# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9669 | 0 | 0.9955 | Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains. Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment. | 2014 | 25093819 |
| 5115 | 1 | 0.9954 | Search Engine for Antimicrobial Resistance: A Cloud Compatible Pipeline and Web Interface for Rapidly Detecting Antimicrobial Resistance Genes Directly from Sequence Data. BACKGROUND: Antimicrobial resistance remains a growing and significant concern in human and veterinary medicine. Current laboratory methods for the detection and surveillance of antimicrobial resistant bacteria are limited in their effectiveness and scope. With the rapidly developing field of whole genome sequencing beginning to be utilised in clinical practice, the ability to interrogate sequencing data quickly and easily for the presence of antimicrobial resistance genes will become increasingly important and useful for informing clinical decisions. Additionally, use of such tools will provide insight into the dynamics of antimicrobial resistance genes in metagenomic samples such as those used in environmental monitoring. RESULTS: Here we present the Search Engine for Antimicrobial Resistance (SEAR), a pipeline and web interface for detection of horizontally acquired antimicrobial resistance genes in raw sequencing data. The pipeline provides gene information, abundance estimation and the reconstructed sequence of antimicrobial resistance genes; it also provides web links to additional information on each gene. The pipeline utilises clustering and read mapping to annotate full-length genes relative to a user-defined database. It also uses local alignment of annotated genes to a range of online databases to provide additional information. We demonstrate SEAR's application in the detection and abundance estimation of antimicrobial resistance genes in two novel environmental metagenomes, 32 human faecal microbiome datasets and 126 clinical isolates of Shigella sonnei. CONCLUSIONS: We have developed a pipeline that contributes to the improved capacity for antimicrobial resistance detection afforded by next generation sequencing technologies, allowing for rapid detection of antimicrobial resistance genes directly from sequencing data. SEAR uses raw sequencing data via an intuitive interface so can be run rapidly without requiring advanced bioinformatic skills or resources. Finally, we show that SEAR is effective in detecting antimicrobial resistance genes in metagenomic and isolate sequencing data from both environmental metagenomes and sequencing data from clinical isolates. | 2015 | 26197475 |
| 6600 | 2 | 0.9954 | Metagenomic approaches for the quantification of antibiotic resistance genes in swine wastewater treatment system: a systematic review. This systematic review aims to identify the metagenomic methodological approaches employed for the detection of antimicrobial resistance genes (ARGs) in swine wastewater treatment systems. The search terms used were metagenome AND bacteria AND ("antimicrobial resistance gene" OR resistome OR ARG) AND wastewater AND (swine OR pig), and the search was conducted across the following electronic databases: PubMed, Scopus, ScienceDirect, Web of Science, Embase, and Cochrane Library. The search was limited to studies published between 2020 and 2024. Of the 220 studies retrieved, eight met the eligibility criteria for full-text analysis. The number of publications in this research area has increased in recent years, with China contributing the highest number of studies. ARGs are typically identified using bioinformatics pipelines that include steps such as quality trimming, assembly, metagenome-assembled genome (MAG) reconstruction, open reading frame (ORF) prediction, and ARG annotation. However, comparing ARGs quantification across studies remains challenging due to methodological differences and variability in quantification approaches. Therefore, this systematic review highlights the need for methodological standardization to facilitate comparison and enhance our understanding of antimicrobial resistance in swine wastewater treatment systems through metagenomic approaches. | 2025 | 40788461 |
| 3261 | 3 | 0.9953 | A global metagenomic map of urban microbiomes and antimicrobial resistance. We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities. | 2021 | 34043940 |
| 5114 | 4 | 0.9953 | Datasets for benchmarking antimicrobial resistance genes in bacterial metagenomic and whole genome sequencing. Whole genome sequencing (WGS) is a key tool in identifying and characterising disease-associated bacteria across clinical, agricultural, and environmental contexts. One increasingly common use of genomic and metagenomic sequencing is in identifying the type and range of antimicrobial resistance (AMR) genes present in bacterial isolates in order to make predictions regarding their AMR phenotype. However, there are a large number of alternative bioinformatics software and pipelines available, which can lead to dissimilar results. It is, therefore, vital that researchers carefully evaluate their genomic and metagenomic AMR analysis methods using a common dataset. To this end, as part of the Microbial Bioinformatics Hackathon and Workshop 2021, a 'gold standard' reference genomic and simulated metagenomic dataset was generated containing raw sequence reads mapped against their corresponding reference genome from a range of 174 potentially pathogenic bacteria. These datasets and their accompanying metadata are freely available for use in benchmarking studies of bacteria and their antimicrobial resistance genes and will help improve tool development for the identification of AMR genes in complex samples. | 2022 | 35705638 |
