CT18 - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
470100.9501Gene interaction network studies to decipher the multi-drug resistance mechanism in Salmonella enterica serovar Typhi CT18 reveal potential drug targets. Salmonella enterica subsp. enterica serovar Typhi, a human enteric pathogen causing typhoid fever, developed resistance to multiple antibiotics over the years. The current study was dedicated to understand the multi-drug resistance (MDR) mechanism of S. enterica serovar Typhi CT18 and to identify potential drug targets that could be exploited for new drug discovery. We have employed gene interaction network analysis for 44 genes which had 275 interactions. Clustering analysis resulted in three highly interconnecting clusters (C1-C3). Functional enrichment analysis revealed the presence of drug target alteration and three different multi-drug efflux pumps in the bacteria that were associated with antibiotic resistance. We found seven genes (arnA,B,C,D,E,F,T) conferring resistance to Cationic Anti-Microbial Polypeptide (CAMP) molecules by membrane Lipopolysaccharide (LPS) modification, while macB was observed to be an essential controlling hub of the network and played a crucial role in MacAB-TolC efflux pump. Further, we identified five genes (mdtH, mdtM, mdtG, emrD and mdfA) which were involved in Major Facilitator Superfamily (MFS) efflux system and acrAB contributed towards AcrAB-TolC efflux pump. All three efflux pumps were seen to be highly dependent on tolC gene. The five genes, namely tolC, macB, acrA, acrB and mdfA which were involved in multiple resistance pathways, can act as potential drug targets for successful treatment strategies. Therefore, this study has provided profound insights into the MDR mechanism in S. Typhi CT18. Our results will be useful for experimental biologists to explore new leads for S. enterica.202032097747
538010.9497In Vitro Screening of a 1280 FDA-Approved Drugs Library against Multidrug-Resistant and Extensively Drug-Resistant Bacteria. Alternative strategies against multidrug-resistant (MDR) bacterial infections are suggested to clinicians, such as drug repurposing, which uses rapidly available and marketed drugs. We gathered a collection of MDR bacteria from our hospital and performed a phenotypic high-throughput screening with a 1280 FDA-approved drug library. We used two Gram positive (Enterococcus faecium P5014 and Staphylococcus aureus P1943) and six Gram negative (Acinetobacter baumannii P1887, Klebsiella pneumoniae P9495, Pseudomonas aeruginosa P6540, Burkholderia multivorans P6539, Pandoraea nosoerga P8103, and Escherichia coli DSM105182 as the reference and control strain). The selected MDR strain panel carried resistance genes or displayed phenotypic resistance to last-line therapies such as carbapenems, vancomycin, or colistin. A total of 107 compounds from nine therapeutic classes inhibited >90% of the growth of the selected Gram negative and Gram positive bacteria at a drug concentration set at 10 µmol/L, and 7.5% were anticancer drugs. The common hit was the antiseptic chlorhexidine. The activity of niclosamide, carmofur, and auranofin was found against the selected methicillin-resistant S. aureus. Zidovudine was effective against colistin-resistant E. coli and carbapenem-resistant K. pneumoniae. Trifluridine, an antiviral, was effective against E. faecium. Deferoxamine mesylate inhibited the growth of XDR P. nosoerga. Drug repurposing by an in vitro screening of a drug library is a promising approach to identify effective drugs for specific bacteria.202235326755
