# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 7594 | 0 | 0.9969 | The impacts of triclosan on anaerobic community structures, function, and antimicrobial resistance. Triclosan is a widespread antimicrobial agent that accumulates in anaerobic digesters used to treat the residual solids generated at municipal wastewater treatment plants; there is very little information, however, about how triclosan impacts microbial communities in anaerobic digesters. We investigated how triclosan impacts the community structure, function and antimicrobial resistance genes in lab-scale anaerobic digesters. Previously exposed (to triclosan) communities were amended with 5, 50, and 500 mg/kg of triclosan, corresponding to the median, 95th percentile, and 4-fold higher than maximum triclosan concentration that has been detected in U.S. biosolids. Triclosan amendment caused all of the Bacteria and Archaea communities to structurally diverge from that of the control cultures (based on ARISA). At the end of the experiment, all triclosan-amended Archaea communities had diverged from the control communities, regardless of the triclosan concentration added. In contrast, over time the Bacteria communities that were amended with lower concentrations of triclosan (5 mg/kg and 50 mg/kg) initially diverged and then reconverged with the control community structure. Methane production at 500 mg/kg was nearly half the methane production in control cultures. At 50 mg/kg, a large variability in methane production was observed, suggesting that 50 mg/kg may be a tipping point where function begins to fail in some communities. When previously unexposed communities were exposed to 500 mg triclosan/kg, function was maintained, but the abundance of a gene encoding for triclosan resistance (mexB) increased. This research suggests that triclosan could inhibit methane production in anaerobic digesters if concentrations were to increase and may also select for resistant Bacteria. In both cases, microbial community composition and exposure history alter the influence of triclosan. | 2014 | 24915110 |
| 7536 | 1 | 0.9969 | The effects of tetracycline concentrations on tetracycline resistance genes and their bacterial hosts in the gut passages of earthworms (Eisenia fetida) feeding on domestic sludge. Vermi-composting is considered to be a feasible method for reducing tetracycline resistance genes (TRGs) in the sludge. Nevertheless, the way different gut passages of earthworm might affect the fates of TRGs and whether this process is affected by tetracycline (TC) concentrations need to be further investigated. In this study, we examined the effects of TC concentrations on changes in TRGs and bacterial communities in gut passages of earthworm were determined by using quantitative PCR and Illumina high-throughput sequencing. TRGs and intI1 were mainly reduced in the hindgut under the TC concentrations ranging from 0 to 25 mg/kg, while they were enriched under higher TC stress exposure. Consequently, we suggest the TC limitation of 25 mg/kg in the domestic sludge (DS) for vermi-composting. Although the predominant genera were TC sensitive under TC stress, many bacterial hosts harboring multiple TRGs (especially those in the hindgut) should be paid further attention to. In the foregut, five genera with abundant tetracycline-resistant bacteria (TRB) were specialized taxa. Among these genera, Unclassified_Solirubrobacterales and Pirellulaceae were probably related to the digestion processes. Other unclassified taxa related to the TRGs were probably derived from the DS. Five genera with abundant TRB were shared in the gut passages, and three specialized genera in the hindgut. These genera could spread TRGs and intI1 to the environment. These results suggest that vermi-composting is a feasible approach for TRG control in the DS containing TC concentration that does not exceed 25 mg/kg. Fates of TRGs and intI1 widely differ in the gut passages, showing inevitable connections with bacterial communities. | 2019 | 31637618 |
| 6741 | 2 | 0.9969 | Benzyldimethyldodecyl ammonium chloride shifts the proliferation of functional genes and microbial community in natural water from eutrophic lake. Benzylalkyldimethylethyl ammonium compounds are pervasive in natural environments and toxic at high concentrations. The changes in functional genes and microbial diversity in eutrophic lake samples exposed to benzyldimethyldodecyl ammonium chloride (BAC) were assessed. BAC exerted negative effects on bacteria abundance, particularly at concentrations of 100 μg L(-1) and higher. A significant increase in the number of the quaternary ammonium compound-resistant gene qacA/B was recorded within the 10 μg L(-1) treatment after the first day of exposure. Not all antibiotic resistance genes increased in abundance as the concentrations of BAC increased; rather, gene