| 9075 | 5 | 0.9952 | CamPype: an open-source workflow for automated bacterial whole-genome sequencing analysis focused on Campylobacter. BACKGROUND: The rapid expansion of Whole-Genome Sequencing has revolutionized the fields of clinical and food microbiology. However, its implementation as a routine laboratory technique remains challenging due to the growth of data at a faster rate than can be effectively analyzed and critical gaps in bioinformatics knowledge. RESULTS: To address both issues, CamPype was developed as a new bioinformatics workflow for the genomics analysis of sequencing data of bacteria, especially Campylobacter, which is the main cause of gastroenteritis worldwide making a negative impact on the economy of the public health systems. CamPype allows fully customization of stages to run and tools to use, including read quality control filtering, read contamination, reads extension and assembly, bacterial typing, genome annotation, searching for antibiotic resistance genes, virulence genes and plasmids, pangenome construction and identification of nucleotide variants. All results are processed and resumed in an interactive HTML report for best data visualization and interpretation. CONCLUSIONS: The minimal user intervention of CamPype makes of this workflow an attractive resource for microbiology laboratories with no expertise in bioinformatics as a first line method for bacterial typing and epidemiological analyses, that would help to reduce the costs of disease outbreaks, or for comparative genomic analyses. CamPype is publicly available at https://github.com/JoseBarbero/CamPype . | 2023 | 37474912 |
| 9553 | 6 | 0.9952 | A machine learning framework to predict antibiotic resistance traits and yet unknown genes underlying resistance to specific antibiotics in bacterial strains. Recently, the frequency of observing bacterial strains without known genetic components underlying phenotypic resistance to antibiotics has increased. There are several strains of bacteria lacking known resistance genes; however, they demonstrate resistance phenotype to drugs of that family. Although such strains are fewer compared to the overall population, they pose grave emerging threats to an already heavily challenged area of antimicrobial resistance (AMR), where death tolls have reached ~700 000 per year and a grim projection of ~10 million deaths per year by 2050 looms. Considering the fact that development of novel antibiotics is not keeping pace with the emergence and dissemination of resistance, there is a pressing need to decipher yet unknown genetic mechanisms of resistance, which will enable developing strategies for the best use of available interventions and show the way for the development of new drugs. In this study, we present a machine learning framework to predict novel AMR factors that are potentially responsible for resistance to specific antimicrobial drugs. The machine learning framework utilizes whole-genome sequencing AMR genetic data and antimicrobial susceptibility testing phenotypic data to predict resistance phenotypes and rank AMR genes by their importance in discriminating the resistance from the susceptible phenotypes. In summary, we present here a bioinformatics framework for training machine learning models, evaluating their performances, selecting the best performing model(s) and finally predicting the most important AMR loci for the resistance involved. | 2021 | 34015806 |
| 9083 | 7 | 0.9952 | ARGNet: using deep neural networks for robust identification and classification of antibiotic resistance genes from sequences. BACKGROUND: Emergence of antibiotic resistance in bacteria is an important threat to global health. Antibiotic resistance genes (ARGs) are some of the key components to define bacterial resistance and their spread in different environments. Identification of ARGs, particularly from high-throughput sequencing data of the specimens, is the state-of-the-art method for comprehensively monitoring their spread and evolution. Current computational methods to identify ARGs mainly rely on alignment-based sequence similarities with known ARGs. Such approaches are limited by choice of reference databases and may potentially miss novel ARGs. The similarity thresholds are usually simple and could not accommodate variations across different gene families and regions. It is also difficult to scale up when