COUNTABLE - Word Related Documents




#
Rank
Similarity
Title + Abs.
Year
PMID
012345
10900.7524Identification of two putative ATP-cassette genes in Encephalitozoon intestinalis. Currently existing chemotherapeutic compounds are limited and few are effective for treating microsporidiosis. It is possible that resistance of Encephalitozoon to some drugs occurs by efflux mechanisms similar to those previously described for mammalian tumour cells, bacteria or protozoal parasites such as Plasmodium, Leishmania and Entamoeba histolytica. The data in the present study suggest that Encephalitozoon intestinalis contains at least one multidrug resistance gene. We report here two complete sequences EiABC1 and EiABC2, encoding different ATP-binding cassette genes from E. intestinalis, including a P-gp.200111730796
33310.7496Mutants of Escherichia coli altered in both genes coding for the elongation factor Tu. Genetic analysis of a mutant of Escherichia coli resistant to the antibiotic mocimycin is presented. This resistance is due to alterations in both tuf genes coding for the elongation factor Tu. Mocimycin resistance is recessive. Bacteria carryong only one tuf gene from the resistant mutant are still mocimycin sensitive. If the mutant gene is the tufA gene, the seisitive cells can be made resistant through inactivation of the tufB gene by insertion of the bacteriophage milliunits genome. Conditional mocimycin-resistant mutants ban also be isolated when the tufB gene is altered by an amber or a temperature-sensitive mutation. When only the tufB allele from the original mocimycin-resistant mutant is present, inactivation of the wild-type tufA gene fails to give viable mocimycin-resistant progeny. We conclude that the tufA mutant allele codes for a functional mocimycin-resistant EF-Tu, whereas the mutant tufB gene does not code for a functional product.1978360222
613120.7494Draft Genome Sequence of Eggerthia catenaformis Strain MAR1 Isolated from Saliva of Healthy Humans. Here, we report the draft genome sequence of Eggerthia catenaformis MAR1 isolated during a screen for d-cycloserine-resistant bacteria from the saliva of healthy humans. Analysis of the genome reveals that the strain has the potential to be a human pathogen and carries genes related to virulence and antibiotic resistance.201728705984
52930.7491Crystal structure of the transcriptional repressor PagR of Bacillus anthracis. PagR is a transcriptional repressor in Bacillus anthracis that controls the chromosomal S-layer genes eag and sap, and downregulates the protective antigen pagA gene by direct binding to their promoter regions. The PagR protein sequence is similar to those of members of the ArsR repressor family involved in the repression of arsenate-resistance genes in numerous bacteria. The crystal structure of PagR was solved using multi-wavelength anomalous diffraction (MAD) techniques and was refined with 1.8 A resolution diffraction data. The PagR molecules form dimers, as observed in all SmtB/ArsR repressor family proteins. In the crystal lattice four PagR dimers pack together to form an inactive octamer. Model-building studies suggest that the dimer binds to a DNA duplex with a bend of around 4 degrees.201019926656
32940.7491Effect of NlpE overproduction on multidrug resistance in Escherichia coli. NlpE, an outer membrane lipoprotein, functions during envelope stress responses in Gram-negative bacteria. In this study, we report that overproduction of NlpE increases multidrug and copper resistance through activation of the genes encoding the AcrD and MdtABC multidrug efflux pumps in Escherichia coli.201020211889
53050.7487Location of the genes for anthranilate synthase in Streptomyces venezuelae ISP5230: genetic mapping after integration of the cloned genes. The anthranilate synthase (trpEG) genes in Streptomyces venezuelae ISP5230 were located by allowing a segregationally unstable plasmid carrying cloned S. venezuelae trpEG DNA and a thiostrepton resistance (tsr) marker to integrate into the chromosome. The integrated tsr was mapped by conjugation and transduction to a location close to tyr-2, between arg-6 and trpA13. A genomic DNA fragment containing trpC from S. venezuelae ISP5230 was cloned by complementation of a trpC mutation in Streptomyces lividans. Evidence from restriction enzyme analysis of the cloned DNA fragments, from Southern hybridization using the cloned trp DNA as probes, and from cotransduction frequencies, placed trpEG at a distance of 12-45 kb from the trpCBA cluster. The overall arrangement of tryptophan biosynthesis genes in the S. venezuelae chromosome differs from that in other bacteria examined so far.19938515229