209320.9490Are Enterobacteriaceae and Enterococcus Isolated from Powdered Infant Formula a Hazard for Infants? A Genomic Analysis. Powdered infant formulas (PIF) are the most used dietary substitutes that are used in order to supplement breastfeeding. However, PIF are not sterile and can be contaminated with different microorganisms. The objective of this study was to genomically characterize Enterobacteriaceae (ENT) and Enterococcus strains that were isolated from PIF. Strains were identified by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) and whole-genome sequencing (WGS). Genomic typing, detection of virulence, and resistance profiles and genes were performed with the Ridom SeqSphere+ software; the comprehensive antibiotic resistance database (CARD) platform; ResFinder and PlasmidFinder tools; and by the disk diffusion method. Nineteen isolates from PIF were analyzed, including ENT such as Kosakonia cowanii, Enterobacter hormaechei, Franconibacter helveticus, Mixta calida, and lactic acid bacteria such as Enterococcus faecium. The strains exhibited resistance to beta-lactams, cephalosporins, and macrolides. Resistance genes such as AcrAB-TolC, marA, msbA, knpEF, oqxAB, fosA, bla(ACT-)(7), bla(ACT-)(14,)qacJ, oqxAB(,)aac(6')-Ii, and msr(C); and virulence genes such as astA, cheB, cheR, ompA ompX, terC, ironA, acm, and efaAfm, adem were also detected. All the analyzed strains possessed genes that produced heat-shock proteins, such as IbpA and ClpL. In PIF, the presence of ENT and Enterococcus that are multiresistant to antibiotics-together with resistance and virulence genes-pose a health risk for infants consuming these food products.202236429148
513430.9489Genomic analysis and antibiotic resistance of a multidrug-resistant bacterium isolated from pharmaceutical wastewater treatment plant sludge. Pharmaceutical wastewater treatment plants (PWWTPs) serve as reservoirs for antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). In this study, a multiantibiotic-resistant strain of Acinetobacter lwoffii (named N4) was isolated from the dewatered sludge of a PWWTP. N4 exhibited high resistance to both antibiotics and metals, with minimum inhibitory concentrations (MICs) of chloramphenicol and cefazolin reaching 1024 mg·L(-1) and MICs of Cu(2+) and Zn(2+) reaching 512 mg·L(-1). Co-sensitization experiments revealed that when antibiotics are co-existing with heavy metal ions (such as TET and Cd(2+), AMP and Cu(2+)) could enhance the resistance of N4 to them. Whole-genome sequencing of N4 revealed a genome size of 0.37 Mb encoding 3359 genes. Among these, 23 ARGs were identified, including dfrA26, bl2be(CTXM), catB3, qnrB, rosB, tlrC, smeD, smeE, mexE, ceoB, oprN, acrB, adeF, ykkC, ksgA and sul2, which confer resistance through mechanisms such as efflux pumps, enzyme modification and target bypass. Additionally, the N4 genome contained 187 genes associated with human disease and 249 virulence factors, underscoring its potential pathogenicity. Overall, this study provides valuable insights into ARBs in PWWTPs and highlights the potential risks posed by multidrug-resistant strains such as N4.202539626482
618340.9487Characterization of putative multidrug resistance transporters of the major facilitator-superfamily expressed in Salmonella Typhi. Multidrug resistance mediated by efflux pumps is a well-known phenomenon in infectious bacteria. Although much work has been carried out to characterize multidrug efflux pumps in Gram-negative and Gram-positive bacteria, such information is still lacking for many deadly pathogens. The aim of this study was to gain insight into the substrate specificity of previously uncharacterized transporters of Salmonella Typhi to identify their role in the development of multidrug resistance. S. Typhi genes encoding putative members of the major facilitator superfamily were cloned and expressed in the drug-hypersensitive Escherichia coli strain KAM42, and tested for transport of 25 antibacterial compounds, including representative antibiotics of various classes, antiseptics, dyes and detergents. Of the 15 tested putative transporters, STY0901, STY2458 and STY4874 exhibited a drug-resistance phenotype. Among these, STY4874 conferred resistance to at least ten of the tested antimicrobials: ciprofloxacin, norfloxacin, levofloxacin, kanamycin, streptomycin, gentamycin, nalidixic acid, chloramphenicol, ethidium bromide, and acriflavine, including fluoroquinolone antibiotics, which were drugs of choice to treat S. Typhi infections. Cell-based functional studies using ethidium bromide and acriflavine showed that STY4874 functions as a H(+)-dependent exporter. These results suggest that STY4874 may be an important drug target, which can now be tested by studying the susceptibility of a STY4874-deficient S. Typhi strain to antimicrobials.201525724589