abundances were dependent on the gene type, concentrations of BAC, and contact time. The nitrogen fixation-related gene nifH and ammonia monooxygenase gene amoA were inhibited by high concentrations of BAC after the first day, whereas an increase of the nitrite reductase gene nirK was stimulated by exposure. Microbial communities within higher treatment levels (1000 and 10 000 μg L(-1)) exhibited significantly different community composition compared to other treatment levels and the control. Selective enrichment of Rheinheimera, Pseudomonas, and Vogesella were found in the higher treatment levels, suggesting that these bacteria have some resistance or degradation capacity to BAC. Genes related with RNA processing and modification, transcription, lipid transport and metabolism, amino acid transport and metabolism, and cell motility of microbial community function were involved in the process exposed to the BAC stress. | 2018 | 29414358 |
| 7905 | 3 | 0.9968 | Long-term responses of antibiotic resistance genes under high concentration of enrofloxacin, sulfadiazine and triclosan in aerobic granular sludge system. It is worth to reveal the long-term responses of antibiotic resistance genes (ARGs) in aerobic granular sludge (AGS) system exposed to high level enrofloxacin (ENR), sulfadiazine (SDZ) and triclosan (TCS). In present study, ppm level ENR, SDZ and TCS were added into three AGS reactors, respectively. ARGs in ENR and SDZ systems showed trends of increasing first and then decreasing, which were contrary to that in TCS system. 80%, 56% and 40% ARGs in ENR, SDZ and TCS systems, respectively, were enriched after loading, but several ARGs still kept high enrichment values after the withdrawn of loadings. The dominant bacteria in ENR (Flavobacterium), SDZ (Candidatus_Competibacter and Defluviicoccus) and TCS (Defluviicoccus) systems might contribute to the reductions of ARGs. IntI1 altered the overall ARGs profiles through horizontal gene transfer. The interactions of bacterial communities and environmental factors might be responsible for the different ARGs patterns in ENR, SDZ and TCS systems. | 2020 | 32470826 |
| 7591 | 4 | 0.9968 | World within world: Intestinal bacteria combining physiological parameters to investigate the response of Metaphire guillelmi to tetracycline stress. Due to the abusive usage of antibiotics in animal husbandry, a large amount of residual antibiotics has been released into the environment, therein posing great threat against both environment security and public health. Therefore, it is of great significance to investigate the toxicity of antibiotics on the widely-applied bioindicator-earthworm. In this work, the physiological parameters and the intestinal bacteria community of Metaphire guillelmi were monitored simultaneously to evaluate their sensitivity to the tetracycline (TC) exposure. As expected, the antioxidant enzyme activity and coelomocyte apoptosis acted fairly well as biomarkers for the TC toxicity. In contrast, the intestinal bacteria of Metaphire guillelmi responded varyingly to different TC doses. When TC concentration increased from 0 to 35.7 μg cm(-2), the percentage of the Proteobacteria phylum declined significantly from 85.5% to 34.4%, while the proportions of the Firmicutes, Planctomycetes and Atinomycete phyla clearly increased (p < 0.05). Meanwhile, the levels of TC resistance genes tetA, tetC, and tetW increased with the increasing TC concentration, in contrast to the declined abundance in denitrifying genes nirS and nosZ (p < 0.05). By analyzing the correlation between the antioxidant enzyme activity and the dominant intestinal bacteria in the worm gut, it is interesting to found that the four dominant bacteria genera Mesorhizobium, Aliihoeflea, Romboutsia, and Nitrospira are the promising bioindicator of TC stress due to their sensitive response. This work shed novel light on evaluating the ecotoxicological risks posed by residual TC in environment by using a combination of physiological parameters and intestinal bacterial activity in earthworms. | 2020 | 32066061 |
| 8093 | 5 | 0.9968 | Acidic conditions enhance the removal of sulfonamide antibiotics and antibiotic resistance determinants in swine manure. Manure pH may vary depending on its inherent composition or additive contents. However, the effect of pH on the fate of antibiotics and antibiotic resistance determinants in manure remains unclear. This work demonstrated that pH adjustment promoted the removal of different sulfonamide antibiotics (SAs) within swine manure under incubation conditions, which increased from 26-60.8% to 75.0-86.0% by adjusting the initial pH from neutral (7.4) to acidic (5.4-4.8). Acidification was also demonstrated to inhibit the accumulation of antibiotic resistance genes in manure during incubation. Acidified manure contained both lower absolute and relative