53260.7486Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Disruption-deletion cassettes are powerful tools used to study gene function in many organisms, including Saccharomyces cerevisiae. Perhaps the most widely useful of these are the heterologous dominant drug resistance cassettes, which use antibiotic resistance genes from bacteria and fungi as selectable markers. We have created three new dominant drug resistance cassettes by replacing the kanamycin resistance (kan(r)) open reading frame from the kanMX3 and kanMX4 disruption-deletion cassettes (Wach et al., 1994) with open reading frames conferring resistance to the antibiotics hygromycin B (hph), nourseothricin (nat) and bialaphos (pat). The new cassettes, pAG25 (natMX4), pAG29 (patMX4), pAG31 (patMX3), pAG32 (hphMX4), pAG34 (hphMX3) and pAG35 (natMX3), are cloned into pFA6, and so are in all other respects identical to pFA6-kanMX3 and pFA6-kanMX4. Most tools and techniques used with the kanMX plasmids can also be used with the hph, nat and patMX containing plasmids. These new heterologous dominant drug resistance cassettes have unique antibiotic resistance phenotypes and do not affect growth when inserted into the ho locus. These attributes make the cassettes ideally suited for creating S. cerevisiae strains with multiple mutations within a single strain.199910514571
12570.7474ROD1, a novel gene conferring multiple resistance phenotypes in Saccharomyces cerevisiae. Glutathione-dependent detoxification reactions are catalyzed by the enzyme glutathione S-transferase and are important in drug resistance in organisms ranging from bacteria to humans. The yeast Issatchenkia orientalis expresses a glutathione S-transferase (GST) protein that is induced when the GST substrate o-dinitrobenzene (o-DNB) is added to the culture. In this study, we show that overproduction of the I. orientalis GST in Saccharomyces cerevisiae leads to an increase in o-dinitrobenzene resistance in S. cerevisiae cells. To recover genes that influence o-DNB resistance in S. cerevisiae, a high copy plasmid library was screened for loci that elevate o-DNB tolerance. One gene was recovered and designated ROD1 (resistance to o-dinitrobenzene). This locus was found to encode a novel protein with no significant sequence similarity with proteins of known function in the data base. An epitope-tagged version of Rod1p was produced in S. cerevisiae and shown to function properly. Subcellular fractionation experiments indicated that this factor was found in the particulate fraction by differential centrifugation. Overproduction of Rod1p leads to resistance to not only o-DNB but also zinc and calcium. Strains that lack the ROD1 gene are hypersensitive to these same compounds. Rod1p represents a new type of molecule influencing drug tolerance in eukaryotes.19968621680
998080.7472A vector for the expression of recombinant monoclonal Fab fragments in bacteria. The availability of genes coding for monoclonal Fab fragments of a desired specificity permits their expression in bacteria and provides a simple method for the generation of good quality reagents. In this paper we describe a new phagemid vector for the production of recombinant Fabs from genes obtained from phage display combinatorial libraries. The phagemid features an antibiotic resistance cassette which, once inserted between the heavy chain fragment and the light chain genes, avoids unwanted recombination and preserves useful restriction sites not affecting the Fab production rate.19989776589
35690.7472Development of an extrachromosomal cloning vector system for use in Borrelia burgdorferi. Molecular genetic analysis of Borrelia burgdorferi, the cause of Lyme disease, has been hampered by the absence of any means of efficient generation, identification, and complementation of chromosomal and plasmid null gene mutants. The similarity of borrelial G + C content to that of Gram-positive organisms suggested that a wide-host-range plasmid active in Gram-positive bacteria might also be recognized by borrelial DNA replication machinery. One such plasmid, pGK12, is able to propagate in both Gram-positive and Gram-negative bacteria and carries erythromycin and chloramphenicol resistance markers. pGK12 propagated extrachromosomally in B. burgdorferi B31 after electroporation but conferred only erythromycin resistance. pGK12 was used to express enhanced green fluorescent protein in B31 under the control of the flaB promoter. Escherichia coli transformed with pGK12 DNA extracted from B31 expressing only erythromycin resistance developed both erythromycin and chloramphenicol resistance, and plasmid DNA isolated from these transformed E. coli had a restriction pattern similar to the original pGK12. Our data indicate that the replicons of pGK12 can provide the basis to continue developing efficient genetic systems for B. burgdorferi together with the erythromycin resistance and reporter egfp genes.200010781091