140050.9483Comparative genomic analysis of Escherichia coli strains obtained from continuous imipenem stress evolution. The carbapenem-resistant Escherichia coli has aroused increasing attention worldwide, especially in terms of imipenem (IMP) resistance. The molecular mechanism of IMP resistance remains unclear. This study aimed to explore the resistance mechanisms of IMP in E. coli. Susceptible Sx181-0-1 strain was induced into resistance strains by adaptive laboratory evolution. The drug resistance spectrum was measured using the disk diffusion and microbroth dilution methods. Whole-genome sequencing and resequencing were used to analyze the nonsynonymous single-nucleotide polymorphisms (nsSNPs) between the primary susceptible strain and resistant strains. The expression levels of these genes with nsSNPs were identified by real-time quantitative PCR (RT-qPCR). Resistance phenotype appeared in the induced 15th generation (induction time = 183 h). Sx181-32 and Sx181-256, which had the minimum inhibitory concentrations of IMP of 8 and 64 µg ml-1, were isolated during continuous subculture exposed to increasing concentrations of IMP, respectively. A total of 19 nsSNPs were observed both in Sx181-32 and Sx181-256, distributed in rpsU, sdaC, zwf, ttuC, araJ, dacC, mrdA, secF, dacD, lpxD, mrcB, ftsI, envZ, and two unknown function genes (orf01892 and orf01933). Among these 15 genes, five genes (dacC, mrdA, lpxD, mrcB, and ftsI) were mainly involved in cell wall synthesis. The mrdA (V338A, L378P, and M574I) and mrcB (P784L, A736V, and T708A) had three amino acid substitutions, respectively. The expression levels of rpsU, ttuC, and orf01933 were elevated in both Sx181-32 and Sx181-256 compared to Sx181-0-1. The expression levels of these genes were elevated in Sx181-256, except for araJ. Bacteria developed resistance to antimicrobials by regulating various biological processes, among which the most involved is the cell wall synthesis (dacC, mrdA, lpxD, mrcB, and ftsI). The combination mutations of mrdA, envZ, and ftsI genes may increase the resistance to IMP. Our study could improve the understanding of the molecular mechanism of IMP resistance in E. coli.202235147175
546360.9483Antibiotic Susceptibility Profiling of Human Pathogenic Staphylococcus aureus Strains Using Whole Genome Sequencing and Genome-Scale Annotation Approaches. Staphylococcus species are major pathogens with increasing importance due to the rise in antibiotic resistance. Whole genome sequencing and genome-scale annotation are promising approaches to study the pathogenicity and dissemination of virulence factors in nosocomial methicillin-resistant and multidrug-resistant bacteria in intensive care units. Draft genome sequences of eight clinical S. aureus strains were assembled and annotated for the prediction of antimicrobial resistance genes, virulence factors, and phylogenetic analysis. Most of the studied S. aureus strains displayed multi-resistance toward the tested drugs, reaching more than seven drugs up to 12 in isolate S22. The mecA gene was detected in three isolates (S14, S21, and S23), mecC was identified in S8 and S9, and blaZ was commonly identified in all isolates except strain S23. Additionally, two complete mobile genomic islands coding for methicillin resistance SCCmec Iva (2B) were identified in strains S21 and S23. Numerous antimicrobial resistance genes (norA, norC, MgrA, tet(45), APH(3')-IIIa, and AAC(6')-APH(2″)) were identified in chromosomes of different strains. Plasmid analysis revealed the presence of blaZ, tetK, and ermC in different plasmid types, located in gene cassettes containing plasmid replicons (rep) and insertion sequences (IS). Additionally, the aminoglycoside-resistant determinants were identified in S1 (APH(3')-IIIa), while AAC(6)-APH(2″) was detected in strains S8 and S14. The trimethoprim (dfrC) resistance gene was detected in S. aureus S21, and the fosfomycin (fosB) resistance gene was detected only in S. aureus S14. We also noted that S. aureus S1 belongs to ST1-t127, which has been reported as one of the most frequent human pathogen types. Additionally, we noted the presence of rare plasmid-mediated mecC-MRSA in some of our isolates.202337317098
