# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 3211 | 0 | 0.8531 | Research Note: The structure and diversity of antibiotic resistance genes in animal house environment. In recent years, a series of public health issues caused by the spread of antibiotic resistance have been widely concerned. The indoor air of livestock and poultry houses is considered to be one of the main sources of environmental contamination of ARGs. This study characterized the micro-organisms and ARGs in the air particulate matter of chicken houses using metagenomics. The study successfully detected 761 different subtypes of resistance genes including aminoglycosides, tetracyclines, MLSB etc., 4 types of mobile genetic elements, and various pathogenic microorganisms from the aerosols in the chicken coop environment. The results showed that the abundance of ARGs in the air of the chicken coop was at a relatively high level, correlation network analysis showed that multiple types of ARGs could promote the emergence of antibiotic-resistant bacteria. | 2024 | 38889568 |
| 6908 | 1 | 0.8528 | Impact of the surrounding environment on antibiotic resistance genes carried by microplastics in mangroves. The pollution of antibiotic resistance genes (ARGs) carried by microplastics (MPs) is a growing concern. Mangroves are located at the intersection of land and sea and are seriously affected by MP pollution. However, few studies have systematic research evaluating the transmission risk of ARGs carried by MPs in mangroves. We conducted in situ experiments by burying five different MPs (polypropylene, high-density polyethylene, polystyrene, polyethylene glycol terephthalate, and polycaprolactone particles) in mangroves with different surrounding environments. A total of 10 genes in the MPs of mangroves were detected using quantitative real-time polymerase chain reactions, including eight ARGs and two mobile genetic elements (MGEs). The abundance of ARGs in Guanhai park mangroves in living areas (GH) was higher than that of Gaoqiao mangroves in protected areas (GQ) and Beiyue dike mangroves in aquaculture pond areas (BY). Pathogenic bacteria, such as Acinetobacter, Bacillus, and Vibrio were found on the MP surfaces of the mangroves. The number of ARGs carried by multiple drug-resistant bacteria in the GH mangroves was greater than that in the GQ and BY mangroves. Moreover, the ARGs carried by MPs in GH mangroves had the highest potential transmission risk by horizontal gene transfer. Sociometric and environmental factors were the main drivers shaping the distribution characteristics of ARGs and MGEs. Polypropylene and high-density polyethylene particles are preferred substrates for obtaining diffuse ARGs. This study investigated the drivers of ARGs in the MPs of mangroves and provided essential guidance on the use and handling of plastics. | 2022 | 35537514 |
| 6789 | 2 | 0.8520 | Metagenomic insights on promoting the removal of resistome in aerobic composting pig manure by lightly burned modified magnesite. The antibiotic resistance genes (ARGs) have become a serious issue facing public health. In this study, light-burned magnesite with a high specific surface area at 650 °C (MS650) was used for aerobic composting, evaluating its effect on the resistome during pig manure composting. Different concentrations of MS650 reduced the abundance of the resistome, including seven high-risk ARGs, class two metal and biocide resistance genes (MBRGs), and human pathogenic bacteria (HPBs). The addition of 2.5 % MS650 (L1) in the composting had the best reduction effect on ARGs, MBRGs and HPBs. ARG and microbial community assembly are deterministic processes. Proteobacteria and Actinobacteria was the main factor associated with the decrease in ARGs, followed by virulence factor genes (VFGs, 44.2 %). The reduction in MBRGs by MS650 mainly suppressed HGT by reducing the Isfinder abundance. To summarize, MS650 is an effective method to improve emission reduction of ARGs and MBRGs. This study provided a theoretical basis for improving the engineering application potential of MS650. | 2024 | 39490844 |
| 6133 | 3 | 0.8520 | Comparative genomic study of three species within the genus Ornithinibacillus, reflecting the adaption to different habitats. In the present study, we report the whole genome sequences of two species, Ornithinibacillus contaminans DSM22953(T) isolated from human blood and Ornithinibacillus californiensis DSM 16628(T) isolated from marine sediment, in genus Ornithinibacillus. Comparative genomic study of the two species was conducted together with their close relative Ornithinibacillus scapharcae TW25(T), a putative pathogenic bacteria isolated from dead ark clam. The comparisons showed O. contaminans DSM22953(T) had the smallest genome size of the three species indicating that it has a relatively more stable habitat. More stress response and heavy metal resistance genes were found in the genome of O. californiensis DSM 16628(T) reflecting its adaption to the complex marine environment. O. scapharcae TW25(T) contained more antibiotic resistance genes and virus factors in the genome than the other two species, which revealed its pathogen potential. | 2016 | 26706221 |
