# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 5489 | 0 | 0.8565 | Identification of a novel mutation involved in colistin resistance in Klebsiella pneumoniae through Next-Generation Sequencing (NGS) based approaches. The spread of multidrug-resistant (MDR) K. pneumoniae carbapenemase-producing bacteria (KPC) is one of the most serious threats to global public health. Due to the limited antibiotic options, colis- tin often represents a therapeutic choice. In this study, we performed Whole-Genome Sequencing (WGS) by Illumina and Nanopore platforms on four colistin-resistant K. pneumoniae isolates (CoRKp) to explore the resistance profile and the mutations involved in colistin resistance. Mapping reads with reference sequence of the most com- mon genes involved in colistin resistance did not show the presence of mobile colistin resistance (mcr) genes in all CoRKp. Complete or partial deletions of mgrB gene were observed in three out of four CoRKp, while in one CoRKp the mutation V24G on phoQ was identified. Complementation assay with proper wild type genes restored colistin susceptibility, validating the role of the amino acid substitution V24G and, as already described in the literature, confirming the key role of mgrB alterations in colistin resistance. In conclusion, this study allowed the identification of the novel mutation on phoQ gene involved in colistin resistance phenotype. | 2022 | 35920875 |
| 1405 | 1 | 0.8506 | The threat of carbapenem resistance in Eastern Europe in patients with decompensated cirrhosis admitted to intensive care unit. BACKGROUND: Multidrug-resistant organisms are an increasing concern in patients with decompensated cirrhosis. AIM: We aimed to evaluate the prevalence of infections with carbapenem-resistant Enterobacteriaceae in patients with decompensated cirrhosis. METHODS: Patients with decompensated cirrhosis admitted to ICU were included. The isolated Enterobacteriaceae strains were tested for carbapenemase-producing genes using the Roche LightMix® Modular VIM/IMP/NDM/GES/KPC/OXA48-carbapenemase detection kit. RESULTS: 48 culture-positive infections were registered in 75 patients with acutely decompensated cirrhosis. Thirty patients contracted a second infection. 46% of bacteria isolated at admission and 60% of bacteria responsible for infections identified during ICU-stay were multiresistant. ESBL+ Enterobacteriaceae were predominant at admission, while carbapenem-resistance was dominant in both Enterobacteriaceae and Non-Fermenting-Gram-Negative Bacteria responsible for infections diagnosed during hospitalisation. OXA 48 or KPC type carbapenemases were present in 30% of the analyzed Enterobacteriaceae and in 40% of the phenotypically carbapenem-resistant Klebsiella pneumoniae strains. The length of ICU stay was a risk-factor for a second infection (p=0.04). Previous carbapenem usage was associated with occurence of infections with carbapenem-resistant Gram-negative bacteria during hospitalization (p=0.03). CONCLUSION: The prevalence of infections with carbapenem-resistant Enterobacteriaceae is high in patients with decompensated cirrhosis admitted to ICU. Carbapenemase-producing genes in Enterobacteriaceae in our center are bla(OXA-48) and bla(KPC). | 2022 | 35732546 |
| 522 | 2 | 0.8500 | Detoxification of ars genotypes by arsenite-oxidizing bacteria through arsenic biotransformation. The detoxification process of transforming arsenite (As(III)) to arsenate (As(V)) through bacterial oxidation presents a potent approach for bioremediation of arsenic-polluted soils in abandoned mines. In this study, twelve indigenous arsenic-oxidizing bacteria (AOB) were isolated from arsenic-contaminated soils. Among these, Paenibacillus xylanexedens EBC-SK As2 (MF928871) and Ochrobactrum anthropi EBC-SK As11 (MF928880) were identified as the most effective arsenic-oxidizing isolates. Evaluations for bacterial arsenic resistance demonstrated that P. xylanexedens EBC-SK As2 (MF928871) could resist As(III) up to 40 mM, while O. anthropi EBC-SK As11 (MF928880) could resist As(III) up to 25 mM. From these bacterial strains, genotypes of arsenic resistance system (ars) were detected, encompassing ars leader genes (arsR and arsD), membrane genes (arsB and arsJ), and aox genes known to be crucial for arsenic detoxification. These ars genotypes in the isolated AOBs might play an instrumental role in arsenic-contaminated soils with potential to reduce arsenic contamination. | 2024 | 39382695 |