521370.9482Draft genome sequences of Limosilactobacillus fermentum IJAL 01 335, isolated from a traditional cereal fermented dough. Limosilactobacillus fermentum IJAL 01 335 was isolated from mawè, a spontaneously fermented cereal dough from Benin. The 1.83 Mb draft genome sequence (52.37% GC) comprises 154 contigs, 1,836 coding sequences, and 23 predicted antibiotic resistance genes, providing insights into its genetic features and potential application in food fermentation.202541170963
126480.9482Characterization of mannitol-fermenting methicillin-resistant staphylococci isolated from pigs in Nigeria. This study was conducted to determine the species distribution, antimicrobial resistance pheno- and genotypes and virulence traits of mannitol-positive methicillin-resistant staphylococci (MRS) isolated from pigs in Nsukka agricultural zone, Nigeria. Twenty mannitol-positive methicillin-resistant coagulase-negative staphylococcal (MRCoNS) strains harboring the mecA gene were detected among the 64 Staphylococcus isolates from 291 pigs. A total of 4 species were identified among the MRCoNS isolates, namely, Staphylococcus sciuri (10 strains), Staphylococcus lentus (6 strains), Staphylococcus cohnii (3 strains) and Staphylococcus haemolyticus (one strain). All MRCoNS isolates were multidrug-resistant. In addition to β-lactams, the strains were resistant to fusidic acid (85%), tetracycline (75%), streptomycin (65%), ciprofloxacin (65%), and trimethoprim/sulphamethoxazole (60%). In addition to the mecA and blaZ genes, other antimicrobial resistance genes detected were tet(K), tet(M), tet(L), erm(B), erm(C), aacA-aphD, aphA3, str, dfrK, dfrG, cat pC221, and cat pC223. Thirteen isolates were found to be ciprofloxacin-resistant, and all harbored a Ser84Leu mutation within the QRDR of the GyrA protein, with 3 isolates showing 2 extra substitutions, Ser98Ile and Arg100Lys (one strain) and Glu88Asp and Asp96Thr (2 strains). A phylogenetic tree of the QRDR nucleotide sequences in the gyrA gene revealed a high nucleotide diversity, with several major clusters not associated with the bacterial species. Our study highlights the possibility of transfer of mecA and other antimicrobial resistance genes from MRCoNS to pathogenic bacteria, which is a serious public health and veterinary concern.201526413075
178590.9482Biocide-Resistant Escherichia coli ST540 Co-Harboring ESBL, dfrA14 Confers QnrS-Dependent Plasmid-Mediated Quinolone Resistance. Emerging sequence types of pathogenic bacteria have a dual ability to acquire resistance islands/determinants, and remain renitent towards disinfection practices; therefore, they are considered "critical risk factors" that contribute significantly to the global problem of antimicrobial resistance. Multidrug-resistant Escherichia coli was isolated, its genome sequenced, and its susceptibilities characterized, in order to understand the genetic basis of its antimicrobial resistance.The draft genome sequencing of E. coli ECU32, was performed with Illumina NextSeq 500, and annotated using a RAST server. The antibiotic resistome, genomic island, insertion sequences, and prophages were analyzed using bioinformatics tools. Subsequently, analyses including antibiotic susceptibility testing, E-test, bacterial growth, survival, and efflux inhibition assays were performed.The draft genome of E. coli ECU32 was 4.7 Mb in size, the contigs were 107, and the G+C content was 50.8%. The genome comprised 4658 genes, 4543 CDS, 4384 coding genes, 115 RNA genes, 88 tRNAs, and 3 CRISPR arrays. The resistome characterization of ST540 E. coli ECU32 revealed the presence of ESBL, APH(6)-Id, APH(3')-IIa, dfrA14, and QnrS1, with broad-spectrum multidrug and biocide resistance. Comparative genome sequence analysis revealed the presence of transporter and several virulence genes. Efflux activity and growth inhibition assays, which were performed with efflux substrates in the presence of inhibitor PAβN, exhibited significant reduced growth relative to its control.This study discusses the genotypic and phenotypic characterization of the biocide-tolerant multidrug-resistant E. coli O9:H30 strain, highlighting the contributory role of qnrS-dependent plasmid-mediated quinolone resistance, in addition to innate enzymatic modes of multidrug resistance mechanisms.202236551381