abundances of sul1 and sul2 than those at a neutral pH like 7.4. Further investigation indicated that acidification promoted the reduction of sul genes in manure by restricting sulfonamide-resistant bacteria (SRB) proliferation and inhibiting IntI1 accumulation. Furthermore, pH adjustment significantly influenced the composition of the manure bacterial community after incubation, which increased Firmicutes and decreased Proteobacteria. Close relationships were observed between pH-induced enrichment of the Firmicutes bacterial phylum, enhanced SAs degradation, and the fates of antibiotic resistance determinants. Overall, lowering the pH of manure promotes the degradation of SAs, decreases sul genes and SRB, and inhibits horizontal sul gene transfer, which could be a simple yet highly-effective manure management option to reduce antibiotic resistance. | 2020 | 32302890 |
| 7964 | 6 | 0.9968 | Fate of sulfonamide resistance genes during sludge anaerobic fermentation: Roles of sludge components and fermentation pHs. This study assessed potential effects of two neglected factors (sludge components and pH values) on the fate of sulfonamide (sul) resistance genes during sludge anaerobic fermentation. It was found that sludge with different contents of protein, carbohydrate and humic acid caused no significant changes in the abundances of sul genes. Nevertheless, sul genes were sensitive to pHs (4-10), and the maximum attenuations (0.8-1.1 log unit) were obtained at pH 10. Mechanism exploration indicated that pHs drove the community evolution of sulfonamide resistant bacteria (SRB), most of which were affiliated to the pH-enriched phyla but not the pH-enriched dominant genera. In addition, the relative abundances of SRB were decreased under both acidic and alkaline conditions. Furthermore, the abundances of intI 1 as well as the sul-carrying abilities of plasmid and extracellular DNA were all reduced at test pHs, indicating that the potential of horizontal gene transfer among bacteria was restricted. | 2019 | 31226672 |
| 7639 | 7 | 0.9968 | Structural and Functional Changes of Groundwater Bacterial Community During Temperature and pH Disturbances. In this study, we report the characteristics of a microbial community in sampled groundwater and elucidate the effects of temperature and pH disturbances on bacterial structure and nitrogen-cycling functions. The predominant phyla of candidate OD1, candidate OP3, and Proteobacteria represented more than half of the total bacteria, which clearly manifested as a "low nucleic acid content (LNA) bacteria majority" type via flow cytometric fingerprint. The results showed that LNA bacteria were more tolerant to rapid changes in temperature and pH, compared to high nucleic acid content (HNA) bacteria. A continuous temperature increase test demonstrated that the LNA bacterial group was less competitive than the HNA bacterial group in terms of maintaining their cell intactness and growth potential. In contrast, the percentage of intact LNA bacteria was maintained at nearly 70% with pH decrease, despite a 50% decrease in total intact cells. Next-generation sequencing results revealed strong resistance and growth potential of phylum Proteobacteria when the temperature increased or the pH decreased in groundwater, especially for subclasses α-, β-, and γ-Proteobacteria. In addition, relative abundance of nitrogen-related functional genes by qPCR showed no difference in nitrifiers or denitrifiers within 0.45 μm-captured and 0.45 μm-filterable bacteria due to phylogenetic diversity. One exception was the monophyletic anammox bacteria that belong to the phylum Planctomycetes, which were mostly captured on a 0.45-μm filter. Furthermore, we showed that both temperature increase and pH decrease could enhance the denitrification potential, whereas the nitrification and anammox potentials were weakened. | 2019 | 30706112 |
| 7920 | 8 | 0.9968 | Enhanced removal of antibiotics and decreased antibiotic resistance genes in the photo-sequencing batch reactor during the aquaculture wastewater treatment. The performance of photo-sequencing batch reactor (PSBR) in removing multiple antibiotics and nutrients from aquaculture wastewater as well as the antibiotic resistance genes (ARGs) proliferation were firstly investigated during the long-term experiments. The operational conditions (i.e. light intensity, light time, aeration and solid retention time) were optimised to realise the simultaneous removal of antibiotics and nutrients. It was found that, compared with traditional SBR, PSBR has similar nutrient removal rate and a 30% higher antibiotics removal rate due to the corporation of microalgae (Chlorella) and bacteria, and the absolute abundance of ARGs decreased by 78% in PSBR. Further investigation showed that PSBR had certain advantages in removing quinolones and the corresponding removal rate could reach up to 90%. In terms of the mechanisms, the possible metabolic pathway of antibiotic was analysed and the intermediate metabolites were different from that of the reported studies. The microbial communities were also affected by microalgae and the relative abundance of certain bacteria (such as members of the families Rhodocyclaceae and Burkholderiaceae), which were positively correlated with some ARGs, decreased in PSBR. This study provides an alternative and effective method to aquaculture wastewater treatment, which present high nutrients and antibiotics removal efficiencies and low ARGs transmission. | 2022 | 34006208 |