| 2493 | 3 | 0.8488 | Multidrug-resistant hypervirulent Klebsiella pneumoniae: an evolving superbug. Multidrug-resistant hypervirulent Klebsiella pneumoniae (MDR-hvKP) combines high pathogenicity with multidrug resistance to become a new superbug. MDR-hvKP reports continue to emerge, shattering the perception that hypervirulent K. pneumoniae (hvKP) strains are antibiotic sensitive. Patients infected with MDR-hvKP strains have been reported in Asia, particularly China. Although hvKP can acquire drug resistance genes, MDR-hvKP seems to be more easily transformed from classical K. pneumoniae (cKP), which has a strong gene uptake ability. To better understand the biology of MDR-hvKP, this review discusses the virulence factors, resistance mechanisms, formation pathways, and identification of MDR-hvKP. Given their destructive and transmissible potential, continued surveillance of these organisms and enhanced control measures should be prioritized. | 2025 | 40135944 |
| 2494 | 4 | 0.8477 | Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Klebsiella pneumoniae is well-known opportunistic enterobacteria involved in complex clinical infections in humans and animals. The domestic animals might be a source of the multidrug-resistant virulent K. pneumoniae to humans. K. pneumoniae infections in domestic animals are considered as an emergent global concern. The horizontal gene transfer plays essential roles in bacterial genome evolution by spread of virulence and resistance determinants. However, the virulence genes can be transferred horizontally via K. pneumoniae-derived outer membrane vesicles (OMVs) remains to be unreported. In this study, we performed complete genome sequencing of two K. pneumoniae HvK2115 and CRK3022 with hypervirulent or carbapenem-resistant traits. OMVs from K. pneumoniae HvK2115 and CRK3022 were purified and observed. The carriage of virulence or resistance genes in K. pneumoniae OMVs was identified. The influence of OMVs on the horizontal transfer of virulence-related or drug-resistant plasmids among K. pneumoniae strains was evaluated thoroughly. The plasmid transfer to recipient bacteria through OMVs was identified by polymerase chain reaction, pulsed field gel electrophoresis and Southern blot. This study revealed that OMVs could mediate the intraspecific and interspecific horizontal transfer of the virulence plasmid phvK2115. OMVs could simultaneously transfer two resistance plasmids into K. pneumoniae and Escherichia coli recipient strains. OMVs-mediated horizontal transfer of virulence plasmid phvK2115 could significantly enhance the pathogenicity of human carbapenem-resistant K. pneumoniae CRK3022. The CRK3022 acquired the virulence plasmid phvK2115 could become a CR-hvKp strain. It was critically important that OMVs-mediated horizontal transfer of phvK2115 lead to the coexistence of virulence and carbapenem-resistance genes in K. pneumoniae, resulting in the emerging of carbapenem-resistant hypervirulent K. pneumoniae. | 2022 | 35679514 |
| 1721 | 5 | 0.8473 | Convergence of MCR-8.2 and Chromosome-Mediated Resistance to Colistin and Tigecycline in an NDM-5-Producing ST656 Klebsiella pneumoniae Isolate From a Lung Transplant Patient in China. We characterized the first NDM-5 and MCR-8.2 co-harboring ST656 Klebsiella pneumoniae clinical isolate, combining with chromosomal gene-mediated resistance to colistin and tigecycline. The K. pneumoniae KP32558 was isolated from the bronchoalveolar lavage fluid from a lung transplant patient. Complete genome sequences were obtained through Illumina HiSeq sequencing and nanopore sequencing. The acquired resistance genes and mutations in chromosome-encoded genes associated with colistin and tigecycline resistance were analyzed. Comparative genomic analysis was conducted between mcr-8.2-carrying plasmids. The K. pneumoniae KP32558 was identified as a pan-drug resistant bacteria, belonging to ST656, and harbored plasmid-encoded bla(NDM-5) and mcr-8.2 genes. The bla(NDM-5) gene was located on an IncX3 type plasmid. The mcr-8.2 gene was located on a conjugative plasmid pKP32558-2-mcr8, which had a common ancestor with another two mcr-8.2-carrying plasmids pMCR8_020135 and pMCR8_095845. The MIC of KP32558 for colistin was 256 mg/L. The mcr-8.2 gene and mutations in the two-component system, pmrA and crrB, and the regulator mgrB, had a synergistic effect on the high-level colistin resistance. The truncation in the acrR gene, related to tigecycline resistance, was also identified. K. pneumoniae has evolved a variety of complex resistance mechanisms to the last-resort antimicrobials, close surveillance is urgently needed to monitor the prevalence of this clone. | 2022 | 35899054 |