5202100.9482Complete genome sequence data of multidrug-resistant Stenotrophomonas sp. strain SXG-1. Objectives A multidrug-resistant bacterium, Stenotrophomonas sp. SXG-1, was isolated from the liver of diseased hybrid sturgeon from Guizhou province, China. Methods Whole-genome sequencing was performed on the Illumina HiSeq 2500-PE125 platform with MPS (massively parallel sequencing) Illumina technology. All good quality paired reads were assembled using the SOAPdenovo into a number of scaffolds. PHI (Pathogen Host Interactions), VFDB (Virulence Factors of Pathogenic Bacteria) and ARDB (Antibiotic Resistance Genes Database) were used to analyses pathogenicity and drug resistance. Results Here we reported the complete genome sequence of Stenotrophomonas sp. SXG-1, which comprised 4534,602bp in 4077 coding sequences (CDS) with a G+C content of 66.42%. The genome contained 4 gene islands, 72 tRNAs and 13 rRNAs. According to the annotation analysis, strain SXG-1 encoded 22 genes related to the multidrug resistance. In addition to 10 genes conferring resistance to antimicrobial drugs of different classes via alternative mechanisms, 12 genes of efflux pumps were presented, 9 of which were reported for the first time in Stenotrophomonas maltophilia. Conclusion This was the first complete genome sequence of Stenotrophomonas sp. isolated from the sturgeon. The complete genome sequence of Stenotrophomonas sp. strain SXG-1 may provide insights into the mechanism of antimicrobial resistance and prevent disease.202032311503
2481110.9480Gene expressions of clinical Pseudomonas aeruginosa harboring RND efflux pumps on chromosome and involving a novel integron on a plasmid. The clinical strain of Pseudomonas aeruginosa XM8 harbored multiple RND-type antibiotic efflux pump genes and a novel integron In4881 on its plasmid pXM8-2, rendering it resistant to nearly all conventional antibiotics except colistin. The resistance was primarily attributed to the inactivation of the oprD gene and overexpression of several efflux pump genes, including mexAB-oprM, mexCD-oprJ, oprN-mexFE, and mexXY. In this study, the XM8 strain was comprehensively characterized using various methods. Antimicrobial susceptibility testing was performed using the BioMerieux VITEK2 system and manual double dilution methods. Gene expression levels of efflux pump-related genes were analyzed via quantitative real-time PCR. The bacterial chromosome and plasmid were sequenced using both Illumina and Nanopore platforms, and bioinformatics tools were employed to analyze mobile genetic elements associated with antibiotic resistance. The pXM8-2 plasmid containsed multiple mobile genetic elements, including integrons (In4881, In334, In413) and transposons (Tn3, TnAs1, TnAs3). Notably, In4881 was reported for the first time in this study. The presence of these elements highlights the potential for horizontal gene transfer and further spread of antibiotic resistance. Given the strong resistance profile of the XM8 strain, effective measures should be implemented to prevent the dissemination and prevalence of such multidrug-resistant bacteria.202540154852
