynamics simulations to evaluate the vaccine's long-term viability. This vaccine design may be further evaluated through in vivo and in vitro testing to assess its efficacy. | 2023 | 37189657 |
| 805 | 8 | 0.9294 | LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di-N-Oxide Phenazine in Lysobacter antibioticus. Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers. | 2023 | 37166326 |
| 9031 | 9 | 0.9291 | EmrR-Dependent Upregulation of the Efflux Pump EmrCAB Contributes to Antibiotic Resistance in Chromobacterium violaceum. Chromobacterium violaceum is an environmental Gram-negative bacterium that causes infections in humans. Treatment of C. violaceum infections is difficult and little is known about the mechanisms of antibiotic resistance in this bacterium. In this work, we identified mutations in the MarR family transcription factor EmrR and in the protein GyrA as key determinants of quinolone resistance in C. violaceum, and we defined EmrR as a repressor of the MFS-type efflux pump EmrCAB. Null deletion of emrR caused increased resistance to nalidixic acid, but not to other quinolones or antibiotics of different classes. Moreover, the ΔemrR mutant showed decreased production of the purple pigment violacein. Importantly, we isolated C. violaceum spontaneous nalidixic acid-resistant mutants with a point mutation in the DNA-binding domain of EmrR (R92H), with antibiotic resistance profile similar to that of the ΔemrR mutant. Other spontaneous mutants with high MIC values for nalidixic acid and increased resistance to fluoroquinolones presented point mutations in the gene gyrA. Using DNA microarray, Northern blot and EMSA assays, we demonstrated that EmrR represses directly a few dozen genes, including the emrCAB operon and other genes related to transport, oxidative stress and virulence. This EmrR repression on emrCAB was relieved by salicylate. Although mutation of the C. violaceum emrCAB operon had no effect in antibiotic susceptibility or violacein production, deletion of emrCAB in an emrR mutant background restored antibiotic susceptibility and violacein production in the ΔemrR mutant. Using a biosensor reporter strain, we demonstrated that the lack of pigment production in ΔemrR correlates with the accumulation of quorum-sensing molecules in the cell supernatant of this mutant strain. Therefore, our data revealed that overexpression of the efflux pump EmrCAB via mutation and/or derepression of EmrR confers quinolone resistance and alters quorum-sensing signaling in C. violaceum, and that point mutation in emrR can contribute to emergence of antibiotic resistance in bacteria. | 2018 | 30498484 |
| 729 | 10 | 0.9290 | Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Extracellular DNA (eDNA) is in the environment, bodily fluids, in the matrix of biofilms, and accumulates at infection sites. eDNA can function as a nutrient source, a universal biofilm matrix component, and an innate immune effector in eDNA traps. In biofilms, eDNA is required for attachment, aggregation, and stabilization of microcolonies. We have recently shown that eDNA can sequester divalent metal cations, which has interesting implications on antibiotic resistance. eDNA binds metal cations and thus activates the Mg(2+)-responsive PhoPQ and PmrAB two-component systems. In Pseudomonas aeruginosa and many other Gram-negative bacteria, the PhoPQ/PmrAB systems control various genes required for virulence and resisting killing by antimicrobial peptides (APs), including the pmr genes (PA3552-PA3559) that are responsible for the addition of aminoarabinose to lipid A. The PA4773-PA4775 genes are a second DNA-induced cluster and are required for the production of spermidine on the outer surface, which protects the outer membrane from AP treatment. Both modifications mask the negative surface charges and limit membrane damage by APs. DNA-enriched biofilms or planktonic cultures have increased antibiotic resistance phenotypes to APs and aminoglycosides. These dual antibiotic resistance and immune evasion strategies may be expressed in DNA-rich environments and contribute to long-term survival. | 2013 | 23419933 |