| 6792 | 4 | 0.8518 | Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems. | 2024 | 38759465 |
| 7356 | 5 | 0.8514 | Tossed 'good luck' coins as vectors for anthropogenic pollution into aquatic environment. Superstition has it that tossing coins into wells or fountains brings good luck, thereby causing a potential accumulation of microbially contaminated metal particles in the water. Here, we characterized the microbiota and the resistance profile in biofilm on such coins and their surrounding sediments. The study site was a tidal marine lake within a touristic center located in a natural reserve area. Notwithstanding the fact that coin-related biofilms were dominated by typical marine taxa, coin biofilms had specific microbial communities that were different from the communities of the surrounding sediment. Moreover, the communities were different depending on whether the coin were made mainly of steel or of copper. Sequences affiliated with putative pathogens were found on every third coin but were not found in the surrounding sediment. Antibiotic resistance genes (ARGs) were detected on most of the coins, and interestingly, sediments close to the area where coins accumulate had a higher frequency of ARGs. We suggest that the surface of the coins might offer a niche for ARGs and faecal bacteria to survive, and, thus, tossed coins are a potential source and vector for ARGs into the surrounding environment. | 2020 | 31887589 |
| 6791 | 6 | 0.8508 | Microplastics in marine pollution: Oceanic hitchhikers for the global dissemination of antimicrobial-resistant bacteria. Microplastics (MPs) are globally anthropogenic contaminants of marine environments. Bacteria can colonize MPs forming biofilms that constitute the plastisphere. Carbapenem-resistant bacteria in plastisphere could be a hidden threat for marine life. The role of MPs in the spread of AMR bacteria/genes deserves global investigation. | 2025 | 40469541 |
| 7357 | 7 | 0.8508 | Metagenomic surveys show a widespread diffusion of antibiotic resistance genes in a transect from urbanized to marine protected area. Ports are hot spots of pollution; they receive pollution from land-based sources, marine traffic and port infrastructures. Marine ecosystems of nearby areas can be strongly affected by pollution from port-related activities. Here, we investigated the microbiomes present in sea floor sediments along a transect from the harbour of Livorno (Central Italy) to a nearby marine protected area. Results of 16S rRNA amplicon sequencing and metagenome assembled genomes (MAGs) analyses indicated the presence of different trends of specific bacterial groups (e.g. phyla NB1-j, Acidobacteriota and Desulfobulbales) along the transect, correlating with the measured pollution levels. Human pathogenic bacteria and antibiotic resistance genes (ARGs) were also found. These results demonstrate a pervasive impact of human port activities and highlight the importance of microbiological surveillance of marine sediments, which may constitute a reservoir of ARGs and pathogenic bacteria. | 2025 | 39908950 |
| 7168 | 8 | 0.8507 | Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes. Concerns regarding biological risk in environment have garnered increasing attention. Manure has been believed to be a significant source of antibiotic resistance genes (ARGs) in agricultural soil. Nevertheless, the profile of microbial contamination including ARGs, virulence factor genes (VFGs) and human bacterial pathogens (HBPs) in different manure-amended soils remain largely unknown. Here, we conducted the systematic metagenome-based study to explore changes in resistome, VFGs and HBPs in soils treated by frequently-used manures. The results revealed that many manure-borne ARGs, VFGs, and HBPs could be spreaded into soils, and their diversity and abundance were significantly different among chemical fertilizer, pig manure, chicken manure, cow dung and silkworm excrement application. A total of 157 potential HBPs accounting about 1.33% of total bacteria were detected. The main ARGs transferred from manures to soil conferred resistance to vancomycin and macrolide-lincosamide-streptogramin. The series analysis revealed positive co-occurrence patterns of ARGs-HBPs, VFGs-HBPs and ARGs-VFGs. Microbial contamination were more serious in pig manure and silkworm excrement sample than in the other samples, implying the usage of these two manures increased the risk of HBPs and dissemination of ARGs. This study confirmed the prevalence and discrepancy of resistome, VFGs and HBPs in different manure-amended soils. | 2022 | 35728317 |