sequence data are increasing. RESULTS: In this study, we developed ARGNet, a deep neural network that incorporates an unsupervised learning autoencoder model to identify ARGs and a multiclass classification convolutional neural network to classify ARGs that do not depend on sequence alignment. This approach enables a more efficient discovery of both known and novel ARGs. ARGNet accepts both amino acid and nucleotide sequences of variable lengths, from partial (30-50 aa; 100-150 nt) sequences to full-length protein or genes, allowing its application in both target sequencing and metagenomic sequencing. Our performance evaluation showed that ARGNet outperformed other deep learning models including DeepARG and HMD-ARG in most of the application scenarios especially quasi-negative test and the analysis of prediction consistency with phylogenetic tree. ARGNet has a reduced inference runtime by up to 57% relative to DeepARG. CONCLUSIONS: ARGNet is flexible, efficient, and accurate at predicting a broad range of ARGs from the sequencing data. ARGNet is freely available at https://github.com/id-bioinfo/ARGNet , with an online service provided at https://ARGNet.hku.hk . Video Abstract. | 2024 | 38725076 |
| 9068 | 8 | 0.9952 | TnCentral: a Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. We describe here the structure and organization of TnCentral (https://tncentral.proteininformationresource.org/ [or the mirror link at https://tncentral.ncc.unesp.br/]), a web resource for prokaryotic transposable elements (TE). TnCentral currently contains ∼400 carefully annotated TE, including transposons from the Tn3, Tn7, Tn402, and Tn554 families; compound transposons; integrons; and associated insertion sequences (IS). These TE carry passenger genes, including genes conferring resistance to over 25 classes of antibiotics and nine types of heavy metal, as well as genes responsible for pathogenesis in plants, toxin/antitoxin gene pairs, transcription factors, and genes involved in metabolism. Each TE has its own entry page, providing details about its transposition genes, passenger genes, and other sequence features required for transposition, as well as a graphical map of all features. TnCentral content can be browsed and queried through text- and sequence-based searches with a graphic output. We describe three use cases, which illustrate how the search interface, results tables, and entry pages can be used to explore and compare TE. TnCentral also includes downloadable software to facilitate user-driven identification, with manual annotation, of certain types of TE in genomic sequences. Through the TnCentral homepage, users can also access TnPedia, which provides comprehensive reviews of the major TE families, including an extensive general section and specialized sections with descriptions of insertion sequence and transposon families. TnCentral and TnPedia are intuitive resources that can be used by clinicians and scientists to assess TE diversity in clinical, veterinary, and environmental samples. IMPORTANCE The ability of bacteria to undergo rapid evolution and adapt to changing environmental circumstances drives the public health crisis of multiple antibiotic resistance, as well as outbreaks of disease in economically important agricultural crops and animal husbandry. Prokaryotic transposable elements (TE) play a critical role in this. Many carry "passenger genes" (not required for the transposition process) conferring resistance to antibiotics or heavy metals or causing disease in plants and animals. Passenger genes are spread by normal TE transposition activities and by insertion into plasmids, which then spread via conjugation within and across bacterial populations. Thus, an understanding of TE composition and transposition mechanisms is key to developing strategies to combat bacterial pathogenesis. Toward this end, we have developed TnCentral, a bioinformatics resource dedicated to describing and exploring the structural and functional features of prokaryotic TE whose use is intuitive and accessible to users with or without bioinformatics expertise. | 2021 | 34517763 |
| 5101 | 9 | 0.9952 | Identification of Key Features Pivotal to the Characteristics and Functions of Gut Bacteria Taxa through Machine Learning Methods. BACKGROUND: Gut bacteria critically influence digestion, facilitate the breakdown of complex food substances, aid in essential nutrient synthesis, and contribute to immune system balance. However, current knowledge regarding intestinal bacteria remains insufficient. OBJECTIVE: This study aims to discover essential differences for different intestinal bacteria. METHODS: This study was conducted by investigating a total of 1478 gut bacterial samples comprising 235 Actinobacteria, 447 Bacteroidetes, and 796 Firmicutes, by utilizing sophisticated machine learning algorithms. By building on the dataset provided by Chen et al., we engaged sophisticated machine learning techniques to further investigate and analyze the gut bacterial samples. Each sample in the dataset was described by 993 