534100.7470Plasmid shuttle vector with two insertionally inactivable markers for coryneform bacteria. A new shuttle vector pCEM500 replicating in Escherichia coli and in Brevibacterium flavum was constructed. It carries two antibiotic resistance determinants (Kmr/Gmr from plasmid pSa of Gram-negative bacteria and Smr/Spr from plasmid pCG4 of Corynebacterium glutamicum) which are efficiently expressed in both hosts and can be inactivated by insertion of DNA fragments into the unique restriction endonuclease sites located within them. This vector was found to be stably maintained in B. flavum and can be used for transfer of the cloned genes into this amino-acid-producing coryneform bacterium.19902148164
393110.7463Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. The Red recombinase system of bacteriophage Lambda has been used to inactivate chromosomal genes in bacteria using PCR products. In this study, we describe the replacement of the ampicillin resistance marker of helper plasmids pKD46 and pCP20 by a gentamicin resistance gene to disrupt chromosomal genes and then to eliminate FRT flanked resistance gene in multiple antibiotic-resistant Salmonella enterica strains.200818619499
355120.7458Evolution of multiple-antibiotic-resistance plasmids mediated by transposable plasmid deoxyribonucleic acid sequences. Two plasmid deoxyribonucleic acid sequences mediating multiple antibiotic resistance transposed in vivo between coexisting plasmids in clinical isolates of Serratia marcescens. This event resulted in the evolution of a transferable multiresistance plasmid. Both sequences, designated in Tn1699 and Tn1700, were flanked by inverted deoxyribonucleic acid repetitions and could transpose between replicons independently of the Excherichia coli recA gene function. Tn1699 and Tn1700 mediated ampicillin, carbenicillin, kanamycin, and gentamicin resistance but differed in the type of gentamicin-acetyltransferase enzymes that they encoded. The structural genes for these enzymes share a great deal of polynucleotide sequence similarity despite their phenotypic differences. The transposition of Tn1699 and Tn1700 to coresident transferable plasmids has contributed to the dissemination of antibiotic resistance among other gram-negative bacteria. These organisms have recently caused nosocomial infections in epidemic proportions.1979387747
8237130.7449Antibiotic tolerance, persistence, and resistance of the evolved minimal cell, Mycoplasma mycoides JCVI-Syn3B. Antibiotic resistance is a growing problem, but bacteria can evade antibiotic treatment via tolerance and persistence. Antibiotic persisters are a small subpopulation of bacteria that tolerate antibiotics due to a physiologically dormant state. Hence, persistence is considered a major contributor to the evolution of antibiotic-resistant and relapsing infections. Here, we used the synthetically developed minimal cell Mycoplasma mycoides JCVI-Syn3B to examine essential mechanisms of antibiotic survival. The minimal cell contains only 473 genes, and most genes are essential. Its reduced complexity helps to reveal hidden phenomenon and fundamental biological principles can be explored because of less redundancy and feedback between systems compared to natural cells. We found that Syn3B evolves antibiotic resistance to different types of antibiotics expeditiously. The minimal cell also tolerates and persists against multiple antibiotics. It contains a few already identified persister-related genes, although lacking many systems previously linked to persistence (e.g. toxin-antitoxin systems, ribosome hibernation genes).202133997676