| 6873 | 9 | 0.8506 | Plastic wastes and surface antibiotic resistance genes pollution in mangrove environments. Mangroves are located at the intersection of land and sea and are also heavily affected by plastic wastes. Biofilms of plastic wastes in mangroves are reservoirs for antibiotic resistance genes (ARGs). In this study, plastic wastes and ARG pollution were investigated from three typical mangrove areas in Zhanjiang, South China. Transparent was the dominant colors of plastic wastes in three mangroves. Fragment and film shape accounted for 57.73-88.23% of plastic waste samples in mangroves. In addition, 39.50% of plastic wastes in protected area mangroves are PS. The metagenomic results shows that the 175 ARGs were found on plastic wastes of the three mangroves, the abundance accounting for 91.11% of the total ARGs. The abundance of Vibrio accounted for 2.31% of the total bacteria genera in aquaculture pond area mangrove. Correlation analysis shows that a microbe can carry multiple ARGs that may improve resistance to antibiotics. Microbes are the potential hosts of most ARGs, suggesting that ARGs can be transmitted by microbes. Because the mangroves are closely related to human activities and the high abundance of ARGs on plastic increases the ecological risks, people should improve plastic waste management and prevent the spread of ARGs by reducing plastic pollution. | 2023 | 37133617 |
| 7055 | 10 | 0.8503 | Characterization of antibiotic resistance genes and bacterial community in selected municipal and industrial sewage treatment plants beside Poyang Lake. Sewage treatment plants (STPs) are significant reservoirs of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). Municipal STPs (MSTPs) and industrial STPs (ISTPs) are the two most important STP types in cities. In this study, the ARGs, mobile genetic elements (MGEs), and bacterial communities of selected STPs, including two MSTPs and one ISTP, in the vicinity of Poyang Lake were comprehensively investigated through high-throughput qPCR and high-throughput Illumina sequencing. The results showed that the profiles of ARGs, MGEs and bacteria differed between the ISTP and the two MSTPs, most likely due to differences in influent water quality, such as the Pb that characterized in the ISTP's influent. The longer hydraulic retention times (HRTs) of the two MSTPs than of the ISTP may also have accounted for the different profiles. Thus, a prolonged HRT in the CASS process seems to allow a more extensive removal of ARGs and bacteria in ISTPs with similar treatment process. By providing comprehensive insights into the characteristics of ARGs, MGEs and the bacterial communities of the selected MSTPs and ISTP, our study provides a scientific basis for controlling the propagation and diffusion of ARGs and ARB in different types of STPs. | 2020 | 32092547 |
| 3671 | 11 | 0.8499 | Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast. Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL) to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria. | 2016 | 27287338 |
| 8106 | 12 | 0.8499 | Reducing antibiotic resistance genes, integrons, and pathogens in dairy manure by continuous thermophilic composting. This study explored the effects of composting using three temperature regimes, namely, insufficient thermophilic composting (ITC), normal thermophilic composting (NTC), and continuous thermophilic composting (CTC), on antibiotic resistance genes (ARGs), integrons, and human pathogenic bacteria (HPB), as well as the mechanisms involved. The NTC and CTC treatments led to greater decreases in 5/10 ARGs and two integrons than ITC, and the abundances of ARGs (tetC, tetG, and tetQ) and int1 only declined in the NTC and CTC treatments. The abundances of HPB decreased by 82.8%, 76.9%, and 96.9% under ITC, NTC, CTC, respectively. Redundancy analysis showed that both bacterial succession and horizontal gene transfer play important roles in the variation of ARGs, and the changes in different ARGs were due to diverse mechanisms. CTC performed significantly better at reducing ARGs, integrons, and HPB, thus it may be used to manage the public health risks of ARGs in animal manure. | 2016 | 27598571 |