| 8045 | 9 | 0.9968 | Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. Antibiotic resistance occurrences and proliferation in activated sludge have attracted more and more attention nowadays. However, the role which extracellular polymeric substance (EPS) plays on the antibiotic resistance is not clear. The changes and correlation among EPS, tetracycline (TC) resistant bacteria (TRB) and TC resistance genes (TRGs) of sequencing batch reactors (SBRs) were investigated. Performance of SBR without TC was compared with two other SBRs to which different amounts of TC were added. Total average EPS contents were found to increase significantly from 66 mg g−1 VSS to 181 mg g−1 VSS as the TC concentrations increased from 0 to 100 μg L−1. As the EPS content increased, TRB in sludge of the three SBRs increased significantly from 105 to 106 colony forming unit mL−1 after being exposed to TC. In addition, the concentrations of three groups of TRGs (copies mL−1) were determined by real-time fluorescence quantitative polymerase chain reaction and followed the order: efflux pump genes > ribosome protected genes > degradation enzyme genes. The numbers of TRGs in the idle stage were larger than those in the aeration sludge. Correlation coefficients (R2) between EPS and TRB in sludge were 0.823 (p < 0.01) while the correlation between EPS and total TRGs was poor (R2 = 0.463, p > 0.05). But it showed the same tendency that EPS and TRGs in sludge increased with the increasing of TC. | 2014 | 25461932 |
| 7969 | 10 | 0.9968 | Metagenomic insights into the influence of pH on antibiotic removal and antibiotic resistance during nitritation: Regulations on functional genus and genes. The changes in pH and the resulting presence of free nitrous acid (FNA) or free ammonia (FA) often inhibit antibiotic biodegradation during nitritation. However, the specific mechanisms through which pH, FNA and FA influence antibiotic removal and the fate of antibiotic resistance genes (ARGs) are not yet fully understood. In this study, the effects of pH, FNA, and FA on the removal of cefalexin and amoxicillin during nitritation were investigated. The results revealed that the decreased antibiotic removal under both acidic condition (pH 4.5) and alkaline condition (pH 9.5) was due to the inhibition of the expression of amoA in ammonia-oxidizing bacteria and functional genes (hydrolase-encoding genes, transferase-encoding genes, lyase-encoding genes, and oxidoreductase-encoding genes) in heterotrophs. Furthermore, acidity was the primary inhibitor of antibiotic removal at pH 4.5, followed by FNA. Antibiotic removal was primarily inhibited by alkalinity at pH 9.5, followed by FA. The proliferation of ARGs mediated by mobile genetic element was promoted under both acidic and alkaline conditions, attributed to the promotion of FNA and FA, respectively. Overall, this study highlights the inhibitory effects of acidity and alkalinity on antibiotic removal during nitritation. | 2024 | 39068965 |
| 7243 | 11 | 0.9968 | Responses and successions of sulfonamides, tetracyclines and fluoroquinolones resistance genes and bacterial community during the short-term storage of biogas residue and organic manure under the incubator and natural conditions. Biogas residue and organic manure are frequently used for crop planting. However, the evaluation of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial community before their applications to fields is still lacking. This study monitored the variations of bacteria resistant to sulfadiazine, tetracycline and norfloxacin, 57 resistance genes for sulfonamides, tetracyclines and fluoroquinolones as well as the bacterial community during the 28-day aerobic storage of biogas residue and organic manure by using viable plate counts, high-throughput qPCR and Illumina MiSeq sequencing methods. Then two storage conditions, incubator (25 °C) and natural environment, were used to assess the responses of ARB and ARGs to the environmental factors. Results showed that a total of 35 and 21 ARGs were detected in biogas residue and organic manure, respectively. ARB and ARGs were enriched up to 8.01-fold in biogas residue after the 28-day storage, but varied in a narrow