| 618 | 11 | 0.9290 | A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. Bacteria produce chemical signals (pheromones) to coordinate behaviors across a population in a process termed quorum sensing (QS). QS systems comprising peptide pheromones and their corresponding Rgg receptors are widespread among Firmicutes and may be useful targets for manipulating microbial behaviors, like suppressing virulence. The Rgg2/3 QS circuit of the human pathogen Streptococcus pyogenes controls genes affecting resistance to host lysozyme in response to short hydrophobic pheromones (SHPs). Considering that artificial activation of a QS pathway may be as useful in the objective of manipulating bacteria as inhibiting it, we sought to identify small-molecule inducers of the Rgg2/3 QS system. We report the identification of a small molecule, P516-0475, that specifically induced expression of Rgg2/3-regulated genes in the presence of SHP pheromones at concentrations lower than typically required for QS induction. In searching for the mode of action of P516-0475, we discovered that an S. pyogenes mutant deficient in pepO, a neprilysin-like metalloendopeptidase that degrades SHP pheromones, was unresponsive to the compound. P516-0475 directly inhibited recombinant PepO in vitro as an uncompetitive inhibitor. We conclude that this compound induces QS by stabilizing SHP pheromones in culture. Our study indicates the usefulness of cell-based screens that modulate pathway activities to identify unanticipated therapeutic targets contributing to QS signaling. | 2018 | 29203527 |
| 8797 | 12 | 0.9289 | Presence of quorum-sensing systems associated with multidrug resistance and biofilm formation in Bacteroides fragilis. Bacteroides fragilis constitutes 1-2% of the natural microbiota of the human digestive tract and is the predominant anaerobic opportunistic pathogen in gastrointestinal infections. Most bacteria use quorum sensing (QS) to monitor cell density in relation to other cells and their environment. In Gram-negative bacteria, the LuxRI system is common. The luxR gene encodes a transcriptional activator inducible by type I acyl-homoserine lactone autoinducers (e.g., N-[3-oxohexanoyl] homoserine lactone and hexanoyl homoserine lactone [C6-HSL]). This study investigated the presence of QS system(s) in B. fragilis. The genome of American-type culture collection strain no. ATCC25285 was searched for QS genes. The strain was grown to late exponential phase in the presence or absence of synthetic C6-HSL and C8-HSL or natural homoserine lactones from cell-free supernatants from spent growth cultures of other bacteria. Growth, susceptibility to antimicrobial agents, efflux pump gene (bmeB) expression, and biofilm formation were measured. Nine luxR and no luxI orthologues were found. C6-HSL and supernatants from Yersinia enterocolitica, Vibrio cholerae, and Pseudomonas aeruginosa caused a significant (1) reduction in cellular density and (2) increases in expression of four putative luxR genes, bmeB3, bmeB6, bmeB7, and bmeB10, resistance to various antibiotics, which was reduced by carbonyl cyanide-m-chlorophenyl hydrazone (CCCP, an uncoupler that dissipates the transmembrane proton gradient, which is also the driving force of resistance nodulation division efflux pumps) and (3) increase in biofilm formation. Susceptibility of ATCC25285 to C6-HSL was also reduced by CCCP. These data suggest that (1) B. fragilis contains putative luxR orthologues, which could respond to exogenous homoserine lactones and modulate biofilm formation, bmeB efflux pump expression, and susceptibility to antibiotics, and (2) BmeB efflux pumps could transport homoserine lactones. | 2008 | 18188535 |
| 9224 | 13 | 0.9288 | Plant-derived secondary metabolites as the main source of efflux pump inhibitors and methods for identification. The upsurge of multiple drug resistance (MDR) bacteria substantially diminishes the effectiveness of antibiotic arsenal and therefore intensifies the rate of therapeutic failure. The major factor in MDR is efflux pump-mediated resistance. A unique pump can make bacteria withstand a wide range of structurally diverse compounds. Therefore, their inhibition is a promising route to eliminate resistance phenomenon in bacteria. Phytochemicals are excellent alternatives as resistance-modifying agents. They can directly kill bacteria or interact with the crucial events of pathogenicity, thereby decreasing the ability of bacteria to develop