| 3167 | 13 | 0.8498 | Assessing Antibiotic-Resistant Genes in University Dormitory Washing Machines. University dormitories represent densely populated environments, and washing machines are potential sites for the spread of bacteria and microbes. However, the extent of antibiotic resistance gene (ARG) variation in washing machines within university dormitories and their potential health risks are largely unknown. To disclose the occurrence of ARGs and antibiotic-resistant bacteria from university dormitories, we collected samples from washing machines in 10 dormitories and used metagenomic sequencing technology to determine microbial and ARG abundance. Our results showed abundant microbial diversity, with Proteobacteria being the dominant microorganism that harbors many ARGs. The majority of the existing ARGs were associated with antibiotic target alteration and efflux, conferring multidrug resistance. We identified tnpA and IS91 as the most abundant mobile genetic elements (MGEs) in washing machines and found that Micavibrio aeruginosavorus, Aquincola tertiaricarbonis, and Mycolicibacterium iranicum had high levels of ARGs. Our study highlights the potential transmission of pathogens from washing machines to humans and the surrounding environment. Pollution in washing machines poses a severe threat to public health and demands attention. Therefore, it is crucial to explore effective methods for reducing the reproduction of multidrug resistance. | 2024 | 38930496 |
| 7163 | 14 | 0.8496 | Prevalence of antibiotic resistance genes and bacterial pathogens in long-term manured greenhouse soils as revealed by metagenomic survey. Antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and HPB carrying ARGs pose a high risk to soil ecology and public health. Here, we used a metagenomic approach to investigate their diversity and abundance in chicken manures and greenhouse soils collected from Guli, Pulangke, and Hushu vegetable bases with different greenhouse planting years in Nanjing, Eastern China. There was a positive correlation between the levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in manures and greenhouse soils. In total, 156.2–5001.4 μg/kg of antibiotic residues, 22 classes of ARGs, 32 HPB species, and 46 species of HPB carrying ARGs were found. The highest relative abundance was tetracycline resistance genes (manures) and multidrug resistance genes (greenhouse soils). The dominant HPB and HPB carrying ARGs in the manures were Bacillus anthracis, Bordetella pertussis, and B. anthracis (sulfonamide resistance gene, sul1), respectively. The corresponding findings in greenhouse soils were Mycobacterium tuberculosis and M. ulcerans, M. tuberculosis (macrolide-lincosamide-streptogramin resistance protein, MLSRP), and B. anthracis (sul1), respectively. Our findings confirmed high levels of antibiotics, ARGs, HPB, and HPB carrying ARGs in the manured greenhouse soils compared with those in the field soils, and their relative abundance increased with the extension of greenhouse planting years. | 2015 | 25514174 |
| 6991 | 15 | 0.8495 | Distribution and drivers of antibiotic resistance genes in brackish water aquaculture sediment. Brackish water aquaculture has brought numerous economic benefits, whereas anthropogenic activities in aquaculture may cause the dissemination of antibiotic resistance genes (ARGs) in brackish water sediments. The intricate relationships between environmental factors and microbial communities as well as their role in ARGs dissemination in brackish water aquaculture remain unclear. This study applied PCR and 16S sequencing to identify the variations in ARGs, class 1 integron gene (intI1) and microbial communities in brackish water aquaculture sediment. The distribution of ARGs in brackish water aquaculture sediment was similar to that in freshwater aquaculture, and the sulfonamide resistance gene sul1 was the indicator of ARGs. Proteobacteria and Firmicutes were the dominant phyla, and Paenisporosarcina (p_ Firmicutes) was the dominant genus. The results of correlation, network and redundancy analysis indicated that the microbial community in the brackish water aquaculture sediment was function-driven. The neutral model and variation partitioning analysis were used to verify the ecological processes of the bacterial community. The normalized stochasticity ratio showed that pond bacteria community was dominated by determinacy, which was affected by aquaculture activities. The total nitrogen and organic matter influenced the abundance of ARGs, while Proteobacteria and Thiobacillus (p_Proteobacteria) were the key antibiotic-resistant hosts. Our study provides insight into the prevalence of ARGs in brackish water aquaculture sediments, and indicates that brackish water aquaculture is a reservoir of ARGs. | 2023 | 36436623 |