range during the storage of organic manure. Compared with the incubator condition, the proliferation of ARB and ARGs in biogas residue under the natural condition was relatively inhibited by the varied and complicated environmental factors. However, we found that there was no significant difference of ARB and ARGs in organic manure between the incubator and natural conditions. Bacterial community was also shifted during the storage of biogas residue, especially Bacteroidetes_VC2.1_Bac22, Aequorivita, Luteimonas and Arenimonas. Network analysis revealed that the relationship in biogas residue was much more complicated than that in organic manure, which ultimately resulted in large successions of ARB and ARGs during the short-term storage of biogas residue. Therefore, we suggest that further measures should be taken before the application of biogas residue to fields. | 2018 | 30031308 |
| 8033 | 12 | 0.9967 | Fate of pirlimycin and antibiotic resistance genes in dairy manure slurries in response to temperature and pH adjustment. Quantifying the fate of antibiotics and antibiotic resistance genes (ARGs) in response to physicochemical factors during storage of manure slurries will aid in efforts to reduce the spread of resistance when manure is land-applied. The objectives of this study were to determine the effects of temperature (10, 35, and 55 °C) and initial pH (5, 7, 9, and 12) on the removal of pirlimycin and prevalence of ARGs during storage of dairy manure slurries. We collected and homogenized feces and urine from five lactating dairy cows treated with pirlimycin and prepared slurries by mixing manure and sterile water. Aliquots (200 mL) of slurry were transferred and incubated in 400 mL glass beakers under different temperatures (10, 35, and 55 °C) or initial pH (5, 7, 9, and 12). Pirlimycin concentration and abundances of 16S rRNA, mefA, tet(W), and cfxA as indicators of total bacteria and ARGs corresponding to macrolide, tetracycline, and β-lactam resistance, respectively, were analyzed during manure incubation. The thermophilic environment (55 °C) increased the deconjugation and removal of pirlimycin, while the acidic shock at pH 5 increased deconjugation but inhibited removal of pirlimycin, suggesting that the chemical stability of pirlimycin could be affected by temperature and pH. The thermophilic environment decreased mefA relative abundance on day 7 and 28 (P = 0.02 and 0.04), which indicates that the bacteria that encoded mefA gene were not thermotolerant. Although mefA relative abundance was greater at the pH 9 shock than the rest of pH treatments on day 7 (P = 0.04), no significant pH effect was observed on day 28. The tet(W) abundance under initial pH 12 shock was less than other pH shocks on day 28 (P = 0.01), while no temperature effect was observed on day 28. There was no significant temperature and initial pH effect on cfxA abundance at any time point during incubation, implying that the bacteria that carrying cfxA gene are relatively insensitive to these environmental factors. Overall, directly raising temperature and pH can facilitate pirlimycin removal and decrease mefA and tet(W) relative abundances during storage of manure slurries. | 2020 | 32050366 |
| 8654 | 13 | 0.9967 | Metagenomic and Metatranscriptomic Study of Microbial Metal Resistance in an Acidic Pit Lake. Cueva de la Mora (CM) is an acidic, meromictic pit lake in the Iberian Pyrite Belt characterized by extremely high metal(loid) concentrations and strong gradients in oxygen, metal, and nutrient concentrations. We hypothesized that geochemical variations with depth would result in differences in community composition and in metal resistance strategies among active microbial populations. We also hypothesized that metal resistance gene (MRG) expression would correlate with toxicity levels for dissolved metal species in the lake. Water samples were collected in the upper oxic layer, chemocline, and deep anoxic layer of the lake for shotgun metagenomic and metatranscriptomic sequencing. Metagenomic analyses revealed dramatic differences in the composition of the microbial communities with depth, consistent with changing geochemistry. Based on relative abundance of taxa identified in each metagenome, Eukaryotes (predominantly Coccomyxa) dominated the upper layer, while Archaea (predominantly Thermoplasmatales) dominated the deep layer, and a combination of Bacteria and Eukaryotes were abundant at the chemocline. We compared metal resistance across communities using a curated list of protein-coding MRGs with KEGG Orthology identifiers (KOs) and found that there were broad differences in the metal resistance strategies (e.g., intracellular metal accumulation) expressed by Eukaryotes, Bacteria, and Archaea. Although normalized abundances of MRG and MRG expression were generally higher in the deep layer, expression of metal-specific genes was not strongly related to variations in specific metal concentrations, especially for Cu and As. We also compared MRG potential and expression in metagenome assembled genomes (MAGs) from the deep layer, where metal concentrations are highest. Consistent with previous work showing differences in metal resistance mechanisms even at the strain level, MRG expression patterns varied strongly among MAG populations from the same depth. Some MAG populations expressed very few MRG known to date, suggesting that novel metal resistance strategies remain to be discovered in uncultivated acidophiles. | 2020 | 32899650 |
