# | Rank | Similarity | Title + Abs. | Year | PMID |
|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 |
| 9330 | 0 | 0.9932 | Pneumococcal Extracellular Vesicles Mediate Horizontal Gene Transfer via the Transformation Machinery. Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population. | 2023 | 38168155 |
| 6436 | 1 | 0.9932 | Protist predation selects for the soil resistome. A key aspect of "One Health" is to comprehend how antibiotic resistomes evolve naturally. In this issue, Nguyen and colleagues pioneered an in situ investigation on the impact of protist predations on the soil microbial community and its antibiotic resistance genes (ARGs). They found that bacterivorous protists consistently increased the abundance of ARGs, such as tetracycline resistant genes. Indeed, antibiotic production is a common strategy for bacteria to evade protist predation. The rise of ARGs can be explained by the balance between antibiotic producers and resisters shaped by predatory selection. This work suggests that ARG enrichment due to biotic interactions may be less worrisome than previously thought. Unless, these ARGs are carried by or disseminated among pathogens. Therefore, it is essential to monitor the occurrence, dissemination and pathogenic hosts of ARGs, enhancing our capacity to combat antibiotic resistance. | 2024 | 38365252 |
| 9982 | 2 | 0.9932 | Family 6 glycosyltransferases in vertebrates and bacteria: inactivation and horizontal gene transfer may enhance mutualism between vertebrates and bacteria. Glycosyltransferases (GTs) control the synthesis and structures of glycans. Inactivation and intense allelic variation in members of the GT6 family generate species-specific and individual variations in carbohydrate structures, including histo-blood group oligosaccharides, resulting in anti-glycan antibodies that target glycan-decorated pathogens. GT6 genes are ubiquitous in vertebrates but are otherwise rare, existing in a few bacteria, one protozoan, and cyanophages, suggesting lateral gene transfer. Prokaryotic GT6 genes correspond to one exon of vertebrate genes, yet their translated protein sequences are strikingly similar. Bacterial and phage GT6 genes influence the surface chemistry of bacteria, affecting their interactions, including those with vertebrate hosts. | 2010 | 20870714 |
| 9371 | 3 | 0.9932 | Coevolutionary history of predation constrains the evolvability of antibiotic resistance in prey bacteria. Understanding how the historical contingency of biotic interactions shapes the evolvability of bacterial populations is imperative for the predictability of the eco-evolutionary dynamics of microbial communities. While microbial predators like Myxococcus xanthus influence the frequency of antibiotic-resistant bacteria in nature, the effect of adaptation to the presence of predators on the evolvability of prey bacteria to future stressors is unclear. Hence, to understand the influence of the coevolutionary history of predation on the evolvability of antibiotic resistance, we propagated variants of E. coli, pre-adapted to distinct biotic and abiotic conditions, in gradually increasing concentrations of antibiotics. We show that pre-adaptation to predators limits the evolution of a high degree of antibiotic resistance. Moreover, lower degree of resistance in the evolved strains also incurs reduced fitness costs while preserving their ancestral ability to resist predation. Together, we demonstrate that the history of biotic interactions can strongly influence the evolvability of bacteria. | 2025 | 40461734 |
| 4104 | 4 | 0.9931 | Human intestinal bacteria as reservoirs for antibiotic resistance genes. Human intestinal bacteria have many roles in human health, most of which are beneficial or neutral for the host. In this review, we explore a more sinister side of intestinal bacteria; their role as traffickers in antibiotic resistance genes. Evidence is accumulating to support the hypothesis that intestinal bacteria not only exchange resistance genes among themselves but might also interact with bacteria that are passing through the colon, causing these bacteria to acquire and transmit antibiotic resistance genes. | 2004 | 15337162 |
| 9370 | 5 | 0.9931 | 'Blooming' in the gut: how dysbiosis might contribute to pathogen evolution. Hundreds of bacterial species make up the mammalian intestinal microbiota. Following perturbations by antibiotics, diet, immune deficiency or infection, this ecosystem can shift to a state of dysbiosis. This can involve overgrowth (blooming) of otherwise under-represented or potentially harmful bacteria (for example, pathobionts). Here, we present evidence suggesting that dysbiosis fuels horizontal gene transfer between members of this ecosystem, facilitating the transfer of virulence and antibiotic resistance genes and thereby promoting pathogen evolution. | 2013 | 23474681 |
| 9208 | 6 | 0.9929 | The use of bacterial genes encoding herbicide tolerance in constructing transgenic plants. The modes of action of some of the best-studied and widespread herbicides are briefly reviewed. Particular attention is given to those herbicide-inhibited processes that bacteria and plants have in common. We describe bacterial mutant genes of herbicide resistance, peculiarities of their introduction into plants, and success in the construction of transgenic resistant plants. | 1988 | 3079186 |