unique features associated with gut bacteria, including 342 features annotated by the Antibiotic Resistance Genes Database, Comprehensive Antibiotic Research Database, Kyoto Encyclopedia of Genes and Genomes, and Virulence Factors of Pathogenic Bacteria. We employed incremental feature selection methods within a computational framework to identify the optimal features for classification. RESULTS: Eleven feature ranking algorithms selected several key features as pivotal to the characteristics and functions of gut bacteria. These features appear to facilitate the identification of specific gut bacterial species. Additionally, we established quantitative rules for identifying Actinobacteria, Bacteroidetes, and Firmicutes. CONCLUSION: This research underscores the significant potential of machine learning in studying gut microbes and enhances our understanding of the multifaceted roles of gut bacteria. | 2025 | 40671232 |
| 4354 | 10 | 0.9952 | ARDB--Antibiotic Resistance Genes Database. The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database--the Antibiotic Resistance Genes Database (ARDB)--unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13,293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/. | 2009 | 18832362 |
| 5099 | 11 | 0.9952 | A machine learning-based strategy to elucidate the identification of antibiotic resistance in bacteria. Microorganisms, crucial for environmental equilibrium, could be destructive, resulting in detrimental pathophysiology to the human host. Moreover, with the emergence of antibiotic resistance (ABR), the microbial communities pose the century's largest public health challenges in terms of effective treatment strategies. Furthermore, given the large diversity and number of known bacterial strains, describing treatment choices for infected patients using experimental methodologies is time-consuming. An alternative technique, gaining popularity as sequencing prices fall and technology advances, is to use bacterial genotype rather than phenotype to determine ABR. Complementing machine learning into clinical practice provides a data-driven platform for categorization and interpretation of bacterial datasets. In the present study, k-mers were generated from nucleotide sequences of pathogenic bacteria resistant to antibiotics. Subsequently, they were clustered into groups of bacteria sharing similar genomic features using the Affinity propagation algorithm with a Silhouette coefficient of 0.82. Thereafter, a prediction model based on Random Forest algorithm was developed to explore the prediction capability of the k-mers. It yielded an overall specificity of 0.99 and a sensitivity of 0.98. Additionally, the genes and ABR drivers related to the k-mers were identified to explore their biological relevance. Furthermore, a multilayer perceptron model with a hamming loss of 0.05 was built to classify the bacterial strains into resistant and non-resistant strains against various antibiotics. Segregating pathogenic bacteria based on genomic similarities could be a valuable approach for assessing the severity of diseases caused by new bacterial strains. Utilization of this strategy could aid in enhancing our understanding of ABR patterns, paving the way for more informed and effective treatment options. | 2024 | 39816256 |
| 8376 | 12 | 0.9951 | BBSdb, an open resource for bacterial biofilm-associated proteins. Bacterial biofilms are organized heterogeneous assemblages of microbial cells encased within a self-produced matrix of exopolysaccharides, extracellular DNA and proteins. Over the last decade, more and more biofilm-associated proteins have been discovered and investigated. Furthermore, omics techniques such as transcriptomes, proteomes also play important roles in identifying new biofilm-associated genes or proteins. However, those important data have been uploaded separately to various databases, which creates obstacles for biofilm researchers to have a comprehensive access to these data. In this work, we constructed BBSdb, a state-of-the-art open resource of bacterial biofilm-associated protein. It includes 48 different bacteria species, 105 transcriptome datasets, 21 proteome datasets, 1205 experimental samples, 57,823 differentially expressed genes (DEGs), 13,605 differentially expressed proteins (DEPs), 1,930 'Top 5% differentially expressed genes', 444 'Threshold-based DEGs' and a predictor for prediction of biofilm-associated protein. In addition, 1,781 biofilm-associated proteins, including annotation and sequences, were extracted from 942 articles and public databases via text-mining analysis. We used E. coli as an example to represent how to explore potential biofilm-associated proteins in bacteria. We believe that this study will be of broad interest to researchers in field of bacteria, especially biofilms, which are involved in bacterial growth, pathogenicity, and drug resistance. Availability and implementation: The BBSdb is freely available at http://124.222.145.44/#!/. | 2024 | 39149420 |