6372120.9479Sensitizing multi drug resistant Staphylococcus aureus isolated from surgical site infections to antimicrobials by efflux pump inhibitors. BACKGROUND: Staphylococcus aureus is a common hospital acquired infections pathogen. Multidrug-resistant Methicillin-resistant Staphylococcus aureus represents a major problem in Egyptian hospitals. The over-expression of efflux pumps is a main cause of multidrug resistance. The discovery of efflux pump inhibitors may help fight multidrug resistance by sensitizing bacteria to antibiotics. This study aimed to investigate the role of efflux pumps in multidrug resistance. METHODS: Twenty multidrug resistant S. aureus isolates were selected. Efflux pumps were screened by ethidium bromide agar cartwheel method and polymerase chain reaction. The efflux pump inhibition by seven agents was tested by ethidium bromide agar cartwheel method and the effect on sensitivity to selected antimicrobials was investigated by broth microdilution method. RESULTS: Seventy percent of isolates showed strong efflux activity, while 30% showed intermediate activity. The efflux genes mdeA, norB, norC, norA and sepA were found to play the major role in efflux, while genes mepA, smr and qacA/B had a minor role. Verapamil and metformin showed significant efflux inhibition and increased the sensitivity to tested antimicrobials, while vildagliptin, atorvastatin, domperidone, mebeverine and nifuroxazide showed no effect. CONCLUSION: Efflux pumps are involved in multidrug resistance in Staphylococcus aureus. Efflux pump inhibitors could increase the sensitivity to antimicrobials.202034394224
5377130.9478Synthetic lincosamides iboxamycin and cresomycin are active against ocular multidrug-resistant methicillin-resistant Staphylococcus aureus carrying erm genes. OBJECTIVE: Antimicrobial resistance is a global pandemic that poses a major threat to vision health as ocular bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA), are becoming increasingly resistant to first-line therapies. Here we evaluated the antimicrobial activity of new synthetic lincosamides in comparison to currently used antibiotics against clinical ocular MRSA isolates. METHODS: Antimicrobial susceptibility testing was performed by broth microdilution for two novel synthetic lincosamides (iboxamycin and cresomycin) and eight comparator antibiotics against a collection of 50 genomically characterised ocular MRSA isolates, including isolates harbouring erm genes (n = 25). RESULTS: Both drugs were active against widespread MRSA clonal complexes CC8 and CC5. The MIC(50) and MIC(90) of iboxamycin were 0.06 and 2 mg/L, respectively. Cresomycin (MIC(50) = 0.06 mg/L) also displayed good activity with an in vitro potency four-fold higher (MIC(90) = 0.5 mg/L) than iboxamycin. In isolates harbouring erm genes, MIC(90) were >16, 2, and 0.5 mg/L for clindamycin, iboxamycin, and cresomycin, respectively. The in vitro potencies of iboxamycin and cresomycin were similar or higher than that of comparator agents and were not impacted by multidrug-resistance phenotypes or by the presence of erm genes when compared with clindamycin. CONCLUSIONS: Our results demonstrate that iboxamycin and cresomycin display potent in vitro activity against ocular MRSA isolates, including multidrug-resistant isolates harbouring erm genes.202439293511
5975140.9477Development of a DNA microarray to detect antimicrobial resistance genes identified in the National Center for Biotechnology Information database. To understand the mechanisms and epidemiology of antimicrobial resistance (AR), the genetic elements responsible must be identified. Due to the myriad of possible genes, a high-density genotyping technique is needed for initial screening. To achieve this, AR genes in the National Center for Biotechnology Information GenBank database were identified by their annotations and compiled into a nonredundant list of 775 genes. A DNA microarray was constructed of 70mer oligonucelotide probes designed to detect these genes encoding resistances to aminoglycosides, beta-lactams, chloramphenicols, glycopeptides, heavy metals, lincosamides, macrolides, metronidazoles, polyketides, quaternary ammonium compounds, streptogramins, sulfonamides, tetracyclines, and trimethoprims as well as resistance transfer genes. The microarray was validated with two fully sequenced control strains of Salmonella enterica: Typhimurium LT2 (sensitive) and Typhi CT18 (multidrug resistance [MDR]). All resistance genes encoded on the MDR plasmid, pHCM1, harbored by CT18 were detected in that strain, whereas no resistance genes were detected in LT2. The microarray was also tested with a variety of bacteria, including MDR Salmonella enterica serovars, Escherichia coli, Campylobacter spp., Enterococcus spp., methicillin-resistant Staphylococcus aureus, Listeria spp., and Clostridium difficile. The results presented here demonstrate that a microarray can be designed to detect virtually all AR genes found in the National Center for Biotechnology Information database, thus reducing the subsequent assays necessary to identify specific resistance gene alleles.201019916789