| 7636 | 14 | 0.9967 | Environmental concentrations of antibiotics alter the zebrafish gut microbiome structure and potential functions. A paradoxical impact of high rates of production and consumption of antibiotics is their widespread release in the environment. Consequently, low concentrations of antibiotics and their byproducts have been routinely identified from various environmental settings especially from aquatic environments. However, the impact of such low concentrations of antibiotics on the exposed host especially in early life remains poorly understood. We exposed zebrafish to two different environmental concentrations of oxytetracycline and sulfamethoxazole, from larval stage to adulthood (∼120 days) and characterized their impact on the taxonomic diversity, antibiotic resistance genes, and metabolic pathways of the gut microbiome using metagenomic shotgun sequencing and analysis. Long term exposure of environmental concentrations of oxytetracycline and sulfamethoxazole significantly impacted the taxonomic composition and metabolic pathways of zebrafish gut microbiome. The antibiotic exposed samples exhibited significant enrichment of multiple flavobacterial species, including Flavobacterium sp. F52, Flavobacterium johnsoniae and Flavobacterium sp. Fl, which are well known pathogenic bacteria. The relative abundance of antibiotic resistance genes, especially several tetratcycline and sulfonamide resistance genes were significantly higher in the exposed samples and showed a linear correlation with the antibiotic concentrations. Furthermore, several metabolic pathways, including folate biosynthesis, oxidative phosphorylation, and biotin metabolism pathways, showed significant enrichment in the antibiotic exposed samples. Collectively, our results suggest that early life exposure of the environmental concentrations of antibiotics can increase the abundance of unfavorable bacteria, antibiotic resistance genes and associated pathways in the gut microbiome of zebrafish. | 2021 | 33725532 |
| 7635 | 15 | 0.9967 | Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. Composting is a common practice used for treating animal manures before they are used as organic fertilizers for crop production. Whether composting can effectively reduce microbial pathogens and antibiotic resistance genes remain poorly understood. In this study, we compared 3 different dairy manure composting methods-anaerobic fermentation (AF), static compost (SC), and organic fertilizer production (OFP)-for their effects on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial community diversity in the treated manures. The 3 composting methods produced variable and distinct effects on antibiotic-resistant bacteria, zoonotic bacteria, and resistance genes, some of which were decreased and others of which showed no significant changes during composting. Particularly, SC and OFP reduced chloramphenicol resistance gene fexA and opportunistic pathogen Vibrio fluvialis, whereas AF significantly reduced tetracycline resistance gene tetB and opportunistic pathogens Enterococcus faecium and Escherichia fergusonii. The compositions of microbial communities varied significantly during the composting processes, and there were significant differences between the 3 composting methods. In all 3 composts, the dominant phyla were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. Interestingly, Firmicutes, Proteobacteria, and Bacteroidetes remained stable in the entire AF process, whereas they were dominated at the beginning, decreased at the early stage of composting, and rebounded at the later stage during SC and OFP. In general, SC and OFP produced a more profound effect than AF on microbial community diversities, pathogens, and dominant species. Additionally, Enterococcus aquimarinus was isolated from AF for the first time. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States function prediction analysis indicated that the genes related to membrane transport and amino acid metabolism were abundant in the 3 composts. The metabolism of amino acids, lipids, and carbohydrates increased as composting progressed. The biosynthesis of antibiotics was enhanced after fermentation in the 3 composting methods, and the increase in the SC was the most obvious. These results reveal dynamic changes in antibiotic-resistant bacteria, antibiotic resistance genes, microbial community composition, and function succession in different dairy manure composts and provide useful information for further optimization of composting practices. | 2023 | 36333143 |