| 2460 | 6 | 0.8467 | Emergence of cefiderocol resistance during therapy in NDM-5-producing Klebsiella pneumoniae isolates harboring siderophore receptors mutations. Cefiderocol, a siderophore-conjugated cephalosporine, is a promising drug used to treat infection with carbapenem-resistant gram-negative bacteria. Here, we report a case of pneumonia induced by multiple gram-negative pathogens, including a carbapenem-resistant Klebsiella pneumoniae developing cefiderocol resistance within 32 days of cefiderocol therapy. Whole genome sequencing of three consecutive K. pneumoniae isolates revealed that the bacteria were isogenic and were carrying several broad-spectrum β-lactamases (bla(NDM5) and bla(CTX-M-15)). Two isolates with elevated minimum inhibitory concentration against cefiderocol harbored mutations in genes encoding siderophore: one in the cirA gene and one in both the cirA and the fiu genes. The combination of a metallo-β-lactamase background and mutations in siderophore receptors was associated with phenotypic resistance to cefiderocol. | 2025 | 39617206 |
| 5121 | 7 | 0.8466 | Rapid Nanopore Whole-Genome Sequencing for Anthrax Emergency Preparedness. Human anthrax cases necessitate rapid response. We completed Bacillus anthracis nanopore whole-genome sequencing in our high-containment laboratory from a human anthrax isolate hours after receipt. The de novo assembled genome showed no evidence of known antimicrobial resistance genes or introduced plasmid(s). Same-day genomic characterization enhances public health emergency response. | 2020 | 31961318 |
| 5208 | 8 | 0.8463 | Complete genome sequence of Acinetobacter baumannii XH386 (ST208), a multi-drug resistant bacteria isolated from pediatric hospital in China. Acinetobacter baumannii is an important bacterium that emerged as a significant nosocomial pathogen worldwide. The rise of A. baumannii was due to its multi-drug resistance (MDR), while it was difficult to treat multi-drug resistant A. baumannii with antibiotics, especially in pediatric patients for the therapeutic options with antibiotics were quite limited in pediatric patients. A. baumannii ST208 was identified as predominant sequence type of carbapenem resistant A. baumannii in the United States and China. As we knew, there was no complete genome sequence reproted for A. baumannii ST208, although several whole genome shotgun sequences had been reported. Here, we sequenced the 4087-kilobase (kb) chromosome and 112-kb plasmid of A. baumannii XH386 (ST208), which was isolated from a pediatric hospital in China. The genome of A. baumannii XH386 contained 3968 protein-coding genes and 94 RNA-only encoding genes. Genomic analysis and Minimum inhibitory concentration assay showed that A. baumannii XH386 was multi-drug resistant strain, which showed resistance to most of antibiotics, except for tigecycline. The data may be accessed via the GenBank accession number CP010779 and CP010780. | 2016 | 26981403 |
| 6006 | 9 | 0.8463 | Missense Mutations in the CrrB Protein Mediate Odilorhabdin Derivative Resistance in Klebsiella pneumoniae. NOSO-502 is a preclinical antibiotic candidate of the Odilorhabdin class. This compound exhibits activity against Enterobacteriaceae pathogens, including carbapenemase-producing bacteria and most of the Colistin (CST)-resistant strains. Among a collection of CST-resistant Klebsiella pneumoniae strains harboring mutations on genes pmrAB, mgrB, phoPQ, and crrB, only those bearing mutations in gene crrB were found to be resistant to NOSO-502.CrrB is a histidine kinase which acts with the response regulator CrrA to modulate the PmrAB system, which finally induces the restructuring of the lipopolysaccharide present on the outer membrane and thus leading to CST resistance. Moreover, crrB mutations also enhance the transcription of neighboring genes such as H239_3063, an ABC transporter transmembrane region; H239_3064, a putative efflux pump also known as KexD; and H239_3065, a N-acetyltransferase.To elucidate the mechanism of resistance to NOSO-502 induced by CrrB missense mutations in K. pneumoniae, mutants of NCTC 13442 and ATCC BAA-2146 strains resistant to NOSO-502 and CST with single amino acid substitutions in CrrB (S8N, F33Y, Y34N, W140R, N141I, P151A, P151L, P151S, P151T, F303Y) were selected. Full susceptibility to NOSO-502 was restored in crrA or crrB deleted K. pneumoniae NCTC 13442 CrrB(P151L) mutants, confirming the role of CrrAB in controlling this resistance pathway. Deletion of kexD (but no other neighboring genes) in the same mutant also restored NOSO-502-susceptibility. Upregulation of the kexD gene expression was observed for all CrrB mutants. Finally, plasmid expression of kexD in a K. pneumoniae strain missing the locus crrABC and kexD significantly increased resistance to NOSO-502. | 2023 | 33685902 |