| 9331 | 7 | 0.9928 | Pneumococcal extracellular vesicles mediate horizontal gene transfer via the transformation machinery. Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria and, in doing so, may promote the spread of drug resistance genes in the population.IMPORTANCEThis work extends our understanding of horizontal gene transfer and the roles of extracellular vesicles in pneumococcus. This bacterium serves as the model for transformation, a process by which bacteria can take up naked DNA from the environment. Here, we show that extracellular vesicles secreted by the pneumococcus have DNA on their surface and that this DNA can be imported by the transformation machinery, facilitating gene transfer. Understanding EV-mediated gene transfer may provide new avenues to manage the spread of antibiotic drug resistance. | 2024 | 39503503 |
| 9580 | 8 | 0.9928 | Antibiotic resistance in bacterial communities. Bacteria are single-celled organisms, but the survival of microbial communities relies on complex dynamics at the molecular, cellular, and ecosystem scales. Antibiotic resistance, in particular, is not just a property of individual bacteria or even single-strain populations, but depends heavily on the community context. Collective community dynamics can lead to counterintuitive eco-evolutionary effects like survival of less resistant bacterial populations, slowing of resistance evolution, or population collapse, yet these surprising behaviors are often captured by simple mathematical models. In this review, we highlight recent progress - in many cases, advances driven by elegant combinations of quantitative experiments and theoretical models - in understanding how interactions between bacteria and with the environment affect antibiotic resistance, from single-species populations to multispecies communities embedded in an ecosystem. | 2023 | 37054512 |
| 8612 | 9 | 0.9928 | Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health. | 2024 | 38905974 |
| 9727 | 10 | 0.9928 | Metal Toxicity and Resistance in Plants and Microorganisms in Terrestrial Ecosystems. Metals are major abiotic stressors of many organisms, but their toxicity in plants is not as studied as in microorganisms and animals. Likewise, research in plant responses to metal contamination is sketchy. Candidate genes associated with metal resistance in plants have been recently discovered and characterized. Some mechanisms of plant adaptation to metal stressors have been now decrypted. New knowledge on microbial reaction to metal contamination and the relationship between bacterial, archaeal, and fungal resistance to metals has broadened our understanding of metal homeostasis in living organisms. Recent reviews on metal toxicity and resistance mechanisms focused only on the role of transcriptomics, proteomics, metabolomics, and ionomics. This review is a critical analysis of key findings on physiological and genetic processes in plants and microorganisms in responses to soil metal contaminations. | 2020 | 30725190 |
| 9110 | 11 | 0.9928 | Bacterial resistance to antibiotics: the role of biofilms. Bacteria adhere to natural and synthetic, medically important surfaces within an extracellular polymer generically termed the glycocalyx. This quasi-structure is a biofilm. The enhanced antibiotic resistance of biofilm bacteria, relative to floating (planktonic) bacteria, encourages the establishment of chronic bacterial infections. Resistance mechanisms include the hinderance of antibiotic diffusion by the glycocalyx, the physiology of the bacteria and the environment conditions of the niche in which the biofilm resides. | 1991 | 1763187 |
| 8422 | 12 | 0.9928 | Slightly beneficial genes are retained by bacteria evolving DNA uptake despite selfish elements. Horizontal gene transfer (HGT) and gene loss result in rapid changes in the gene content of bacteria. While HGT aids bacteria to adapt to new environments, it also carries risks such as selfish genetic elements (SGEs). Here, we use modelling to study how HGT of slightly beneficial genes impacts growth rates of bacterial populations, and if bacterial collectives can evolve to take up DNA despite selfish elements. We find four classes of slightly beneficial genes: indispensable, enrichable, rescuable, and unrescuable genes. Rescuable genes - genes with small fitness benefits that are lost from the population without HGT - can be collectively retained by a community that engages in costly HGT. While this 'gene-sharing' cannot evolve in well-mixed cultures, it does evolve in a spatial population like a biofilm. Despite enabling infection by harmful SGEs, the uptake of foreign DNA is evolutionarily maintained by the hosts, explaining the coexistence of bacteria and SGEs. | 2020 | 32432548 |
| 8238 | 13 | 0.9927 | Resistance to enediyne antitumor antibiotics by CalC self-sacrifice. Antibiotic self-resistance mechanisms, which include drug elimination, drug modification, target modification, and drug sequestration, contribute substantially to the growing problem of antibiotic resistance among pathogenic bacteria. Enediynes are among the most potent naturally occurring antibiotics, yet the mechanism of resistance to these toxins has remained a mystery. We characterize an enediyne self-resistance protein that reveals a self-sacrificing paradigm for resistance to highly reactive antibiotics, and thus another opportunity for nonpathogenic or pathogenic bacteria to evade extremely potent small molecules. | 2003 | 12970566 |