9990140.7449Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Enterococcal species of bacteria are now acknowledged as leading causes of bacteraemia and other serious nosocomial infections. However, surprisingly little is known about the molecular mechanisms that promote the segregational stability of antibiotic resistance and other plasmids in these bacteria. Plasmid pRUM (24 873 bp) is a multidrug resistance plasmid identified in a clinical isolate of Enterococcus faecium. A novel proteic-based toxin-antitoxin cassette identified on pRUM was demonstrated to be a functional segregational stability module in both its native host and evolutionarily diverse bacterial species. Induced expression of the toxin protein (Txe) of this system resulted in growth inhibition in Escherichia coli. The toxic effect of Txe was alleviated by co-expression of the antitoxin protein, Axe. Homologues of the axe and txe genes are present in the genomes of a diversity of Eubacteria. These homologues (yefM-yoeB) present in the E. coli chromosome function as a toxin-antitoxin mechanism, although the Axe and YefM antitoxin components demonstrate specificity for their cognate toxin proteins in vivo. Axe-Txe is one of the first functional proteic toxin-antitoxin systems to be accurately described for Gram-positive bacteria.200312603745
8183150.7447Modification of arthropod vector competence via symbiotic bacteria. Some of the world's most devastating diseases are transmitted by arthropod vectors. Attempts to control these arthropods are currently being challenged by the widespread appearance of insecticide resistance. It is therefore desirable to develop alternative strategies to complement existing methods of vector control. In this review, Charles Beard, Scott O'Neill, Robert Tesh, Frank Richards and Serap Aksoy present an approach for introducing foreign genes into insects in order to confer refractoriness to vector populations, ie. the inability to transmit disease-causing agents. This approach aims to express foreign anti-parasitic or anti-viral gene products in symbiotic bacteria harbored by insects. The potential use of naturally occurring symbiont-based mechanisms in the spread of such refractory phenotypes is also discussed.199315463748
369160.7447A gene fusion system using the aminoglycoside 3'-phosphotransferase gene of the kanamycin-resistance transposon Tn903: use in the yeast Kluyveromyces lactis and Saccharomyces cerevisiae. The aminoglycoside 3'-phosphotransferase type I (APHI)-coding gene of the bacterial transposon Tn903 confers resistance to kanamycin on bacteria and resistance to geneticin (G418) on many eukaryotes. We developed an APHI fusion system that can be used in the study of gene expression in these organisms, particularly in yeasts. The first 19 codons of the KmR (APHI) gene can be deleted, and replaced by other genes in a continuous reading frame, without loss of APH activity. Examples of vector constructions are given which are adapted to the yeast Kluyveromyces lactis transformation system. Their derivatives containing the 2 mu origin of replication can also be used in Saccharomyces cerevisiae.19882853096
605170.7441Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. The extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM-containing DNA or interaction of IrrE with DNA-bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE-dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation-resistant Deinococcus species.201728397370
577180.7441The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genomic silencing is a fundamental mechanism of transcriptional regulation, yet little is known about conserved mechanisms of silencing. We report here the discovery of four Saccharomyces cerevisiae homologs of the SIR2 silencing gene (HSTs), as well as conservation of this gene family from bacteria to mammals. At least three HST genes can function in silencing; HST1 overexpression restores transcriptional silencing to a sir2 mutant and hst3 hst4 double mutants are defective in telomeric silencing. In addition, HST3 and HST4 together contribute to proper cell cycle progression, radiation resistance, and genomic stability, establishing new connections between silencing and these fundamental cellular processes.19957498786
528190.7440Effect of dimethyl sulphoxide on the expression of nitrogen fixation in bacteria. Storage in dimethyl sulphoxide (DMSO) of Escherichia coli K12 hybrids carrying nif+ genes from Klebsiella pneumoniae can result in selection of a defective nitrogen-fixing phenotype. Similar results are obtained with E. coli K12 hybrids containing the nitrogen-fixing capacity from Rhizobium trifolii. DMSO appears to affect particular inner membrane proteins associated with energy metabolism in E. coli K12 and four chromosomal regions (chlD, chlG, his and unc) are associated with resistance to DMSO.1977332135