| 1401 | 10 | 0.8463 | Molecular Surveillance of Multidrug-Resistant Bacteria among Refugees from Afghanistan in 2 US Military Hospitals during Operation Allies Refuge, 2021. In 2021, two US military hospitals, Landstuhl Regional Medical Center in Landstuhl, Germany, and Walter Reed National Military Medical Center (WRNMMC) in Bethesda, Maryland, USA, observed a high prevalence of multidrug-resistant bacteria among refugees evacuated from Afghanistan during Operation Allies Refuge. Multidrug-resistant isolates collected from 80 patients carried an array of antimicrobial resistance genes, including carbapenemases (bla(NDM-1), bla(NDM-5), and bla(OXA-23)) and 16S methyltransferases (rmtC and rmtF). Considering the rising transmission of antimicrobial resistance and unprecedented population displacement globally, these data are a reminder of the need for robust infection control measures and surveillance. | 2024 | 39530854 |
| 1719 | 11 | 0.8461 | Acquisition of Plasmid with Carbapenem-Resistance Gene bla(KPC2) in Hypervirulent Klebsiella pneumoniae, Singapore. The convergence of carbapenem-resistance and hypervirulence genes in Klebsiella pneumoniae has led to the emergence of highly drug-resistant superbugs capable of causing invasive disease. We analyzed 556 carbapenem-resistant K. pneumoniae isolates from patients in Singapore hospitals during 2010-2015 and discovered 18 isolates from 7 patients also harbored hypervirulence features. All isolates contained a closely related plasmid (pKPC2) harboring bla(KPC-2), a K. pneumoniae carbapenemase gene, and had a hypervirulent background of capsular serotypes K1, K2, and K20. In total, 5 of 7 first patient isolates were hypermucoviscous, and 6 were virulent in mice. The pKPC2 was highly transmissible and remarkably stable, maintained in bacteria within a patient with few changes for months in the absence of antimicrobial drug selection pressure. Intrapatient isolates were also able to acquire additional antimicrobial drug resistance genes when inside human bodies. Our results highlight the potential spread of carbapenem-resistant hypervirulent K. pneumoniae in Singapore. | 2020 | 32091354 |
| 2456 | 12 | 0.8461 | MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Colistin is one of the last-resort therapeutic agents to combat multidrug-resistant Gram-negative bacteria (GNB) including Klebsiella pneumoniae. Although it happens rarely, resistance to colistin has been reported for several GNB. A total of 20 colistin resistant (col-R) and three colistin susceptible (col-S) clinical isolates of K. pneumoniae were studied to explore the underlying mechanisms of colistin resistance. The presence of plasmid encoded resistance genes, mcr-1, mcr-2, mcr-3, and mcr-4 genes were examined by PCR. The nucleotide sequences of pmrA, pmrB, phoP, phoQ, and mgrB genes were determined. To evaluate the association between colistin resistance and upregulation of pmrHFIJKLM and pmrCAB operons, transcriptional level of the pmrK and pmrC genes encoding for lipopolysaccharide target modifying enzymes was quantified by RT-qPCR analysis. None of the plasmid encoded resistance genes were detected in the studied isolates. Inactivation of MgrB due to nonsense mutations and insertion of IS elements was observed in 15 col-R isolates (75%). IS elements (IS5-like and IS1-like families) most commonly targeted the coding region and in one case the promoter region of the mgrB. Complementation with wild-type MgrB restored colistin susceptibility in isolates with altered mgrB. All col-R isolates lacked any genetic alterations in the pmrA, phoP, and phoQ genes and substitutions identified in the pmrB were not found to be involved in resistance conferring determined by complementation assay. Colistin resistance linked with upregulation of pmrHFIJKLM and pmrCAB operons with the pmrK and pmrC being overexpressed in 20 and 11 col-R isolates, respectively. Our results demonstrated that MgrB alterations are the major mechanisms contributing to colistin resistance in the tested K. pneumoniae isolates from Iran. | 2017 | 29326662 |