| 9732 | 14 | 0.9927 | Interactions of heavy metals with bacteria. The toxicity of heavy metals to bacteria, with particular reference to metal forms and species, has been reviewed. Factors which influence metal forms and thus their potential toxicity, such as pH, chelation and competitive interactions have been discussed. The mechanisms whereby bacteria may influence the forms of heavy metals to which they are exposed have been discussed with reference to the importance of the role of bacteria in immobilisation and environmental cycling of metals. Bacterial resistance to metal toxicity is an environmentally important phenomenon. It may occur from non-specific mechanisms, such as impermeability of the cell, or it may be due to specific resistance transfer factors. The coincidence and co-selection of resistance factors for antibiotics and heavy metals in bacterial populations and the clinical implications of this have been described. | 1980 | 6988964 |
| 6722 | 15 | 0.9927 | Studies on the bacterial permeability of non-woven fabrics and cotton fabrics. The permeability of cotton and non-woven fabrics to bacteria, air and water was studied. Non-woven fabrics, even when wet, showed low resistance to air, and high resistance to permeation of water and bacteria. Water-repellent cotton fabrics were resistant to permeation of water, air and bacteria, but these properties decreased on washing. Non-water-repellent cotton fabrics were poor bacterial barriers even when new. | 1986 | 2873172 |
| 9316 | 16 | 0.9926 | Molecular basis of metronidazole resistance in pathogenic bacteria and protozoa. The molecular basis of metronidazole resistance has been examined in anaerobic bacteria, such as Bacteroides, Clostridium, and Helicobacter, and anaerobic parasitic protists such as Giardia, Entamoeba, and trichomonads. A variety of enzymatic and cellular alterations have been shown to correlate with metronidazole susceptibility in these pathogens; however, a common theme has been revealed. Resistant cells are typically deficient in drug activation. The frequent correlation between metronidazole resistance and ineffective drug activation suggests that drug resistance is the result of modification of proteins involved in drug activation. Copyright 1999 Harcourt Publishers Ltd. | 1999 | 11504503 |
| 9579 | 17 | 0.9926 | Collective antibiotic resistance: mechanisms and implications. In collective resistance, microbial communities are able to survive antibiotic exposures that would be lethal to individual cells. In this review, we explore recent advances in understanding collective resistance in bacteria. The population dynamics of 'cheating' in a system with cooperative antibiotic inactivation have been described, providing insight into the demographic factors that determine resistance allele frequency in bacteria. Extensive work has elucidated mechanisms underlying collective resistance in biofilms and addressed questions about the role of cooperation in these structures. Additionally, recent investigations of 'bet-hedging' strategies in bacteria have explored the contributions of stochasticity and regulation to bacterial phenotypic heterogeneity and examined the effects of these strategies on community survival. | 2014 | 25271119 |
| 9365 | 18 | 0.9926 | Hypermutability and compensatory adaptation in antibiotic-resistant bacteria. Hypermutable (mutator) bacteria have been associated with the emergence of antibiotic resistance. A simple yet untested prediction is that mutator bacteria are able to compensate more quickly for pleiotropic fitness costs often associated with resistance, resulting in the maintenance of resistance in the absence of antibiotic selection. By using experimental populations of a wild-type and a mutator genotype of the pathogenic bacterium Pseudomonas aeruginosa, we show that mutator bacteria can evolve resistance to antibiotics more rapidly than wild-type bacteria and, crucially, that mutators are better able to compensate for the fitness cost of resistance, to the extent that all costs of resistance were entirely compensated for in mutators. When competed against immigrant antibiotic-susceptible bacteria in the absence of antibiotics, antibiotic resistance remained at a high level in mutator populations but disappeared in wild-type populations. These results suggest that selection for mutations that offset the fitness cost associated with antibiotic resistance may help to explain the high frequency of mutator bacteria and antibiotic resistance observed in chronic infections. | 2010 | 20624092 |
| 9239 | 19 | 0.9926 | Tragedy of the commons among antibiotic resistance plasmids. As social interactions are increasingly recognized as important determinants of microbial fitness, sociobiology is being enlisted to better understand the evolution of clinically relevant microbes and, potentially, to influence their evolution to aid human health. Of special interest are situations in which there exists a "tragedy of the commons," where natural selection leads to a net reduction in fitness for all members of a population. Here, I demonstrate the existence of a tragedy of the commons among antibiotic resistance plasmids of bacteria. In serial transfer culture, plasmids evolved a greater ability to superinfect already-infected bacteria, increasing plasmid fitness when evolved genotypes were rare. Evolved plasmids, however, fell victim to their own success, reducing the density of their bacterial hosts when they became common and suffering reduced fitness through vertical transmission. Social interactions can thus be an important determinant of evolution for the molecular endosymbionts of bacteria. These results also identify an avenue of evolution that reduces proliferation of both antibiotic resistance genes and their bacterial hosts. | 2012 | 22486703 |