5440150.9477Molecular structure and evolution of the conjugative multiresistance plasmid pRE25 of Enterococcus faecalis isolated from a raw-fermented sausage. Plasmid pRE25 from Enterococcus faecalis transfers resistances against kanamycin, neomycin, streptomycin, clindamycin, lincomycin, azithromycin, clarithromycin, erythromycin, roxithromycin, tylosin, chloramphenicol, and nourseothricin sulfate by conjugation in vitro to E. faecalis JH2-2, Lactococcus lactis Bu2, and Listeria innocua L19. Its nucleotide sequence of 50237 base pairs represents the largest, fully sequenced conjugative multiresistance plasmid of enterococci (Plasmid 46 (2001) 170). The gene for chloramphenicol resistance (cat) was identified as an acetyltransferase identical to the one of plasmid pIP501 of Streptococcus agalactiae. Erythromycin resistance is due to a 23S ribosomal RNA methyl transferase, again as found in pIP501 (ermB). The aminoglycoside resistance genes are packed in tandem as in transposon Tn5405 of Staphylococcus aureus: an aminoglycoside 6-adenyltransferase, a streptothricin acetyl transferase, and an aminoglycoside phosphotransferase.). Identical resistance genes are known from pathogens like Streptococcus pyogenes, S. agalactiae, S. aureus, Campylobacter coli, Clostridium perfringens, and Clostridium difficile. pRE25 is composed of a 30.5-kbp segment almost identical to pIP501. Of the 15 genes involved in conjugative transfer, 10 codes for putative transmembrane proteins (e.g. trsB, traC, trsF, trsJ, and trsL). The enterococcal part is joined into the pIP501 part by insertion elements IS1216V of E. faecium Tn1545 (three copies), and homologs of IS1062 (E. faecalis) and IS1485 (E. faecium). pRE25 demonstrates that enterococci from fermented food do participate in the molecular communication between Gram-positive and Gram-negative bacteria of the human and animal microflora.200314597005
1995160.9477Genomic insights into Shigella species isolated from small ruminants and manure in the North West Province, South Africa. This study investigated Shigella species' antibiotic resistance patterns and genomic characteristics from small ruminants and manure collected in Potchefstroom, North West, South Africa. Whole genome sequencing was used to determine resistome profiles of Shigella flexneri isolates from small ruminants' manure and Shigella boydii from sheep faeces. Comparative genomics was employed on the South African 261 S. flexneri strains available from GenBank, including the sequenced strains in this study, by investigating the serovars, antibiotic resistance genes (ARGs), and plasmid replicon types. The S. flexneri strains could not be assigned to known sequence types, suggesting novel or uncharacterized lineages. S. boydii R7-1A was assigned to sequence type 202 (ST202). Serovar 2A was the most common among South African S. flexneri strains, found in 96% of the 250 compared human-derived isolates. The shared mdf(A) was the most prevalent gene, identified in 99% of 261 S. flexneri genomes, including plasmid replicon types ColRNAI_1 (99%) and IncFII_1 (98%). Both species share a core set of resistance determinants mainly involving β-lactams (ampC1, ampC, ampH), macrolides (mphB), polymyxins (eptA, pmrF), multidrug efflux pumps (AcrAB-TolC, Mdt, Emr, Kpn families), and regulatory systems (marA, hns, crp, baeRS, evgAS, cpxA, gadX). However, S. boydii possesses additional resistance genes conferring resistance to tetracyclines (tet(A)), phenicols (floR), sulphonamides (sul2), and aminoglycosides (APH(3'')-Ib, APH(6)-Id), along