| 1531 | 13 | 0.8459 | Emergence of Plasmids Co-Harboring Carbapenem Resistance Genes and tmexCD2-toprJ2 in Sequence Type 11 Carbapenem Resistant Klebsiella pneumoniae Strains. OBJECTIVES: To characterize two plasmids co-harboring carbapenem resistance genes and tmexCD2-toprJ2 in carbapenem-resistant Klebsiella pneumoniae (CRKP) strains. METHODS: Two clinical CRKP strains were isolated and characterized by antimicrobial susceptibility testing, conjugation assays, whole-genome sequencing, and bioinformatics analysis. RESULTS: The two CRKP strains NB4 and NB5 were both resistant to imipenem, meropenem and tigecycline. Whole-genome sequencing revealed that two CRKP strains belonged to the ST11 type and carried multiple resistance genes. The tmexCD2-toprJ2 clusters in both strains were located on the IncFIB(Mar)-like/HI1B-like group of hybrid plasmids, which co-harbored the metallo-β-lactamase gene bla(NDM-1). In addition, the co-existence of bla(NDM-1) and bla(KPC-2) and the presence of tmexCD2-toprJ2 in CRKP strain NB5 was observed. CONCLUSIONS: In this study, tmexCD2-toprJ2 gene clusters were identified in two NDM-1-producing CRKP ST11 strains. These gene clusters will likely spread into clinical high-risk CRKP clones and exacerbate the antimicrobial resistance crisis. In addition, we detected the co-occurrence of bla(NDM-1), bla(KPC-2) and tmexCD2-toprJ2 in a single strain, which will undoubtedly accelerate the formation of a "superdrug resistant" bacteria. Hence, effective control measures should be implemented to prevent the further dissemination of such organisms in clinical settings. | 2022 | 35646740 |
| 5035 | 14 | 0.8458 | Colistin and tigecycline resistance in carbapenemase-producing Gram-negative bacteria: emerging resistance mechanisms and detection methods. A literature review was undertaken to ascertain the molecular basis for tigecycline and colistin resistance mechanisms and the experimental basis for the detection and delineation of this resistance particularly in carbapenemase-producing Gram-negative bacteria. Pubmed, Google Scholar and Science Direct were searched with the keywords colistin, tigecycline, resistance mechanisms and detection methods. Trans-complementation and comparative MIC studies, mass spectrometry, chromatography, spectrofluorometry, PCR, qRT-PCR and whole genome sequencing (WGS) were commonly used to determine tigecycline and colistin resistance mechanisms, specifically modifications in the structural and regulatory efflux (acrAB, OqxAB, kpgABC adeABC-FGH-IJK, mexAB-XY-oprJM and soxS, rarA robA, ramRAB marRABC, adeLRS, mexRZ and nfxb) and lipid A (pmrHFIJFKLM, lpxA, lpxC lpxD and mgrB, pmrAB, phoPQ,) genes respectively. Mutations in the ribosomal 16S rRNA operon rrnBC, also yielded resistance to tigecycline through target site modifications. The mcr-1 gene conferring resistance to colistin was identified via WGS, trans-complementation and a murine thigh infection model studies. Common detection methods are mainly antibiotic sensitivity testing with broth microdilution while molecular identification tools are mostly PCR and WGS. Spectrofluorometry, MALDI-TOF MS, micro-array and real-time multiplex PCR hold much promise for the future as new detection tools. | 2016 | 27153928 |
| 2997 | 15 | 0.8458 | Genomic Characterization of Multidrug-Resistant Escherichia coli BH100 Sub-strains. The rapid emergence of multidrug-resistant (MDR) bacteria is a global health problem. Mobile genetic elements like conjugative plasmids, transposons, and integrons are the major players in spreading resistance genes in uropathogenic Escherichia coli (UPEC) pathotype. The E. coli BH100 strain was isolated from the urinary tract of a Brazilian woman in 1974. This strain presents two plasmids carrying MDR cassettes, pBH100, and pAp, with conjugative and mobilization properties, respectively. However, its transposable elements have not been characterized. In this study, we attempted to unravel the factors involved in the mobilization of virulence and drug-resistance genes by assessing genomic rearrangements in four BH100 sub-strains (BH100 MG2014, BH100 MG2017, BH100L MG2017, and BH100N MG2017). Therefore, the complete genomes of the BH100 sub-strains were achieved through Next Generation Sequencing and submitted to comparative genomic analyses. Our data shows recombination events between the two plasmids in the sub-strain