| 7960 | 16 | 0.9967 | Diversity evolution of functional bacteria and resistance genes (CzcA) in aerobic activated sludge under Cd(II) stress. An activated sludge sequencing batch reactor (SBR) was used to treat divalent cadmium (Cd(II)) wastewater for 60 d to investigate the overall treatment performance, evolution of the bacterial community, and abundance of the Cd(II) resistance gene CzcA and shifts in its potential host bacteria. During stable operation with a Cd(II) concentration of 20 mg/L, the average removal efficiencies of Cd(II) and chemical oxygen demand (COD) were more than 85% and that of total phosphorus was greater than 70%, while the total nitrogen (TN) was only about 45%. The protein (PN) content in the extracellular polymeric substances (EPS) increased significantly after Cd(II) addition, while polysaccharides displayed a decreasing trend (p < 0.05), indicating that EPS prefer to release PN to adsorb Cd(II) and protect bacteria from damage. Three-dimensional fluorescence spectral analysis showed that fulvic acid-like substances were the most abundant chemical components of EPS. The addition of Cd(II) adversely affected most denitrifying bacteria (p < 0.05), which is consistent with the low TN removal. In addition, quantitative polymerase chain reaction analysis revealed that CzcA gene abundance decreased as the Cd(II) concentration increased, possibly because expression of the CzcA gene was inhibited by Cd(II) stress. The majority of CzcA gene sequences were carried by Pseudomonas, making it the dominant genus among Cd(II)-resistant bacteria. | 2019 | 31514000 |
| 7557 | 17 | 0.9967 | Sulfadiazine degradation in soils: Dynamics, functional gene, antibiotic resistance genes and microbial community. Sulfonamides and their corresponding antibiotic resistance genes (ARGs) are widespread in the environment, which leads to a major threat to global health crisis. Biodegradation plays a major role in sulfonamides removal in soil ecosystem, but the degradation dynamics and the associated functional bacteria in situ remain unclear. In this study, aerobic degradation of sulfadiazine (SDZ) at two dosages (1 and 10 mg/kg) was explored for up to 70 days in two different agricultural soils. The removal of SDZ in all treatments followed first-order multi-compartment model with half-life times of 0.96-2.57 days, and DT50 prolonged with the increase of initial dosage. A total of seven bacterial genera, namely Gaiella, Clostrium_sensu_stricto_1, Tumebacillus, Roseiflexus, Variocorax, Nocardioide and Bacillus, were proposed as the potential SDZ-degraders. sadA gene was for the first time detected in soil samples, but other functional genes might also participate in SDZ degradation. The enrichment of sulfonamide resistance genes was found after 70 days' incubation, which might result in the spread of ARGs in soil. This study can add some new insights towards SDZ degradation in soil ecosystem and provide a potential resource for the bioremediation of SDZ-contaminated soil. | 2019 | 31466189 |
| 7245 | 18 | 0.9966 | Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. Veterinary antibiotics entering agricultural land with manure pose the risk of spreading antibiotic resistance. The fate of sulfadiazine (SDZ) introduced via manure and its effect on resistance gene levels in the rhizosphere were compared with that in bulk soil. Maize plants were grown for 9 weeks in soil fertilized with manure either from SDZ-treated pigs (SDZ treatment) or from untreated pigs (control). CaCl(2) -extractable concentrations of SDZ dissipated faster in the rhizosphere than in bulk soil, but SDZ remained detectable over the whole time. For bulk soil, the abundance of sul1 and sul2 relative to 16S rRNA gene copies was higher in the SDZ treatment than in the control, as revealed by quantitative PCR on days 14 and 63. In the rhizosphere, sampled on day 63, the relative sul gene abundances were also significantly increased in the SDZ treatment. The accumulated SDZ exposure (until day 63) of the bacteria significantly correlated with the log relative abundance of sul1 and sul2, so that these resistance genes were less abundant in the rhizosphere than in bulk soil. Plasmids conferring SDZ resistance, which were exogenously captured in Escherichia coli, mainly belonged to the LowGC group and carried a heterogeneous load of resistances to different classes of antibiotics. | 2013 | 22809094 |
| 7953 | 19 | 0.9966 | Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties. | 2014 | 24189653 |