with the acrEF efflux pump components (acrE, acrF). In contrast, S. flexneri harboured unique genes linked to polymyxin resistance (ugd) and regulatory functions (sdiA, gadW) that were absent in S. boydii. These findings highlight Shigella strains' genomic diversity and antimicrobial resistance potential in livestock-associated environments. Moreover, S. boydii highlights the potential risk of multidrug-resistant bacteria in farming and environmental routes. KEY POINTS: • First whole genome study of Shigella from manure and small ruminants in South Africa. • Shigella boydii strain carried multiple resistance genes to β-lactams and tetracycline. • Multidrug efflux pump gene mdf(A) was detected in 99% of South African Shigella flexneri strains.202541148367
5436170.9477Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by β-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne β-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of β-lactams as a main therapeutic application against staphylococcal infections.201829350135
6370180.9476Inhibitory effects of silybin on the efflux pump of methicillin‑resistant Staphylococcus aureus. Bacterial multidrug resistance efflux systems serve an important role in antimicrobial resistance. Thus, identifying novel and effective efflux pump inhibitors that are safe with no adverse side effects is urgently required. Silybin is a flavonolignan component of the extract from the milk thistle seed. To order to investigate the mechanism by which silybin inhibits the efflux system of methicillin‑resistant Staphylococcus aureus (MRSA), antimicrobial susceptibility testing and the double‑plate method were used to evaluate the effect of silybin on MRSA41577. The ability of silybin to inhibit the efflux of ciprofloxacin from MRSA was evaluated by performing a fluorescence assay. Reverse transcription‑quantitative polymerase chain reaction analysis revealed that silybin reduced the expression of the quinolone resistance protein NorA (norA) and quaternary ammonium resistance proteins A/B (qacA/B) efflux genes in MRSA. This suggested that silybin may effectively inhibit the efflux system of MRSA41577. Compared with the control, MRSA41577 treated with silybin for 16 h exhibited a 36 and 49% reduction in the expression of norA and qacA/B, respectively. Inhibition of the expression of these genes by silybin restored the sensitivity of MRSA41577 to antibiotics, indicating that efflux pump inhibitors, which act by inhibiting the efflux system of MRSA, may disrupt the MRSA resistance to antibiotics, rendering the bacteria sensitive to these drugs.201829845191
5376190.9475In vitro Activity of Contezolid Against Methicillin-Resistant Staphylococcus aureus, Vancomycin-Resistant Enterococcus, and Strains With Linezolid Resistance Genes From China. Contezolid is a novel oxazolidinone, which exhibits potent activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), and penicillin-resistant Streptococcus pneumoniae (PRSP). In this study, the in vitro activity of contezolid was compared with linezolid (LZD), tigecycline (TGC), teicoplanin (TEC), vancomycin (VA), daptomycin (DAP), and florfenicol (FFC) against MRSA and VRE strains isolated from China. Contezolid revealed considerable activity against MRSA and VRE isolates with MIC(90) values of 0.5 and 1.0 μg/mL, respectively. For VRE strains with different resistance genotypes, including vanA- and vanM-type strains, contezolid did not exhibit significantly differential antibacterial activity. Furthermore, the antimicrobial activity of contezolid is similar to or slightly better than that of linezolid against MRSA and VRE strains. Subsequently, the activity of contezolid was tested against strains carrying linezolid resistance genes, including Staphylococcus capitis carrying cfr gene and Enterococcus faecalis carrying optrA gene. The results showed that contezolid exhibited similar antimicrobial efficacy to linezolid against strains with linezolid resistance genes. In general, contezolid may have potential benefits to treat the infections caused by MRSA and VRE pathogens.202134489919