resistance. Numerous botanicals display noteworthy efflux pumps inhibitory activities. Edible plants are of growing interest. Likewise, some plant families would be excellent sources of efflux pump inhibitors (EPIs) including Apocynaceae, Berberidaceae, Convolvulaceae, Cucurbitaceae, Fabaceae, Lamiaceae, and Zingiberaceae. Easily applicable methods for screening plant-derived EPIs include checkerboard synergy test, berberine uptake assay and ethidium bromide test. In silico high-throughput virtual detection can be evaluated as a criterion of excluding compounds with efflux substrate-like characteristics, thereby improving the selection process and extending the identification of EPIs. To ascertain the efflux activity inhibition, real-time PCR and quantitative mass spectrometry can be applied. This review emphasizes on efflux pumps and their roles in transmitting bacterial resistance and an update plant-derived EPIs and strategies for identification. | 2020 | 32923005 |
| 8834 | 14 | 0.9288 | Bio-informed synthesis of marine-sourced indole derivatives: suppressing gram-negative bacteria biofilm and virulence. Biofilms cling to surfaces to form complex architectures allowing their bacterial creators to acquire multidrug resistance and claiming countless lives worldwide. Therefore, finding novel compounds that affect virulence and biofilm-forming capacity of resistant pathogenic bacteria is imperative. Recently, we identified indole-based compounds that possess anti-biofilm properties in coral-associated bacteria. We succeeded in efficiently synthesizing two of these compounds, 1,1'-bisindole (NN) and 2,3-dihydro-2,2'-bisindole (DIV). They were found to attenuate biofilms of gram-negative bacterial pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii. Combining these compounds with the antibiotic tobramycin resulted in significant biofilm inhibition, particularly in the eradication of mature P. aeruginosa biofilms. Both of the bisindole derivatives, suppressed a number of bacterial virulence factors, reduced bacterial adhesion, and improved survival rates in infected Caenorhabditis elegans and human lung epithelial cell models. Transcriptome analyses of the bacteria treated with these compounds revealed that NN repressed or upregulated 307 genes when compared to untreated P. aeruginosa. These bacteria-derived molecules act in resistance-quenching and are potentially important candidates for inclusion in treatment protocols. The use of compounds that prevent the biofilm from accumulating the high cell densities critical to its structural and functional maintenance represents significant progress in the management of bacterial persistence. Therefore, a possible clinical implementation of these innovative compounds holds a promising future. | 2025 | 40369603 |
| 579 | 15 | 0.9288 | Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations. There is accumulating evidence that transenvelope efflux pumps of the resistance, nodulation, cell division protein family (RND) are excreting toxic substances from the periplasm across the outer membrane directly to the outside. This would mean that resistance of Gram-negative bacteria to organic toxins and heavy metals is in fact a two-step process: one set of resistance factors control the concentration of a toxic substance in the periplasm, another one that in the cytoplasm. Efficient periplasmic detoxification requires periplasmic toxin sensing and transduction of this signal into the cytoplasm to control expression of the periplasmic detoxification system. Such a signal transduction system was analyzed using the Cnr nickel resistance system from Cupriavidus (Wautersia, Ralstonia, Alcaligenes) metallidurans strain CH34. Resistance is based on nickel efflux mediated by the CnrCBA efflux pump encoded by the cnrYHXCBAT metal resistance determinant. The products of the three genes cnrYXH transcriptionally regulate expression of cnr. CnrY and CnrX are membrane-bound proteins probably functioning as anti sigma factors while CnrH is a cnr-specific extracytoplasmic functions (ECF) sigma factors. Experimental data provided here indicate a signal transduction chain leading from nickel in the periplasm to transcription initiation at the cnr promoters cnrYp and cnrCp, which control synthesis of the nickel efflux pump CnrCBA. | 2005 | 16158236 |