| 9666 | 13 | 0.9951 | The comprehensive antibiotic resistance database. The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment. | 2013 | 23650175 |
| 5102 | 14 | 0.9951 | Pipeline for Antimicrobial Resistance Gene Quantification from Host Tissue. Antibiotics are frequently used in food production animals to control disease and improve productivity, but this promotes the development of antimicrobial resistance (AMR) and subsequent broader spread of AMR bacteria throughout food chain, endangering the well-being and health of both animals and humans. In humans, the gut microbiome harbors a diverse range of AMR bacteria, known as the resistome. To effectively mitigate AMR in food animals requires first determining the expression and abundance of AMR-related genes in the gut resistome. Currently, such knowledge in regard to food animals is largely lacking. Gut tissue RNA sequencing (GTRS) can capture metabolically active transcripts from both the host and the microbes attached to the gut epithelium. Ideally, AMR genes can be quantified using GTRS data, making it possible to study the relationship between host and microbe. For the majority of these GTRS studies, only host transcriptome changes have been reported, while the microbial AMR remains largely unexamined, mainly due to the lack of easily implementable bioinformatics tools. Here we present a straightforward workflow to accomplish that using common command-line bioinformatics tools. With this pipeline, the host is considered noise, and host data are filtered out from the microbial reads. Transcript quantification of the AMR genes is then performed. The pipeline then continues through AMR transcript quantification, differential gene expression, and SNP analysis. Using open-source tools, we made this analytical pipeline easy to implement and able to generate results ready to be incorporated into publishable reports. Published 2025. This article is a U.S. Government work and is in the public domain in the USA. Basic Protocol: Running the gene quantification pipeline Support Protocol 1: Downloading FASTQ files from the NCBI database Support Protocol 2: Building a genome reference index of the host Support Protocol 3: Differential gene expression analysis Support Protocol 4: Single-nucleotide polymorphism (SNP) analysis. | 2025 | 40145236 |
| 9079 | 15 | 0.9951 | Review, Evaluation, and Directions for Gene-Targeted Assembly for Ecological Analyses of Metagenomes. Shotgun metagenomics has greatly advanced our understanding of microbial communities over the last decade. Metagenomic analyses often include assembly and genome binning, computationally daunting tasks especially for big data from complex environments such as soil and sediments. In many studies, however, only a subset of genes and pathways involved in specific functions are of interest; thus, it is not necessary to attempt global assembly. In addition, methods that target genes can be computationally more efficient and produce more accurate assembly by leveraging rich databases, especially for those genes that are of broad interest such as those involved in biogeochemical cycles, biodegradation, and antibiotic resistance or used as phylogenetic markers. Here, we review six gene-targeted assemblers with unique algorithms for extracting and/or assembling targeted genes: Xander, MegaGTA, SAT-Assembler, HMM-GRASPx, GenSeed-HMM, and MEGAN. We tested these tools using two datasets with known genomes, a synthetic community of artificial reads derived from the genomes of 17 bacteria, shotgun sequence data from a mock community with 48 bacteria and 16 archaea genomes, and a large soil shotgun metagenomic dataset. We compared assemblies of a universal single copy gene (rplB) and two N cycle genes (nifH and nirK). We measured their computational efficiency, sensitivity, specificity, and chimera rate and found Xander and MegaGTA, which both use a probabilistic graph structure to model the genes, have the best overall performance with all three datasets, although MEGAN, a reference matching assembler, had better sensitivity with synthetic and mock community members chosen from its reference collection. Also, Xander and MegaGTA are the only tools that include post-assembly scripts tuned for common molecular ecology and diversity analyses. Additionally, we provide a mathematical model for estimating the probability of assembling targeted genes in a metagenome for estimating required sequencing depth. | 2019 | 31749830 |