BH100 MG2017 and between pBH100 and the chromosome in BH100L MG2017. In both cases, IS3 and IS21 elements were detected upstream of Tn21 family transposons associated with MDR genes at the recombined region. These results integrated with Genomic island analysis suggest pBH100 might be involved in the spreading of drug resistance through the formation of resistance islands. Regarding pathogenicity, our results reveal that BH100 strain is closely related to UPEC strains and contains many IS3 and IS21-transposase-enriched genomic islands associated with virulence. This study concludes that those IS elements are vital for the evolution and adaptation of BH100 strain. | 2020 | 33584554 |
| 1718 | 16 | 0.8458 | Pandrug-resistant Klebsiella pneumoniae isolated from Ukrainian war victims are hypervirulent. OBJECTIVES: Carbapenem- and colistin-resistant Klebsiella pneumoniae were isolated from war victims treated in hospitals in Ukraine. The question was whether these pandrug-resistant K. pneumoniae are pathogenic and capable of causing disease in a broader context. METHODS: Klebsiella pneumoniae clinical isolates (n = 37) were tested for antibiotic resistance and subjected to whole-genome sequencing (WGS). In addition, their pathogenicity was tested by serum resistance and two separate animal models. RESULTS: Isolates belonging to the sequence types (ST) 23, 147, 307, 395, and 512 were found to harbor resistance genes against carbapenems and cephalosporins. Nine isolates carried point mutations in pmrB and phoP genes associated with colistin resistance. All bacteria were equipped with multiple virulence genes, and the colistin-resistant isolates each carried 10 different genes. Colistin-resistant K. pneumoniae were more serum-resistant, more virulent against G. mellonella larvae, and displayed an increased survival in mice compared to colistin-susceptible bacteria. The iucA, peg-344, rmpA, rmpC, and rmpD genes were associated with increased virulence in animals. CONCLUSIONS: Pandrug-resistant K. pneumoniae in Ukraine are hypervirulent and retain their pathogenicity, highlighting the need to prevent disseminated spread. | 2024 | 39396555 |
| 3738 | 17 | 0.8457 | In Silico Prediction of Antibiotic Resistance in Mycobacterium ulcerans Agy99 through Whole Genome Sequence Analysis. Buruli ulcer is an emerging infectious disease caused by Mycobacterium ulcerans that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of M. ulcerans strain AGY99, M. ulcerans ecovar liflandii, and three Mycobacterium marinum strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in M. ulcerans and mutation in katG (R431G) and pncA (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in rpoB, gyrA, gyrB, rpsL, rrs, emb, ethA, 23S ribosomal RNA genes and promoter region of inhA and ahpC genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria. | 2017 | 28749770 |
| 8155 | 18 | 0.8456 | Gut bacteria enable prostate cancer growth. Testosterone-synthetizing gut bacteria drive resistance to therapy. | 2021 | 34618567 |
| 5205 | 19 | 0.8455 | Antimicrobial resistance and virulence factors of Klebsiella quasipneumoniae, the novel sequence types (ST) 7979 and 7980 from Indonesia. Klebsiella pneumoniae is a human pathogen of global concern. The more recently described pathogen, K. quasipneumoniae, shares similar morphological characteristics with K. pneumoniae and is commonly misidentified as this species using conventional laboratory techniques. This study investigates the molecular characteristics of four phenotype-identified K. pneumoniae isolates obtained from hospital wastewater in Jakarta, Indonesia. Whole-genome sequencing (WGS) and the Average Nucleotide Identity (ANI) showed that these isolates were eventually identified as K. quasipneumoniae subsp. quasipneumoniae, a closely related species of K. pneumoniae. These isolates of novel ST7979 and ST7980 strains are classified as multi-drug resistant (MDR) bacteria and harbor many antibiotic-resistance genes. Interestingly, the novel ST7980 strain is carbapenem non-susceptible and harbors the sul1 gene and the heat-stable enterotoxin gene, astA. The ST7979 strains have KL55 capsular type and O3b type, whereas the ST7980 strains have KL107 and O12 types. Our finding highlights the significance of identifying the K. quasipneumoniae strain utilizing a genomic platform. Additionally, routine surveillance is needed to monitor the hospital wastewater and avoid the spread of multidrug-resistant bacteria. | 2025 | 40609771 |