| 7830 | 16 | 0.9286 | Cascade capture, oxidization and inactivation for removing multi-species pollutants, antimicrobial resistance and pathogenicity from hospital wastewater. As reservoirs of pathogens, antimicrobial resistant microorganisms and a wide variety of pollutants, hospital wastewaters (HWWs) need to be effectively treated before discharge. This study employed the functionalized colloidal microbubble technology as one-step fast HWW treatment. Inorganic coagulant (monomeric Fe(III)-coagulant or polymeric Al(III)-coagulant) and ozone were used as surface-decorator and gaseous core modifier, respectively. The Fe(III)- or Al(III)-modified colloidal gas (or, ozone) microbubbles (Fe(III)-CCGMBs, Fe(III)-CCOMBs, Al(III)-CCGMBs and Al(III)-CCOMBs) were constructed. Within 3 min, CCOMBs decreased COD(Cr) and fecal coliform concentration to the levels meeting the national discharge standard for medical organization. Regrowth of bacteria was inhibited and biodegradability of organics was increased after the simultaneous oxidation and cell-inactivation process. The metagenomics analysis further reveals that Al(III)-CCOMBs performed best in capturing the virulence genes, antibiotic resistance genes and their potential hosts. The horizontal transfer of those harmful genes could be effectively hampered thanks to the removal of mobile genetic elements. Interestingly, the virulence factors of adherence, micronutrient uptake/acquisition and phase invasion could facilitate the interface-dominated capture. Featured as cascade processes of capture, oxidation and inactivation in the one-step operation, the robust Al(III)-CCOMB treatment is recommended for the HWW treatment and the protection of downstream aquatic environment. | 2023 | 37269564 |
| 8189 | 17 | 0.9285 | Engineering nanoparticles to silence bacterial communication. The alarming spread of bacterial resistance to traditional antibiotics has warranted the study of alternative antimicrobial agents. Quorum sensing (QS) is a chemical cell-to-cell communication mechanism utilized by bacteria to coordinate group behaviors and establish infections. QS is integral to bacterial survival, and therefore provides a unique target for antimicrobial therapy. In this study, silicon dioxide nanoparticles (Si-NP) were engineered to target the signaling molecules [i.e., acylhomoserine lactones (HSLs)] used for QS in order to halt bacterial communication. Specifically, when Si-NP were surface functionalized with β-cyclodextrin (β-CD), then added to cultures of bacteria (Vibrio fischeri), whose luminous output depends upon HSL-mediated QS, the cell-to-cell communication was dramatically reduced. Reductions in luminescence were further verified by quantitative polymerase chain reaction (qPCR) analyses of luminescence genes. Binding of HSLs to Si-NPs was examined using nuclear magnetic resonance (NMR) spectroscopy. The results indicated that by delivering high concentrations of engineered NPs with associated quenching compounds, the chemical signals were removed from the immediate bacterial environment. In actively-metabolizing cultures, this treatment blocked the ability of bacteria to communicate and regulate QS, effectively silencing and isolating the cells. Si-NPs provide a scaffold and critical stepping-stone for more pointed developments in antimicrobial therapy, especially with regard to QS-a target that will reduce resistance pressures imposed by traditional antibiotics. | 2015 | 25806030 |
| 9027 | 18 | 0.9285 | Scorpion Venom Antimicrobial Peptides Induce Siderophore Biosynthesis and Oxidative Stress Responses in Escherichia coli. The increasing development of microbial resistance to classical antimicrobial agents has led to the search for novel antimicrobials. Antimicrobial peptides (AMPs) derived from scorpion and snake venoms offer an attractive source for the development of novel therapeutics. Smp24 (24 amino acids [aa]) and Smp43 (43 aa) are broad-spectrum AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio mauruspalmatus and subsequently characterized. Using a DNA microarray approach, we examined the transcriptomic responses of Escherichia coli to subinhibitory concentrations of Smp24 and Smp43 peptides following 5 h of incubation. Seventy-two genes were