| 4347 | 16 | 0.9951 | Going through phages: a computational approach to revealing the role of prophage in Staphylococcus aureus. Prophages have important roles in virulence, antibiotic resistance, and genome evolution in Staphylococcus aureus . Rapid growth in the number of sequenced S. aureus genomes allows for an investigation of prophage sequences at an unprecedented scale. We developed a novel computational pipeline for phage discovery and annotation. We combined PhiSpy, a phage discovery tool, with VGAS and PROKKA, genome annotation tools to detect and analyse prophage sequences in nearly 10 011 S . aureus genomes, discovering thousands of putative prophage sequences with genes encoding virulence factors and antibiotic resistance. To our knowledge, this is the first large-scale application of PhiSpy on a large-scale set of genomes (10 011 S . aureus ). Determining the presence of virulence and resistance encoding genes in prophage has implications for the potential transfer of these genes/functions to other bacteria via transduction and thus can provide insight into the evolution and spread of these genes/functions between bacterial strains. While the phage we have identified may be known, these phages were not necessarily known or characterized in S. aureus and the clustering and comparison we did for phage based on their gene content is novel. Moreover, the reporting of these genes with the S. aureus genomes is novel. | 2023 | 37424556 |
| 9560 | 17 | 0.9950 | The History of Colistin Resistance Mechanisms in Bacteria: Progress and Challenges. Since 2015, the discovery of colistin resistance genes has been limited to the characterization of new mobile colistin resistance (mcr) gene variants. However, given the complexity of the mechanisms involved, there are many colistin-resistant bacterial strains whose mechanism remains unknown and whose exploitation requires complementary technologies. In this review, through the history of colistin, we underline the methods used over the last decades, both old and recent, to facilitate the discovery of the main colistin resistance mechanisms and how new technological approaches may help to improve the rapid and efficient exploration of new target genes. To accomplish this, a systematic search was carried out via PubMed and Google Scholar on published data concerning polymyxin resistance from 1950 to 2020 using terms most related to colistin. This review first explores the history of the discovery of the mechanisms of action and resistance to colistin, based on the technologies deployed. Then we focus on the most advanced technologies used, such as MALDI-TOF-MS, high throughput sequencing or the genetic toolbox. Finally, we outline promising new approaches, such as omics tools and CRISPR-Cas9, as well as the challenges they face. Much has been achieved since the discovery of polymyxins, through several innovative technologies. Nevertheless, colistin resistance mechanisms remains very complex. | 2021 | 33672663 |
| 9670 | 18 | 0.9950 | An Approach to In Silico Dissection of Bacterial Intelligence Through Selective Genomic Tools. All the genetic potential and the intelligence a bacteria can showcase in a given environment are embedded in its genome. In this study, we have presented systematic guidelines to understand a bacterial genome with the relevant set of in silico tools using a novel bacteria as an example. This study presents a multi-dimensional approach from genome annotation to tracing genes and their network of metabolism operating in an organism. It also shows how the sequence can be used to mine the enzymes and construction of its 3-dimensional structure so that its functional behavior can be predicted and compared. The discriminating algorithm allows analysis of the promoter region and provides the insight in the regulation of genes in spite of the similarity in its sequences. The ecological niche specific bacterial behavior and adapted altered physiology can be understood through the presence of secondary metabolite, antibiotic resistance genes, and viral genes; and it helps in the valorization of genetic information for developing new biological application/processes. This study provides an in silico work plan and necessary steps for genome analysis of novel bacteria without any rigorous wet lab experiments. | 2018 | 30013271 |
| 6691 | 19 | 0.9950 | The antimicrobial resistance monitoring and research (ARMoR) program: the US Department of Defense response to escalating antimicrobial resistance. Responding to escalating antimicrobial resistance (AMR), the US Department of Defense implemented an enterprise-wide collaboration, the Antimicrobial Resistance Monitoring and Research Program, to aid in infection prevention and control. It consists of a network of epidemiologists, bioinformaticists, microbiology researchers, policy makers, hospital-based infection preventionists, and healthcare providers who collaborate to collect relevant AMR data, conduct centralized molecular characterization, and use AMR characterization feedback to implement appropriate infection prevention and control measures and influence policy. A particularly concerning type of AMR, carbapenem-resistant Enterobacteriaceae, significantly declined after the program was launched. Similarly, there have been no further reports or outbreaks of another concerning type of AMR, colistin resistance in Acinetobacter, in the Department of Defense since the program was initiated. However, bacteria containing AMR-encoding genes are increasing. To update program stakeholders and other healthcare systems facing such challenges, we describe the processes and impact of the program. | 2014 | 24795331 |