| 3482 | 16 | 0.8494 | Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event. Information is currently limited regarding the distribution of antibiotic resistance genes (ARGs) in smog and their correlations with airborne bacteria. This study characterized the diversity and abundance of ARGs in the particulate matters (PMs) of severe smog based on publicly available metagenomic data, and revealed the occurrence of 205 airborne ARG subtypes, including 31 dominant ones encoding resistance to 11 antibiotic types. Among the detectable ARGs, tetracycline, β-lactam and aminoglycoside resistance genes had the highest abundance, and smog and soil had similar composition characteristics of ARGs. During the smog event, the total abundance of airborne ARGs ranged from 4.90 to 38.07ppm in PM(2.5) samples, and from 7.61 to 38.49ppm in PM(10) samples, which were 1.6-7.7 times and 2.1-5.1 times of those in the non-smog day, respectively. The airborne ARGs showed complicated co-occurrence patterns, which were heavily influenced by the interaction of bacterial community, and physicochemical and meteorological factors. Lactobacillus and sulfonamide resistance gene sul1 were determined as keystones in the co-occurrence network of microbial taxa and airborne ARGs. The results may help to understand the distribution patterns of ARGs in smog for the potential health risk evaluation. | 2018 | 29751438 |
| 6875 | 17 | 0.8492 | Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control. | 2018 | 29353751 |
| 7162 | 18 | 0.8490 | Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. The dissemination of antibiotic resistance genes (ARGs), human pathogenic bacteria (HPB), and antibiotic-resistant HPB (ARHPB) from animal feedlot to nearby environment poses a potentially high risk to environmental ecology and public health. Here, a metagenomic analysis was employed to explore the dissemination of ARGs, HPB, and ARHPB from a pig feedlot to surrounding stream and agricultural soils. In total, not detectable (ND)-1,628.4 μg/kg of antibiotic residues, 18 types of ARGs, 48 HPB species, and 216 ARB isolates were detected in all samples. Antibiotic residues from pig feedlot mainly migrated into stream sediments and greenhouse soil. The dominant ARGs and HPB species from pig feedlot spread into stream sediments (tetracycline resistance genes, Clostridium difficile, and Mycobacterium tuberculosis), stream water (multidrug resistance (MDR) genes, Shigella flexneri, and Bordetella pertussis), and greenhouse soil (MDR genes, Bacillus anthracis, and Brucella melitensis). It is concerning that 54.4% of 216 ARB isolates from all samples were potential ARHPB species, and genome sequencing and functional annotation of 4 MDR HPB isolates showed 9 ARG types. Our findings revealed the potential migration and dissemination of antibiotic residues, ARGs, HPB, and ARHPB from pig feedlot to surrounding stream and agricultural soils via pig sewage discharge and manure fertilization. | 2018 | 29860105 |
| 6798 | 19 | 0.8490 | Diet-driven diversity of antibiotic resistance genes in wild bats: implications for public health. Wild bats may serve as reservoirs for antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria, potentially contributing to antibiotic resistance and pathogen transmission. However, current assessments of bats' antibiotic resistance potential are limited to culture-dependent bacterial snapshots. In this study, we present metagenomic evidence supporting a strong association between diet, gut microbiota, and the resistome, highlighting bats as significant vectors for ARG propagation. We characterized gut microbiota, ARGs, and mobile genetic elements (MGEs) in bats with five distinct diets: frugivory, insectivory, piscivory, carnivory, and sanguivory. Our analysis revealed high levels of ARGs in bat guts, with limited potential for horizontal transfer, encompassing 1106 ARGs conferring resistance to 26 antibiotics. Multidrug-resistant and polymyxin-resistant genes were particularly prevalent among identified ARG types. The abundance and diversity of ARGs/MGEs varied significantly among bats with different dietary habits, possibly due to diet-related differences in microbial composition. Additionally, genetic linkage between high-risk ARGs and multiple MGEs was observed on the genomes of various zoonotic pathogens, indicating a potential threat to human health from wild bats. Overall, our study provides a comprehensive analysis of the resistome in wild bats and underscores the role of dietary habits in wildlife-associated public health risks. | 2025 | 39892320 |