downregulated by Smp24, and 79 genes were downregulated by Smp43. Of these genes, 14 genes were downregulated in common and were associated with bacterial respiration. Fifty-two genes were specifically upregulated by Smp24. These genes were predominantly related to cation transport, particularly iron transport. Three diverse genes were independently upregulated by Smp43. Strains with knockouts of differentially regulated genes were screened to assess the effect on susceptibility to Smp peptides. Ten mutants in the knockout library had increased levels of resistance to Smp24. These genes were predominantly associated with cation transport and binding. Two mutants increased resistance to Smp43. There was no cross-resistance in mutants resistant to Smp24 or Smp43. Five mutants showed increased susceptibility to Smp24, and seven mutants showed increased susceptibility to Smp43. Of these mutants, formate dehydrogenase knockout (fdnG) resulted in increased susceptibility to both peptides. While the electrostatic association between pore-forming AMPs and bacterial membranes followed by integration of the peptide into the membrane is the initial starting point, it is clear that there are numerous subsequent additional intracellular mechanisms that contribute to their overall antimicrobial effect.IMPORTANCE The development of life-threatening resistance of pathogenic bacteria to the antibiotics typically in use in hospitals and the community today has led to an urgent need to discover novel antimicrobial agents with different mechanisms of action. As an ancient host defense mechanism of the innate immune system, antimicrobial peptides (AMPs) are attractive candidates to fill that role. Scorpion venoms have proven to be a rich source of AMPs. Smp24 and Smp43 are new AMPs that have been identified from the venom gland of the Egyptian scorpion Scorpio maurus palmatus, and these peptides can kill a wide range of bacterial pathogens. By better understanding how these AMPs affect bacterial cells, we can modify their structure to make better drugs in the future. | 2021 | 33980680 |
| 9094 | 19 | 0.9283 | Pathogen-Specific Polymeric Antimicrobials with Significant Membrane Disruption and Enhanced Photodynamic Damage To Inhibit Highly Opportunistic Bacteria. Highly pathogenic Gram-negative bacteria and their drug resistance are a severe public health threat with high mortality. Gram-negative bacteria are hard to kill due to the complex cell envelopes with low permeability and extra defense mechanisms. It is challenging to treat them with current strategies, mainly including antibiotics, peptides, polymers, and some hybrid materials, which still face the issue of drug resistance, limited antibacterial selectivity, and severe side effects. Together with precise bacteria targeting, synergistic therapeutic modalities, including physical membrane damage and photodynamic eradication, are promising to combat Gram-negative bacteria. Herein, pathogen-specific polymeric antimicrobials were formulated from amphiphilic block copolymers, poly(butyl methacrylate)- b-poly(2-(dimethylamino) ethyl methacrylate- co-eosin)- b-ubiquicidin, PBMA- b-P(DMAEMA- co-EoS)-UBI, in which pathogen-targeting peptide ubiquicidin (UBI) was tethered in the hydrophilic chain terminal, and Eosin-Y was copolymerized in the hydrophilic block. The micelles could selectively adhere to bacteria instead of mammalian cells, inserting into the bacteria membrane to induce physical membrane damage and out-diffusion of intracellular milieu. Furthermore, significant in situ generation of reactive oxygen species was observed upon light irradiation, achieving further photodynamic eradication. Broad-spectrum bacterial inhibition was demonstrated for the polymeric antimicrobials, especially highly opportunistic Gram-negative bacteria, such as Pseudomona aeruginosa ( P. aeruginosa) based on the synergy of physical destruction and photodynamic therapy, without detectable resistance. In vivo P. aeruginosa-infected knife injury model and burn model both proved good potency of bacteria eradication and promoted wound healing, which was comparable with commercial antibiotics, yet no risk of drug resistance. It is promising to hurdle the infection and resistance suffered from highly opportunistic bacteria. | 2019 | 30632740 |